THEORY OF GUIDED WAVES IN THE INFINITE SYSTEMS OF COUPLED DIELECTRIC RESONATORS

Authors

DOI:

https://doi.org/10.20535/2411-2976.22025.81-96

Keywords:

dielectric resonator, eigen oscillations, lattice, coupled resonator transmission line, waveguide, perturbation theory, delay line

Abstract

Background. One of the promising elements of optical and quantum communication systems is various delay lines built on the high-quality dielectric resonators (DRs). These lines typically comprise a substantial number of elements, making the optimisation of their parameters quite challenging. The theory of DRs serves as a foundation for comprehending, calculating, and optimising the parameters of delay lines and other devices, facilitating a considerable reduction in the computational resources that typically require the use of powerful computers.

Objective. The study aims to derive analytical expressions for the electromagnetic parameters of diverse optical waveguides, composed of numerous types of DRs, to utilise them as transmission lines for optical communication systems. To address this issue, an infinite linear system of equations has been derived based on the perturbation theory applied to Maxwell's equations, which connects the complex amplitudes, wave numbers and the resonator frequencies.

Methods. To derive solutions for the analytical expressions, perturbation theory and the theory of infinite linear equations are employed. The outcome is a set of new general analytical formulae that describe the dispersion curves of lattices made up of an infinite number of various types of DRs.

Results. A theory of wave propagation in systems of interconnected one-, two-, and three-dimensional lattices of DRs extended infinitely in one or more directions has been developed. New analytical expressions for the dispersion characteristic of eigenwaves, delay times, and distributions of complex amplitudes of resonators, without any limitations on their quantity, have been derived. By utilising perturbation theory, a novel analytical model has been developed that describes the eigenwaves of three-dimensional lattices composed of identical ring structures of DRs. General analytical solutions for frequency dependencies and amplitudes for one-, two-, and three-dimensional lattices with varying arrangements of resonators have been identified.

Conclusions. The developed theory serves as the foundation for the analysis and design of many devices operating within the optical wavelength spectrum, constructed upon an infinite variety of distinct types of DRs. The obtained new analytical expressions for calculating optical waveguide parameters, based on coupled oscillations of DRs, enable the development of innovative and more efficient mathematical models for various optical communication devices.

References

F. Andreoli, C.-R.y Mann, A. A. High, D. E. Chang. Metalens formed by structured arrays of atomic emitters // De Gruyter. Nanophotonics 2025; aop, pp. 1 – 21

H. S. Han, A. Lee, S. Subhankar, S.L. Rolston, F. K. Fatem. Optical lattices with variable spacings generated by binary phase transmission gratings // Optics Express. Vol. 33, No 2/27, 2025, pp. 3013 – 3020.

V. R. Tuz, V. V. Khardikov, I. Allayarov, A. C. Lesina, A. B. Evlyukhin. All-Dielectric Metasurface-Based Gap Waveguides // Adv. Photonics Res. 2025, 2500128, pp. 1 – 11.

P. Garg, J. D. Fischbach, A. G. Lamprianidis, X. Wang, M. S. Mirmoosa, V. S. Asadchy, C. Rockstuhl, T. J. Sturges. Inverse-Designed Dispersive Time-Varying Nanostructures // Advanced Optical Materials published by Wiley-VCH GmbH, 2025, 2402444 , pp. 1 – 10. Retrieved from: doi: 10.1002/adom.202402444.

A. V. Prokhorov, M. Y. Gubin, A. V. Shesterikov, A. V. Arsenin, V. S. Volkov, A. B. Evlyukhin. Tunable Resonant Invisibility of All-Dielectric Metasurfaces on a Stretchable Substrate: Implications for Highly Sensitive Opto-Mechanical Modulators // ACS Applied Nano Materials, 2025, pp. 1 – 9. Retrieved from: https://doi.org/10.1021/acsanm.4c06453

S. Bej, N. Tkachenko, R. Fickler, T. Niemi. Ultrafast Modulation

of Guided-Mode Resonance in a Nonlinear Silicon Nitride Grating // Advanced Optical Materials published by Wiley-VCH GmbH, Adv. Optical Mater. 2025, pp. 1 – 10.

