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Background. One of the promising elements of optical and quantum communication systems is various delay lines built on 
the high-quality dielectric resonators (DRs). These lines typically comprise a substantial number of elements, making the 
optimisation of their parameters quite challenging. The theory of DRs serves as a foundation for comprehending, calculating, 
and optimising the parameters of delay lines and other devices, facilitating a considerable reduction in the computational 
resources that typically require the use of powerful computers. 

Objective. The study aims to derive analytical expressions for the electromagnetic parameters of diverse optical 
waveguides, composed of numerous types of DRs, to utilise them as transmission lines for optical communication systems. To 
address this issue, an infinite linear system of equations has been derived based on the perturbation theory applied to Maxwell's 
equations, which connects the complex amplitudes, wave numbers and the resonator frequencies.  

Methods. To derive solutions for the analytical expressions, perturbation theory and the theory of infinite linear equations 
are employed. The outcome is a set of new general analytical formulae that describe the dispersion curves of lattices made up 
of an infinite number of various types of DRs. 

Results. A theory of wave propagation in systems of interconnected one-, two-, and three-dimensional lattices of DRs 
extended infinitely in one or more directions has been developed. New analytical expressions for the dispersion characteristic 
of eigenwaves, delay times, and distributions of complex amplitudes of resonators, without any limitations on their quantity, 
have been derived. By utilising perturbation theory, a novel analytical model has been developed that describes the eigenwaves 
of three-dimensional lattices composed of identical ring structures of DRs. General analytical solutions for frequency 
dependencies and amplitudes for one-, two-, and three-dimensional lattices with varying arrangements of resonators have been 
identified. 

Conclusions. The developed theory serves as the foundation for the analysis and design of many devices operating within 
the optical wavelength spectrum, constructed upon an infinite variety of distinct types of DRs. The obtained new analytical 
expressions for calculating optical waveguide parameters, based on coupled oscillations of DRs, enable the development of 
innovative and more efficient mathematical models for various optical communication devices. 

Keywords: dielectric resonator; eigen oscillations; lattice; coupled resonator transmission line; waveguide; perturbation 
theory; delay line. 

 
 

I. INTRODUCTION 
 

Different waveguide elements build on the 
coupled DRs [1 – 38] are applied today in various 
devices of the communication systems, such as delay 
lines [22 – 27, 30, 32, 34 - 39]; metalens [1], 
modulators [2, 4, 6]; lasers [9, 17], filters [13, 29, 31] 
and so on.  Waveguides on the DR may be made on a 1-
dimensional [15, 19, 22-27, 30, 32-36, 38], 2-
dimensional [2, 3, 5 – 10, 15 – 16, 19, 20, 28, 29, 37], 
as well as 3-dimensional lattices [1, 4, 11 - 14, 19, 31]. 
To analyse the electromagnetic characteristics of such 
complex waveguide structures, the concept of effective 
permittivity and effective magnetic permeability is 
introduced (see, for example, [34]).  Sometimes, the 
calculation of parameters of the lattice is performed by 
using numerical methods, which requires significant 

 computer resources. Meanwhile, all necessary 
parameters of waveguides can be analysed and 
calculated in analytical form using perturbation theory 
[42]. Obtaining analytical expressions for such complex 
infinite lattices of coupled DRs allows us to 
significantly simplify their analysis and optimisation.  

 
 

II. WAVES IN THE INFINITE DR LATTICES  
 

The real part of the difference between the 
frequencies of adjacent oscillations of a lattice 

consisting of a N  DR decreases proportionally 1N . At 
the same time, it can be assumed that the highest quality 
oscillations will have a greater influence. These 
qualitative considerations explain the possibility of 
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transition to a continuous real spectrum with an 
unlimited increase in the number of resonators when 
describing their coupled oscillations. 

Using perturbation theory, from a general 
perspective, we considered the problem of propagation 
of waves in unlimited systems of coupled DRs, 
determined by the electric and magnetic field strengths 
( , )e h , represented in terms of the natural oscillations of 

the same isolated resonators s s( , )e h .  
Following a perturbation method, similar to [42], 

we expanded the field of coupled oscillations ( , )e h  

near one of the natural frequency 0  of the isolated 
resonators over the field of their natural oscillations 
( , )s se h : 

 

                      s
s
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= b




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e
hh
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To calculate the expansion coefficients s b  of (1), 

we used the relationships that follow from Maxwell's 
equations for the natural oscillations of isolated 
resonators, as well as for coupled resonators. After 
transformations of the fields, carried out similarly to 
[42], an infinite system of linear equations for the 
amplitudes was obtained:  

 

           st s t
s=-

 b b 0



    ;      t ,...,     ,     (2) 

 
 where st  - are coupling coefficients of a s –th and t –
th DR; diagonal elements of the infinite matrix 
determined only by the magnitude of the radiation of  
s -th partial resonators, represented by the coupling 
coefficient sk .  

