COMPARATIVE ANALYSIS OF LDPC AND BCH CODES ERROR-CORRECTING CAPABILITIES

Leonid O. Uryvsky, Serhii O. Osypchuk

Abstract


The error-correcting capabilities of regular LDPC (Low Density Parity Check) codes and BCH (Bose-Chaudhuri-Hocquenguem) codes are examined. The qualitative analysis and the quantitative assessment of error-correcting abilities are performed for LDPC codes with code word length n=1000 bits and BCH codes with code word length n=1023 bits. The code rates of LDPC and BCH codes are determined for a known signal to noise ratio in the gaussian channel; detected code rates are optimal for predefined modulation type and required information reliability on the receiver side.


Full Text:

PDF

References


T. Ohtsuki, “LDPC codes in communications and broadcasting,” IEIC Trans. Commun., vol. 90-B, no. 3, pp. 440–453, March 2007.

D. MacKay, Information Theory, Inference, and Learning Algorithms. Cambridge University Press, 2003.

D. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 339–431, March 1999.

D. MacKay, R. Neal, “Near Shannon limit performance of low density parity check codes,” Electron. Lett., vol. 32, no. 18, pp. 1645–1646, August 1996.

T. Tian, C. Jones, J. Villasenor, R. Wesel, “Construction of irregular LDPC codes with low error floors”, Communications, ICC ’03, IEEE International Conference, vol. 5, pp. 3125–3129, May 2003.

R. Gallager, Low-Density Parity-Check Codes. MIT Press, 1963.

V.Vargauzin, “Nearby the Shannon limit,” Telemultimedia Journal, pp. 3–10, 2005. [Online]. Available: http://www.telemultimedia.ru/ pdf/shennon.pdf

M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, “Improved low-density parity-check codes using irregular graphs and belief propagation,” SRC Technical Note, 9 p., 1998.

L. Uryvsky, K. Prokopenko, A. Pieshkin, “Noise combating codes with maximal approximation to the Shannon limit,” Telecommunication Sciences, vol. 2, no. 1, pp. 41–46, January-June 2011. [Online] Available: http://www.its.kpi.ua/telesc/TS/ Telecommunication%20Sciences%20N.1%202011.pdf

N. Sloane, F. MacWilliams, The Theory Of Error-Correcting Codes. Bell Laboratories, Amsterdam, North-Holland, 1977.

S. Miyamoto, K. Kasai, K. Sakaniva, “Sufficient conditions for a regular LDPC code better than an irregular LDPC code,” IEICE Trans. Fundamentals, vol. E90–A, no. 2, pp. 531–534, February 2007.




DOI: https://doi.org/10.20535/2411-2976.12014.%p

Refbacks

  • There are currently no refbacks.