S. A. Schulz, R. F. Oulton, M. Kenney, A. Alu, I. Staude, A. Bashiri, Z. Fedorova, R. Kolkowski, A. F. Koenderink, X. Xiao, J. Yang, W. J. Peveler, A. W. Clark, G. Perrakis, A. C. Tasolamprou,M. Kafesaki, A. Zaleska, W. Dickson, D. Richards, A. Zayats, H. Ren, Y. Kivshar, S. Maier, X. Chen, M. A. Ansari,Y. Gan, A. Alexeev, T. F. Krauss, A. Di Falco, S. D. Gennaro, T. as Santiago-Cruz, I. Brener, M. V. Chekhova, R.-M. Ma, V. V. Vogler-Neuling, H. C. Weigand, U.-L. Talts, I. Occhiodori, R. Grange, M. Rahmani, Lei Xu, S. M. Kamali, E. Arababi, A. Faraon, A. C. Harwood, S. Vezzoli, R. Sapienza, P. Lalanne, A. Dmitriev, C. Rockstuhl, A. Sprafke, K. Vynck, J. Upham, M. Z. Alam, I.De Leon, R. W. Boyd, W. J. Padilla, J. M. Malof, A. Jana, Z. Yang, R. Colom, Q. Song, P. Genevet, K. Achouri, A. B. Evlyukhin, U. Lemmer, I. Fernandez-Corbaton. Roadmap on photonic metasurfaces. Appl. Phys. Lett. 124, 260701 (2024), doi: 10.1063/5.0204694 124, pp. 260701 – 1 – 260701-114

.B.Real, P. Solano, C. Hermann-Avigliano. Controlling directional propagation in driven two-dimensional photonic lattices // Optics Express.Vol.32, No 26/16. 2024, pp. 47458 – 47467

G. W. Bidney, J. M. Duran, G. Ariyawansa, I. Anisimov, J. R. Hendrickson, V. N. Astratov. Micropyramidal Si Photonics–A Versatile Platform for Detector and Emitter Applications // Laser Photonics Rev. 2024, 2400922, pp. 1 – 18. Retrieved from: doi: 10.1002/lpor.202400922

M. Matiushechkina, A. B. Evlyukhin, R. Malureanu, V. A. Zenin, T. Yezekyan, A. Lavrinenko, S. I. Bozhevolnyi, B. N. Chichkov, M. Heurs. Design and Experimental Demonstration of Wavelength-Selective Metamirrors on Sapphire Substrates // Adv. Photonics Res. 2024, 2400116, pp. 1 – 10. Retrieved from: doi: 10.1002/adpr.202400116

H. Xu, J. Cheng, S. Guan, F. Li, X. Wang, S. C. H. Xu, J. Cheng, S. Guan, F. Li, X. Wang, S. Chang. Terahertz single/dual beam scanning with tunable field of view by cascaded metasurfaces // APL Photon. 2024, 9, 106108; pp. 106108-1 – 9, doi: 10.1063/5.0233841

S.-H. Huang, H.-P. Su, C.-Y. Chen, Y.-C. Lin, Z. Yang, Y. Shi, Q. Song, P. C. Wu. Microcavity-assisted multi-resonant metasurfaces enabling versatile wavefront engineering // Nature Communications, 2024. Retrieved from: doi: 10.1038/s41467-024-54057-9

C. G. Lee, S. Jeon, S. J. Kim, S. J. Kim. Near-flat top bandpass filter based on non-local resonance in a dielectric metasurface // Optics Express, 2023, Vol. 31, No. 3 / 30, pp. 4920 – 4931. Retrieved from: https://doi.org/10.1364/OE.480757

M. Kim, N.-R. Park, A. Yu, J. T. Kim, M. Jeon, S.-W. Jeon, S.-W. Han, Myung-Ki Kim. Multilayer all-polymer metasurface stacked on optical fiber via sequential micro-punching process // Nanophotonics 2023; 12(13): 2359–2369. Retrieved from: https://doi.org/10.1515/nanoph-2022-0762