One of the differences between system (2) and 
found in [42] is that the oscillation frequency   in (2) 
takes only real values. Given the definition 

 
                0 0 2( ) /    ;           (3) 
 

we arrive at the requirement that the eigenvalues   
must also take only real values. Here 0 - real part of 
the frequency of isolated DRs.                                       

It was assumed to that the determinant, and in 
addition, all minors of the matrix: 
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converge to a finite limit in the sense [39]. 
Here st ts    - are coupling coefficients of a s –

th and t –th for different DR.  
It seems that under such complex restrictions, the 

solution of the system of equations (2) does not exist, 
however, as will be shown below, using the examples 
of a system of coupled identical resonators, placed at 
the nodes of an infinite in one or several directions, 
lattice, at equal distances from each other, the necessary 
solutions can be constructed in analytical form. 
 

III.  WAVE PROCESSES IN ONE-DIMENSIONAL 
INFINITE LATTICES OF DRS   

 
Initially, an infinite one-dimensional lattice of 

identical DRs, located at the same distance from each 
other, was considered. Under such conditions 

sn s-n   ,  s 0k k   and the system of equations (2) 

takes the form: 
 

    0 ss-t
s =-

( )b  b 0t
t

ik


 
     ;   t ,...,     ,    (5) 

We sought the solution of (5) in the form of 
propagating harmonic waves of the amplitudes of 
partial resonators [41]: 

                                 i n
n 0b b e                           (6) 
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Fig. 1. One-dimensional infinite lattices (a, d) of identical 
cylindrical DR with 101H  oscillations. Dependencies of the 
real (b, e, g) and imaginary (c, f, h) parts of the longitudinal 
wave parameter on the relative frequency for resonators made 
of dielectric 1 20r  ; relative sizes: 0/ 2 0,4L r    for 
s 1;0;1   (9) (a – c);  for s 0 ; 0 0,7;1;2;5k z  (g, h) 
black, green, red, blue lines. The distance between the 
centers of adjacent resonators: 0 2k z  ; 0 0 / k c ; c  
speed of light. 

The complex parameter  , defined from Floquet's 
theorem, is not a wave number in the generally accepted 
sense, since the representations (1) are not expansions in 
plane waves. Solutions (6) display the wave process in 
the system of coupled resonators, expressed by a more 
complex spatial distribution of fields. In this sense, the 

real part   corresponds to the “wavelength number”  , 
multiplied by the distance between the centers of 
adjacent resonators z , and the imaginary part   
determines the “damping” of the fields of DR at the real 
oscillation frequency: 

 
                                 z                   (7) 
 

Substituting (6) into (5) and combining the terms 
located symmetrically with respect to the t -th 
resonator, we obtained the characteristic equation:  

     0 s-t
s=t+1

(ik ) 2  cos(s ) 0


      .            (8) 

Given (3), we rewrote (8) as:  

            0 s
s=10

i1 k  cos(s )
2


    

  .           (9) 

The expression obtained is an even function  ; it 
defines the same dependence of the resonator 
amplitudes (6) for waves propagating in opposite 
directions. In the approximation s 1  an equation, 
similar to (9), was obtained in [38]. 

Taking into account the accepted dependence of 
solutions on time, proportional to i te  , equation (9) was 
supplemented by the condition: Im( ) 0  , 
corresponding to the requirement of decreasing 
resonator amplitudes due to radiation energy losses.  

In the first approximation, the dependence ( )   
can be simply calculated, taking into account in (9) the 
coupling between only neighbouring resonators: 

 0
0 1

0
( ) arccos (2 ik ) / 2 2s

 
         

 .       (10) 

From where we see, that ( )   is the periodic 
function in the Re[ ( )]   direction defined by 
s 0,1,2,...,  , at that Im[ ( )]   do not depend on s .  

Fig. 1 (b, c; e - h) show the dependencies  of the 
real and imaginary parts   on the frequency for one-
dimensional lattices of cylindrical DRs, in the region of 
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fundamental oscillations 101H  of magnetic types,  
found using the approximate formula (9) and by the 
exact solution of equation (8) (points in Fig. 1, e, f).  

The lower attenuation with coaxial arrangement of 
resonators (Fig. 1, d, f) may be explained by radiation 
interference processes. The obtained dependencies 
demonstrate the possibility of transforming direct into 
reverse waves when detuning relative to the central 
frequency of the resonators (Fig. 1, e, g). It is also seen 
that increasing the distance between the centers of the 
resonators significantly changes the attenuation and 
frequency bands of the transmission line (Fig. 1, h).  

Fig. 2 (c - f) shows the dependencies of the real 
and imaginary parts   on the frequency for one-
dimensional lattices of DRs, in the region of  their 
Whispering Gallery Mode oscillation 1,20,1HE , found 
using the approximate formula (10) (green lines) and by 
the exact solution of equation (9) (points in Fig. 2, c, d).  

Obtained dependencies (9), (10) allow us using (7) 
to calculate the value of the group delay during a pulse 
transmission through one period of the line. Using the 
definition of a group velocity: gv 1/ [ Re( ) / ]     . 
we define the delay time as:. 1DR gt z / v   .  

Neglecting the imaginary part  , and using 
Cauchy-Riemann differentiability conditions, we find 

gv Re( / )    .  From (9): 

    1
1DR 0 s

s=1
t Re{[  s sin(s )] }


      .            (11) 

In the approximation of coupling only between 
adjacent resonators: 

                1DR
0 1

1t Re[ ]
 sin( )

 
  

.             (12) 

The obtained delay time relation (11) demonstrates 
the high sensitivity of the delay value to the distance 
between the resonators, due to the interaction of the DR 
fields. Fig. 2, b, h shows an example of calculating the 
time delay using formula (11) for oscillations 1,20,1HE  
of cylindrical DRs. 

 
 

Fig. 2. Dependencies of the group delay (b); and of the real 
(c, e) and the imaginary (d, f) parts of the longitudinal wave 
parameter for s 0  on the relative frequency for 
microresonators (a) with 1,20,1HE  oscillation; made of 
dielectric 1 9,6 r ; relative sizes: 0/ 2 0,2  L r ; the 
distance between centers of adjacent resonators: 

0 17,15 k z  (9) (c – d); for 5
sk / 10       black lines; 

310 green lines; 2,510  red lines (e - f). (b): 0f 200 THz; 1 - 

0 2,15   k z q ; 2 - 0 2,08   k z q ; 3 - 0 2,03   k z q  
( 0 0 q k r ; 0r  - DR radius). (b, h): 0f 200 THz; (b): 1 - 

0 2,15   k z q ; 2 - 0 2,08   k z q ; 3 - 0 2,03   k z q  
( 0 0 q k r ); (h): 1 - 0 2,9   zk z q ; 2 - 0 3,1   zk z q ; 3 - 

0 3,3   zk z q  ( 0 / 2zq k L ). 
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The dependence on the losses in the resonator 
dielectric ( s s sk /     ) can be calculated by replacing 

0k  in (8), (9) with 0 sk k   [43] (Fig. 2, e – f).  

IV.  COUPLED OSCILLATION WAVES IN TWO-
DIMENSIONAL LATTICES OF DRS 

 
To calculate the parameters of waves propagating 

in two-dimensional resonator lattices, equations (2) 
were used, obtained under the assumption that coupling 
only between adjacent resonators of a rectangular 
structure was taken into account.  

To obtain the solution in analytical form, we 
defined the “coordinates” of each resonator of the 
lattice by two integers (s, t) , where s  denotes the 
number of the position along the x  axis, and the  
number t  of the position of the DR along the axis z  in 
a rectangular lattice (Fig. 3, a). The equation for the 
s, t -th DR, taking into account the coupling only with 
the nearest resonators, was written as: 

 

s-1,t s+1,t s,t-1 s,t+1 0 .(b b ) (b b ) ( )bx z s tik          
 

s-1,t-1 s-1,t+1 s+1,t-1 s+1,t+1(b b b b ) 0xz         (13) 

 
Here we have designated: s 1,t|s,t s 1,t|s,t x      ; 

s 1,t 1|s,t s 1,t 1|s,t s 1,t 1|s,t s 1,t 1|s,t xz                ; 

s,t 1|s,t s,t 1|s,t z      . Where u,v|s,t  - the mutual 

coupling coefficients between the u, v  and s, t  
resonator. 

The solution of system (13) was also expressed in the 
form of waves propagating in the direction of the axis z : 

                      , 0b b sin( )   i t
s t xs e ,           (14) 

Substituting (14) into (13), after simple 
transformations, we obtain an equation similar to (8): 

              x 02 cos( ) 2 cos( ) ( )        
x z ik                                                                      

            4 cos( )cos( ) 0    xz x .                (15) 

 
Fig. 3. 2-D infinite lattices (a, b, c) of DRs. Dependencies of 
the real (d, f) and imaginary (e, g) parts of the longitudinal 
wave parameter on the relative frequency for cylindrical 
resonators made of dielectric 1 20r  ; relative sizes: 

0/ 2 0,4L r   ;  5N  ; s 0  (15); distance between the 
adjacent resonators:  0 1k x  ; 0 2k z   (d, e); 0 2k x  ; 

0 1k z   (f, g)  
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Equation (15) was supplemented with symmetry 
conditions: u.t N u 1.tb b   , from which we 
determined the N  values: 

         n
x x

n
(N 1)


   


;   ( n 1,2,..., N )       (16) 

 

Substituting (16) into (15), we get: 

 

           0 x
nik 2 cos[ ]

(N 1)


    


 .                                                    

                                                                   (17) 

              z xz
n2 2 cos[ ] cos( )

(N 1)
 

      
. 

 

It follows that in the direction of the axis z  of a 
two-dimensional lattice consisting of N  resonators in 
cross section, only N  types different “eigen” modes can 
propagate. Each such mode is characterized by its own 
distribution of resonator amplitudes in the transverse 
plane z const , determined by a given number, 
n 1,2,..., N .  For each value of the n , the characteristic 
equation (17) determines the degenerate on s  
dependence of the longitudinal number   on the 
frequency in the region of natural oscillations of the 
partial DR: 

 
ns 0

x
0

k narccos{ 1 i cos[ ] /
2 (N 1)

  
           


.         