J. M. Luque-González, A. Sánchez-Postigo, A. Hadij-ElHouati, A. Ortega-Moñux, J. G. Wangüemert-Pérez, J. H. Schmid, P. Cheben, Í. Molina-Fernández, R. Halir. A review of silicon subwavelength gratings: building break-through devices with anisotropic metamaterials (Review) // De Gruyter, Nanophotonics, 2021; 10(11), pp. 2765–2797

G. Quaranta, G. Basset, O. J. F. Martin, B Gallinet. Recent Advances in Resonant Waveguide Gratings (Review article) // Laser Photonics Rev. 2018, pp. 1800017 – 1800017; 1800017 p. Retrieved from: DOI: 10.1002/lpor.201800017.

M. Rumpel, T. Dietrich, F. Beirow, T. Graf, M. A. Ahmed. Resonant Waveguide Gratings – Versatile Devices for Laser Engineering Accurate tailoring of the spectral, temporal and spatial parameters of your laser systems // Photonics Views 3/2020 © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. pp. 50 – 55

Z. Tu, D. Gao, M. Zhang, D. Zhang. High-sensitivity complex refractive index sensing based on Fano resonance in the subwavelength grating waveguide micro-ring resonator // Optics Express. 2017. V. 25, No 17. pp. 20911 – 20922. Retrieved from: https://doi.org/10.1364/OE.25.020911

S. Jahani, Z. Jacob. All-dielectric metamaterials (Review article) // Nature Nanotechnology | Vol. 11 | Jan. 2016, pp. 23 - 36 | Retrieved from: www.nature.com/naturenanotechnology

(2-D) J.Wang, J. Du. Review: Plasmonic and Dielectric Metasurfaces: Design, Fabrication and Applications // Appl. Sci. 2016, 6, 239; pp. 1 – 28. Retrieved from: doi:10.3390/app6090239

A.O. Byelobrov, T.L. Zinenko, K. Kobayashi, A.I. Nosich. Periodicity Matters: Grating or lattice resonances in the scattering by sparse arrays of subwavelength strips and wires // IEEE Antennas and Propagation Magazine · Dec. 2015. Retrieved from: DOI: 10.1109/MAP.2015.2480083

H. Takesue, N. Matsuda, E. Kuramochi, W. J. Munro, M. Notomi. An on-chip coupled resonator optical waveguide single-photon buffer // Macmillan Publishers Limited. Nature Communications 2013 | 4:2725 | pp. 1 – 7. Retrieved from: DOI: 10.1038/ncomms3725 |www.nature.com/naturecommunications

H.-C. Liu, A. Yariv. Synthesis of high-order bandpass filters based on coupled-resonator optical waveguides (CROWs) // Optics Express, 2011 / Vol. 19, No. 18 / pp. 17653 – 17668.

T. Lei, A. W. Poon. Modeling of coupled-resonator optical waveguide (CROW) based refractive index sensors using pixelized spatial detection at a single wavelength // Optics Exprss. Vol. 19, No. 22, pp. 22227 – 222241.

S. Raza, J. Grgi´c, J. G. Pedersen, S. Xiao, N. A. Mortensen. Coupled-resonator optical waveguides: Q-factor influence on slow-light propagation and the maximal group delay // Jornal of the Europian Optical Society – Rapid Publications 5, 100009, 2010, pp. 1 – 4.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, M. Sore. Tunable Delay Lines in Silicon Photonics: Coupled Resonators and Photonic Crystals, a Comparison // IEEE Photonics Journal. 2010, Vol. 2, No. 2, pp. 181 – 194

Y. Kawaguchi, K. Saitoh, M. Koshiba. Analysis of Leakage Losses in One-Dimensional Photonic Crystal Coupled Resonator Optical Waveguide Using 3-D Finite Element Method // Journal of Lightwave Technology, Vol. 28, No. 20, 2010, pp. 2977 – 2983.

X. Cai, R. Zhu, G. Hu. Experimental study for metamaterials based on dielectric resonators and wire frame // Elsevier. ScienceDirect. Metamaterials 2 (2008), pp. 220–226L. Zhu, R. R. Mansour, M. Yu. Compact Waveguide Dual-Band Filters and Diplexers // IEEE Trans. on MTT, Vol. 65, No. 5, may 2017. pp. 1525 – 1533.