                                                                                    

                  z xz
n/ 2 cos[ ] } 2s

(N 1)
 
      

;   (18) 

                                     ( n 1,2,..., N ; s 0,1,2,...,  )                                                                                                                    

Equation (18) also needs to be supplemented by 
the condition: Im( ) 0  , 

Fig. 3 shows the dependencies of complex values 
  on the frequency in the region of fundamental 
oscillations of resonators  101H  of an infinite 
rectangular lattice of N 5  cylindrical DRs, calculated 
using (18) for s 0 .  

The obtained solutions demonstrate that in the case 
of the DR arrangement shown in Fig. 3, b. the mode 
composition of the waves can change significantly, both 
due to a change   in the real part and due to different 
attenuation values (Fig. 3, b. d, e). 

In the general case, if the lattice dimensions are not 
limited in two directions, the solution of the system (13) 
obviously takes the form: 

                       x zi s i t
s,t 0b b e     ,               (19) 

in which the complex constants x , z , in the 
directions x , z  respectively, are related to each other 
by a dispersion equation: 

        0 x x z z1 ik / 2 cos( ) cos( )                                    

           xz x z 02 cos( )cos( ) /       .       (20)   

         

V. WAVES IN THREE-DIMENSIONAL LATTICES 
OF DRS 

In a similar manner, the parameters of the waves of 
a three-dimensional rectangular lattice, consisting of 
N M  identical resonators in cross section, were 
calculated (Fig. 4). To construct an analytical solution 
to the system of equations (2), we also defined the 
coordinates of each resonator by three integer indices 
(s, t,u) , where s  denotes the position along the axis x , 
t  denotes the position along the axis y , and u   
denotes the DR position along the axis z . If all 
resonators are identical, then the mutual coupling 
coefficients are symmetrical and for a rectangular 
lattice:  

               s 1,t,u|s,t,u s 1,t,u|s,t,u x      ;              
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                s,t 1,u|s,t,u s,t 1,u|s,t,u y      ;   

                s,t,u 1|s,t,u s,t,u 1|s,t,u z      ;     

                s 1,t 1,u|s,t,u s 1,t 1,u|s,t,u        

               s 1,t 1,u|s,t,u s 1,t 1,u|s,t,u xy         ;  

                  s 1,t,u 1|s,t,u s 1,t,u 1|s,t,u                              

              s 1,t,u 1|s,t,u s 1,t,u 1|s,t,u xz         ;                                        

                   s,t 1,u 1|s,t,u s,t 1,u 1|s,t,u        

               s,t 1,u 1|s,t,u s,t 1,u 1|s,t,u yz         ;                    

                 s 1,t 1,u 1|s,t,u s 1,t 1,u 1|s,t,u          

                  
s 1,t 1,u 1|s,t ,u s 1,t 1,u 1|s,t ,u xyz           ; 

                  
s 1,t 1,u 1|s,t ,u s 1,t 1,u 1|s,t ,u             

              s 1,t 1,u 1|s,t,u s 1,t 1,u 1|s,t,u xyz           . 

 

 

Fig. 4. Three-dimensional rectangular lattice of DR. 

 

Then equation (5) for the selected DR  with 
“coordinates” (s, t,u) , taking into account the coupling 
only with the nearest resonators of the lattice (Fig. 4), 
was rewritten in the form: 

          s-1,t,u s+1,t,u s,t-1,u s,t+1,u(b b ) (b b )x y       

                 z s,t,u-1 s,t,u+1 0 . ,(b b ) ( )bs t uik       

    xy s-1,t-1,u s+1,t+1,u s+1,t-1,u s-1,t+1,u(b b b b )        

     s-1,t,u-1 s+1,t,u-1 s-1,t,u+1 s+1,t,u+1(b b b b )xz      

                                 
s,t-1,u-1 s,t+1,u-1 s,t-1,u+1 s,t+1,u+1(b b b b )yz           (21)  

                         
s-1,t-1,u-1 s+1,t+1,u+1 s+1,t-1,u-1 s-1,t+1,u+1(b b b bxyz      

        
s-1,t+1,u-1 s+1,t-1,u+1 s+1,t+1,u-1 s-1,t-1,u+1b b b b ) 0     .                     

For an infinite lattice along the axis z , the solution 
of the equations system (21) was sought in the form of 
“plane” waves of the DR amplitudes: 

                 . 0b b sin( )sin( )    i u
s t x ys t e ,             (22) 

Substituting (22) into (21), we obtain: 
 

    0 x y2 cos( ) 2 cos( ) 2 cos( )           
x y zik  

                 
4 cos( )cos( ) 4 cos( )cos( )        xy x y xz x            

                                                                               (23) 

4 cos( )cos( ) 8 cos( )cos( )cos( )        yz y xyz x y  
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   Based on the requirement to fulfil the conditions 
of field symmetry in the “transverse plane” of the 
waveguide structure: 

                 . 1.b bw t N w t  ; . . 1b bs v s M v  ;             

we found: 

         n
x x

n
(N 1)


   


;  m

y y
m

(M 1)


   


;            (24) 

where n 1,2,..., N ; m 1,2,...,M .  

From here we again came to the conclusion that in 
an infinite lattice, the cross-section of which represents 
N M  a rectangular DR structure, only N M  
independent degenerate “plane” waves can propagate in 
the direction of the axis z , each of which is 
characterised by a given distribution of the amplitudes 
of the coupled oscillations of the resonators in the 
transverse plane of the line. 

For each such wave, the approximate dependence 
of the longitudinal wave parameter on the frequency is 
valid: 

        0
x

0
arccos{ 1 cos[ ]

2 ( 1)
  

        

k ni
N

   

       cos[ ] cos[ ]cos[ ] /
( 1) ( 1) ( 1)y xy

m n m
M N M

  
      

                                 

/ 2 cos[ ] 2 cos[ ]
( 1) ( 1)z xz yz

n m
N M

  
       

. 

4 cos[ ]cos[ ] } 2
( 1) ( 1)

 
     

xyz
n m s

N M
     (25) 

 
                                                     ( s 0,1,2,...,  ) 
 
Equation (25) also must be supplemented with the 

condition: Im( ) 0  . 
 

 

Fig. 5. Three-dimensional infinite rectangular lattices (a, 
b) of cylindrical DRs. Dependencies of the real (c, e) and 
imaginary (d, f) parts of the longitudinal wave parameter on 
the relative frequency for cylindrical resonators made of 
dielectric 1 20r  ; relative sizes: 0/ 2 0,4L r   ; 

3 3N M   DR; s 0  (22); distance between the adjacent 
resonators: 0 1k x  ; 0 2k y  ; 0 2,5k z    (c, d); . 

0 2k x  ; 0 2k y  ; 0 1k z    (e, f). 
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The generalisation of the developed theory to cases 
of wave propagation in arbitrary directions of an 
unlimited three-dimensional lattice is obvious: the 
solution of system (21) should be sought in the form 

:   
                              . , 0b b      x y zi s i t i u

s t u e ,           (26) 
 
and the corresponding dispersion equation, obtained 
from the system of equations (21), must connect the 
wave parameters: 
 

0 0 x y/ / 2 cos( ) cos( ) cos( )            
x y z zik

 

      2 cos( )cos( ) 2 cos( )cos( )        xy x y xz x z      

                                                                               (27) 

                                 
2 cos( )cos( ) 4 cos( )cos( )cos( )        yz y z xyz x y z

.                                    

 

Fig. 5 shows the dependencies of the wave 
parameters on the frequency for N M 3 3    a 
rectangular DR lattice of cylindrical shape, excited on 
the main types of natural oscillations 101H  for s 0  
(25). 

  It is obvious that an increase in the dimensionality 
of the spatial structure leads to an increase in the 
number of natural waves and frequency distribution, 
caused by an increase in the number of couplings 
between resonators. 

 

VI.  THREE-DIMENSIONAL WAVEGUIDE LATTICES 
OF DRS 

Three-dimensional structures of coupled resonators 
allow forming spatial waveguide structures of various 
cross-section shapes from them. We have considered 
several examples of calculating the characteristics of an 
axially symmetric waveguide structure consisting of an 
infinite number of ring lattices with the same number of 
resonators (Fig. 6, a, b).  

Initially, we considered an axially symmetric ring 
lattice with the same number of DRs (Fig. 6, a), which 
allows an analytical description of coupled oscillations 
in a general form. Let us have a linear structure of ring 
lattices with the same number of resonators N . All 
sublattices are located axially symmetrically relative to 
the selected common axis z . 

 

 
Fig. 6. Three-dimensional cylindrical lattices of 

identical (a); different (b) resonators 
 

All eigenvectors of the ring lattices are the same 
for the same number of resonators [44], however, for 
convenience, we have designated each  of the vectors of 
the w -th lattice by the index w : 

               

wj
1

1wj jj wj 2
o o

N 1wj
jN

1b

b 1 =
N

b 

  
  
  

    
  
      

b b


,   

( ,...,w    ; 0,2,..., 1j N  )            (28) 

here j exp(2 j i / N)    j-th of N th complex root 
of unity.  

j-th eigenvector (28) of the isolated w -th ring 
sublattice with N  resonators satisfies the equation: 
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N-1

n=1
( )b  b 0wj sj w nj

w o o ns oik      ;              (29)  

                                                            ( 1,2,...,w M ) 

where 

   
N 1wj w v

o w v j
v 1

ik ( )



      ,  ( j 0,1,...,N 1  )          (30)  

The axially symmetric arrangement of sublattices 
with the same number of resonators also allowed us to 
reduce the total number of mutual coupling coefficients. 