L. Y. M. Tobing, P. Dumon, R. Baets, M.-K. Chin. Boxlike filter response based oncomplementary photonic bandgaps in two-dimensional microresonator arrays // Optics Letters, 2008, Vol. 33, No. 21 / pp. 2512 – 2514M. Liu, Z. Xiang, P. Ren, T. Xu. Quad-mode dual-band bandpass filter based on a stub-loaded circular resonator // EURASIP Journal on Wireless Communications and Networking. Springer Open (2019) 2019:48, 6 p.

S. V. Boriskina. Spectral engineering of bends and branches in microdisk coupled-resonator optical waveguides // Optics Exprss. 2007. Vol. 15, No. 25. pp. 17371 – 17379.

V. N. Astratov, S. P. Ashili. Percolation of light through whispering gallery modes in 3D lattices of coupled microspheres // Optics express, 2007 / Vol. 15, No. 25 / pp. 17351 – 17361.

K. Buscha, G. von Freymannb, S. Lindenb, S.F. Mingaleeva,c, L. Tkeshelashvilia, M. Wegenerd. Periodic nanostructures for photonics // Physics Reports 444 (2007) pp. 101 – 202. www.elsevier.com/locate/physrep

Z. Chen, A. Taflove, V. Backman. Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres // Optics Letters, 2006 / Vol. 31, No. 3 / pp. 389 – 391.

L. Solymar, E, Shamonina. Waves in Methamatherials, Oxford Univ. Press. 2009, 314 p.

S. Deng, W. Cai, V. N. Astratov. Numerical study of light propagation via whispering gallery modes in microcylinder coupled resonator optical waveguides // Optics Express, 2004 / Vol. 12, No. 26, pp. 6468 – 6480.

J. K. S. Poon, J. Scheuer, S. M., G. T. Paloczi, Y. Huang, A. Yariv Matrix analysis of microring coupled-resonator optical waveguides // Optics Exprss, 2004 / Vol. 12, No. 1 / pp. 90 – 103

W. J. Kim, W. Kuang, J. D. O’Brien. Dispersion characteristics of photonic crystal coupled resonator optical waveguides // Optics Express. 2003 / Vol. 11, No. 25 / pp. 3431 – 3437

A. Yariv, Y. Xu, R. K. Lee, A. Scherer. Coupled-resonator optical waveguide: a proposal and analysis // Optics Letters. Vol. 24, No. 11, 1999, pp. 711 – 713.

V.F. Kagan. Foundations of the Theory of Determinants. Odessa. 1922. 521 p. (in Russian).

R. Bellman. Introduction To Matrix Analysis. Literary Licensing, LLC, (2012), 348 p.

L. A. Veinshtein. Open resonators and open waveguides. Golem Press. Golem series in electromagnetics, v. 2, – 1969 –. 439 p.

A.A. Trubin Introduction to the Theory of Dielectric Resonators. Springer International Publishing Switzerland. Series in Advanced Microelectronics. (2024). 363 p. Retrieved from: doi: 10.1007/978-3-031-65396-4

A.A. Trubin. Scattering of electromagnetic waves by loss and gain systems of dielectric resonators // Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia. 2024. Iss. 97. pp. 58 – 66. Retrieved from: https://portal.issn.org/resource/ISSN/2310-0389

A.A. Trubin. Coupling oscillations of lattices of different Dielectric Resonators // Information and Telecommunication Sciences. V. 16, No 1, 2025, pp. 75 – 86. Retrieved from: DOI: 10.20535/2411-2976.12025.75-86

Downloads

Published

2025-12-29

How to Cite

Trubin, A. (2025). THEORY OF GUIDED WAVES IN THE INFINITE SYSTEMS OF COUPLED DIELECTRIC RESONATORS. Information and Telecommunication Sciences, 16(2), 81–96. https://doi.org/10.20535/2411-2976.22025.81-96

Issue

Section

Статті