 Taking into account the rotational symmetry of the 
resonators ( sw sw

tu t u   ) of the system under 
consideration, we determined the “vector” of mutual 
coupling between the u -th and w -th sublattices: 

                     

uw
0
uw
1

uw

uw
N 1

 



 
 
 

  
 
  

K


;                 (31)  

as well as the vector of mutual coupling of the 
resonators in the w -th sublattices:  

                               

w
1
w
2

w

w
N 1

 



 
 
 

  
 
  

K


.                 (32) 

Next we regrouped the terms in equations (2) into 
two partial sums, the first of which related to the 
oscillations of the selected w -th sublattice and the sum 
related to the remaining sublattices: 
  

  
N-1 N-1

n=1 v=0
( )b  b  b 0



 
         w uw

w t n n vt v
u w

ik     (33) 

 

    The solution to the system of equations (33) for the 
j -th type of oscillations of the resonators of the w -th 

sublattice was sought in the form: 

 
                                    ( j) w j

oa b b ;                  (34) 
 

Multiplying equation (29) by wa  and subtracting it 
from (33), we get:  
                                    

    
N-1

wj w tj uw vj u
o o vt o

u w v=0
( )a b [  b ] a 0



 
         . (35) 

Since the sum 
N-1

v=0
 buw

vt v  is taken over all 

resonators of the u -th sublattice, it does not depend 
on the initial value of the index and can be rewritten as:  
 

              
N-1 N-1

uw vj uw (t v) j
vt o (t v)t o

v=0 v=0
 b  b 

    ,           (36) 

 
Substituting (36) into (35), we found: 
 

 
N-1

wj w tj uw (t v) j u
o o (t v)t o

u w v=0
( )a b [  b ] a 0





 

         .      

                                                                          (37) 

Dividing (37) by tj
ob , and taking into account (28): 

                       (v t 1) j tj (v) j
o o ob / b Nb   , 

we ended up with an equation that does not depend 
on the t -th DR, 

  
N

wj w uw (v) j u
o v 1 o

u w v=1
( )a N [  b ] a 0




 

        ,   (38) 

determined only by the parameters of the ring 
sublattices. Here we also used the condition 

uw uw
qv q v    

Equation (38) can be rewritten in a more compact 
form, taking into account definition (31): 

                              

   wj w j u
o uw o

u w
( ) a N ( , ) a 0



 
       K b .       (39) 
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Fig. 7. Three-dimensional cylindrical lattice (a) of identical 
resonators in the position A (a); B (d); C (g). 1 20r  ; 
relative sizes: 0/ 2 0,4L r   ;  6N  ; s 0 ; 0 2k r  ; 

0 2k z    (b, c; e, f); 0 1,6 k r ; 0 1 k z  (h, i). 

The infinite system of equations (39) in general 
form determines the frequencies and amplitudes of 
coupled oscillations of periodic waveguide structures of 
axially symmetric ring sublattices with the same 
number N  of resonators. 

 From (39) it also follows that the coupling vectors 
of the ring sublattices (32) are not included in the 
system in an explicit form. They determine the 
frequencies of natural oscillations of the sublattices. 

wj
o . 

By analogy with the oscillations of individual 
resonators (4), we may introduce into consideration the 
infinite coupling matrices of the ring sublattices: 

 

                                      ( j)K                               (40)   

w 1j j j
o ww 1 o w 1w 1 o

j wj j
w 1w o o w 1w o

j j w 1j
w 1w 1 o ww 1 o o

... ... ... ...

... N( , ) N( , ) ...

... N( , ) N( , ) ...

... N( , ) N( , ) ...

... ... ... ...


  

 


  

 
 

 
   
   
 

K b K b
K b K b

K b K b





 

the eigenvalues and eigenvectors of which, together 
with (30), determine the parameters of the structure.  

From this it follows that if all sublattices are no 
interact, uw 0K , the eigenvalues of the matrix ( j)K  
are determined by the set of eigenvalues of isolated ring 
sublattices wj

o  (30). 

In the case of identical resonators in all sublattices, 
the eigenvalues of matrix (40) are determined by the 
expression:  

                      j j j
o     , 

where wj j
o o   , and  j - eigenvalue of a matrix: 

( j)K                                                 (41) 
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j j
ww 1 o w 1w 1 o

j j
w 1w o w 1w o

j j
w 1w 1 o ww 1 o

. ... ... .

. 0 N( , ) N( , ) .

. N( , ) 0 N( , ) .

. N( , ) N( , ) 0 .

. ... ... .

  

 

  

 
 
 
   
 
  
 

K b K b
K b K b

K b K b





 

For a infinite number of sublattices, with the 
same DR, we seek the solution of system (39) in the 
form: 

                                    w i w
0a a e   ,                      (42) 

where 0a  and    are constant also do not depend on 
the sublattice numbers. 

Substituting (42) into (38), after simple 
transformations and reduction of amplitudes 0a , we 
find:   

j j j
o 1u 1 o

u 1
2 N ( , )cos(u )






     K b .          (43) 

Equation (43) together with (30) and the 
condition Im( ) 0  ,  also determine the N  sets of 
dispersion functions of the waves that may be 
propagated in the ring structures of resonators.  

In the approximation of taking into account the 
coupling only between adjacent sublattices: 

           j j j
o 12 o2cos( ) N( , )     K b                

or 

j
0 o

j
12 o

2( / 1)( ) arccos 2s
2 N( , )

     
      

  K b
.    (44) 

Where j
o  defined by (30). 

Fig. 7 shows the frequency dependencies of the 
wave parameters of ring, axially symmetric lattices with 
cylindrical DRs of different spatial orientations. The 
obtained data show a significantly smaller spread of 
modal parameters. Unlike the “solid” lattices considered 

in III–V, hollow waveguide structures are characterized 
by a lower in-band and a higher attenuation value outside 
the transmission frequencies. (Fig. 7, c, f, i). 

We considered also an infinite linear structure of 
identical coaxial sublattices, shown in Fig. 6, b, each of 
which consists of a N 1  DR. We designated the 
resonators of each sublattice (Fig. 6, b) by numbers 
s 0,1,2,..., N ; resonators located on the axis z  of the 
sublattices was designated by indices 0 , while 
resonators located on a ring of the sublattice, was 
designated by s 1,2,..., N . The distance between 
resonators of the adjacent sublattices we also designed 
by z .  

 We denoted the amplitudes of the resonators by 
w
tb , where t - is the resonator number, w - number of 

the sublattice. The mutual coupling coefficients 
between s -th and t -th resonators in the w -th 
sublattice we denoted by w

st ; the mutual coupling 
coefficients between  s -th resonator of  u -th sublattice 
and  t -th resonators in the  w -th sublattice we denoted 
by uw

st ( u w ). The coupling coefficients of the axial 
resonators with the external structure are denoted by 

0k , and the coupling coefficients of the resonators with 
the external structure located on the ring sublattices was 
denoted by 1k . 

We broke down the sum included in the system of 
equations (2) into terms related to the w -th sublattice 
with the selected t -th resonator and to the remaining 
sublattices: 

 

s=1,s , 0
( )b  b  b 0



   
        

N N
w w w uw u

t t st s st s
t u u w s

ik . (45) 

 
We explicitly selected in (45) the amplitudes of the 

DR related to the resonators located on the axis z :                
                  

0 0 0 00 0
s=1 ,

( )b  b  b


 
       

N
w w w uw u

s s
u u w

ik        

                  0
, 1

 b 0


  
   

N
uw u
s s

u u w s
;                     

                                                                                                            
                                                                                (46) 
     

1 0 0 0 0
s=1,s ,

( )b b  b  b


  
         

N
w w w w w uw u
t t st s t

t u u w
ik
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, 1

 b 0


  
   

N
uw u
st s

u u w s
. 

 
For resonators located on the axis z , we 

considered only oscillations whose fields are 
azimuthally symmetrical. For such oscillations, the 

coefficients of mutual coupling 0w
s  and 0uw

s  are the 

same and do not depend on  s : 0 10  w w
s ; 0 10  uw uw

s . 
In this case, two subsets of solutions can be 

defined in (46):  

1) Ring sublattices oscillations with 0b 0w : 
 

       10 10
s=1 , 1

b  b  0


  
     

N N
w w uw u

s s
u u w s

.                  

                                                                                                               
                                                                                  (47) 
                     

1
s=1,s , 1

( )b  b  b 0


   
        

N N
w w w uw u
t st s st s

t u u w s
ik  

 

2) Azimuthally uniform oscillations: 1b bw w
s : 

 

0 0 00 0 1 0
, s=1

( )b  b b  


 
       

N
w uw u w w

s
u u w

ik      

                    1 0
, 1

 b  0


  
   

N
u uw

s
u u w s

;                   

                                                                    (48)                                                                                                        

1 1 01 0 1 1 01 0
s=1,s 1 ,

( )b b b   b


  
         

N
w w w w w uw u

s
u u w

ik  

                  1 1
, 1

b  0


  
   

N
u uw

s
u u w s

. 

 
We will seek the solution to the system of 

equations (47) in the form (34): 
 

                                       w w sj
s ob a b ;                    (49)   

 

under an additional condition: 1 j N 1   . In this case, 

as it`s follows from (28): 
1 1
b b 0

 
  

N N
u u sj
s o

s s
a . Than 

the first equations of the system (47) are satisfied. The 
second equation of the system coincides with (33), the 
solutions of which we have already found (42) – (44). 
These solutions coincide with the solutions for the ring 
lattices for 1 j N 1   . 

 
For azimuthally uniform oscillations, further 

simplification of equations (48) is possible if all 
resonators of each sublattice are located periodically 
along the axis z . In this case, the solution can be 
represented as: 

 

                         w i w
0,1 0,1b b e   ,                      (50) 

         
The complex parameter  , is also not function on 

w .   
Substituting (50) into (48), we obtained, provided 

that the coupling between adjacent sublattices is taken 
into account and for only the azimuthal symmetry of the 
coupling coefficients: 

         
12 1 12

0 00 0 10 10 1
1 12
01 01 0

N N
1 12

1 s1 s1 1
s=2 s 1

[(ik ) 2cos( ) ]b N[  2cos( ) ]b 0

[ 2cos( ) ]b

[(ik ) 2cos( ) ]b 0


           

     



        


 





                                                                              (51) 

The solution of the system (51) is: 
 

        N
12 12 12 12
00 s1 10 01

s=1

Farccos{ } 2s
4[ N ]


   

    
,   (52) 

        where 

            12 1 12 1 12
10 01 01 10 00 1F N( ) [(ik )                     

                            
N N

1 12
s1 0 s1

s=2 s=1
] (ik ) d        ;     
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Fig. 8.  Three-dimensional coaxial lattice (a) of identical DRs 
with 101H  oscillations. (b – e): 1 20 r ; 0/ 2 0, 4  L r ;  

24N ; s 0 ; 0 1,5 k z ;  distance between adjacent 
resonators of ring sublattice: 0 3 k r . 

                                                                                                                   

N
12 1 12 1 12 1
10 01 01 10 00 1 s1

s=2
d {N( ) [(ik ) ]
            


                                                                                                        

      
N N
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0 s1 00 s1 10 01

s=1 s=1
(ik ) } 4[ N ]            .                                                                                                              

      
1/2N

1 1 1
0 1 s1 10 01

s=2
{(ik )[(ik ) ] N }          


  .        

And the amplitude ratio: 

            
1 12

0 10 10
12

1 0 00

b  2cos( )N
b (ik ) 2cos( )

   
 

    
.                 (53) 

Equation (52) also must be supplemented with the 
condition: Im( ) 0  . 

In the particular case where 1
10 0   and 12

10 0  , 
the axial and ring sublattices of the resonators oscillate 
independently of each other. In this case, for the axial 
sublattice the dispersion dependence takes the form (9), 
and for ring sublattices  (44). 

Fig. 8 shows the frequency dependencies of the 
wave parameters of coaxial lattices cylindrical DRs 
calculated from (52) – (53) for axially symmetrical 
oscillations. The obtained data demonstrate the existence 
of frequency regions in which the main power is 
transmitted through the central lattice of resonators 
(Fig.8, d, e). 
                                                                                             

VII. CONCLUSION 
A perturbation theory to describe the processes of 

waves propagating in the lattices of DR that are not 
limited in one or several directions has been developed.  

General systems of equations, describing wave 
processes in an infinite structure of axial ring lattices 
with the same number of resonators, are derived. 

General analytical solutions for the frequency 
dependencies of the amplitudes of DR of one-, two- and 
three-dimensional waveguide structures are obtained. 

The obtained general expressions allow us to 
calculate the delay time of pulse propagation in various 
transmission lines built on DR. 

The developed theory serves as a basis for 
constructing a wide class of optical devices for different 
communication systems. 
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Трубін О.О.  
Теорія спрямованих хвиль в нескінченних системах зв’язаних діелектричних резонаторів 
Навчально-науковий інститут телекомунікаційних систем КПІ ім. Ігоря Сікорського, м. Київ, Україна 
 
Проблематика. Одним із багатообіцяючих елементів систем оптичного та квантового зв’язку є різноманітні лінії 

затримки, побудовані на високо добротних діелектричних резонаторах. Такі лінії зазвичай складаються з великого 
числа елементів тому оптимізація їх параметрів призводить до значних труднощів. Теорія діелектричних резонаторів є 
основою для розуміння, розрахунків та оптимізації параметрів ліній затримки та інших пристроїв, яка дозволяє 
суттєво скоротити розрахункові ресурси, які потребують використання потужних комп’ютерів. 

Мета досліджень. Метою даного дослідження є отримання аналітичних виразів дисперсійних залежностей та 
розподілів електромагнітних полів різних видів ліній передачі, які складаються  з  великої кількості діелектричних 
резонаторів з ціллю використання їх в різноманітних пристроях оптичного зв’язку. Для вирішення цієї задачі 
виводиться нескінчена лінійна система рівнянь, отримана із теорії збурень для рівнянь Максвеллу, яка пов’язує між 
собою комплексні амплітуди, хвилеві числа та частоти резонаторів.   

Методика реалізації. Для пошуку аналітичних виразів використовуються методи теорії збурень та теорія 
нескінчених лінійних рівнянь.  Кінцевим результатом є нові загальні аналітичні формули для опису дисперсійних 
кривих решіток, які складаються із нескінченого числа діелектричних резонаторів різних видів.  

Результати досліджень. Розвинута теорія розповсюдження хвиль в системах зв’язаних між собою одно-, двох- та 
трьох-вимірних решіток діелектричних резонаторів нескінчених в одному або декількох напрямках. Отримані нові 
аналітичні вирази для дисперсійних залежностей власних хвиль, часу затримки, а також розподілів комплексних 
амплітуд резонаторів, без обмеження на їх кількість. За допомогою теорії збурень, побудована нова аналітична 
модель, яка описує власні хвилі три-вимірних решіток, які складаються із однакових кільцевих структур 
діелектричних резонаторів. Знайдено загальні аналітичні рішення для частотних залежностей та амплітуд для одно-, 
дво- та три-вимірних решіток з різним розташуванням резонаторів.     

Висновки. Розроблена теорія є основою для конструювання нових видів ліній затримки а також багатьох інших 
пристроїв оптичного діапазону довжин хвиль, які будуються на основі використання великого числа діелектричних 
резонаторів. Отримані нові аналітичні вирази для розрахунку параметрів хвиль, які розповсюджуються в складних 
структурах діелектричних резонаторів, дозволяють будувати нові більш ефективні математичні моделі різноманітних 
пристроїв оптичного зв’язку. 

Ключові слова: діелектричний резонатор; власні хвилі; решітка; зв'язана резонаторна лінія передачі; хвилевод;  
теорія збурень; лінія затримки.  
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