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THEORY OF GUIDED WAVES IN THE INFINITE SYSTEMS OF
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Background. One of the promising elements of optical and quantum communication systems is various delay lines built on
the high-quality dielectric resonators (DRs). These lines typically comprise a substantial number of elements, making the
optimisation of their parameters quite challenging. The theory of DRs serves as a foundation for comprehending, calculating,
and optimising the parameters of delay lines and other devices, facilitating a considerable reduction in the computational
resources that typically require the use of powerful computers.

Objective. The study aims to derive analytical expressions for the electromagnetic parameters of diverse optical
waveguides, composed of numerous types of DRs, to utilise them as transmission lines for optical communication systems. To
address this issue, an infinite linear system of equations has been derived based on the perturbation theory applied to Maxwell's
equations, which connects the complex amplitudes, wave numbers and the resonator frequencies.

Methods. To derive solutions for the analytical expressions, perturbation theory and the theory of infinite linear equations
are employed. The outcome is a set of new general analytical formulae that describe the dispersion curves of lattices made up
of an infinite number of various types of DRs.

Results. A theory of wave propagation in systems of interconnected one-, two-, and three-dimensional lattices of DRs
extended infinitely in one or more directions has been developed. New analytical expressions for the dispersion characteristic
of eigenwaves, delay times, and distributions of complex amplitudes of resonators, without any limitations on their quantity,
have been derived. By utilising perturbation theory, a novel analytical model has been developed that describes the eigenwaves
of three-dimensional lattices composed of identical ring structures of DRs. General analytical solutions for frequency
dependencies and amplitudes for one-, two-, and three-dimensional lattices with varying arrangements of resonators have been
identified.

Conclusions. The developed theory serves as the foundation for the analysis and design of many devices operating within
the optical wavelength spectrum, constructed upon an infinite variety of distinct types of DRs. The obtained new analytical
expressions for calculating optical waveguide parameters, based on coupled oscillations of DRs, enable the development of
innovative and more efficient mathematical models for various optical communication devices.

Keywords: dielectric resonator; eigen oscillations; lattice; coupled resonator transmission line; waveguide; perturbation
theory; delay line.

computer resources. Meanwhile, all necessary
parameters of waveguides can be analysed and
calculated in analytical form using perturbation theory
[42]. Obtaining analytical expressions for such complex
infinite lattices of coupled DRs allows us to
significantly simplify their analysis and optimisation.

I. INTRODUCTION

Different waveguide elements build on the
coupled DRs [1 — 38] are applied today in various
devices of the communication systems, such as delay
lines [22 — 27, 30, 32, 34 - 39]; metalens [1],
modulators [2, 4, 6]; lasers [9, 17], filters [13, 29, 31]
and so on. Waveguides on the DR may be made on a 1-
dimensional [15, 19, 22-27, 30, 32-36, 38], 2-
dimensional [2, 3, 5 — 10, 15 - 16, 19, 20, 28, 29, 37],

I1. WAVES IN THE INFINITE DR LATTICES

as well as 3-dimensional lattices [1, 4, 11 - 14, 19, 31].
To analyse the electromagnetic characteristics of such
complex waveguide structures, the concept of effective
permittivity and effective magnetic permeability is
introduced (see, for example, [34]). Sometimes, the
calculation of parameters of the lattice is performed by
using numerical methods, which requires significant

The real part of the difference between the
frequencies of adjacent oscillations of a lattice

consisting of a N DR decreases proportionally N™'. At
the same time, it can be assumed that the highest quality
oscillations will have a greater influence. These
qualitative considerations explain the possibility of
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transition to a continuous real spectrum with an
unlimited increase in the number of resonators when
describing their coupled oscillations.

Using perturbation theory, from a general
perspective, we considered the problem of propagation
of waves in unlimited systems of coupled DRs,
determined by the electric and magnetic field strengths

(e,h), represented in terms of the natural oscillations of
the same isolated resonators (e ,h,).

Following a perturbation method, similar to [42],
we expanded the field of coupled oscillations (e,h)

near one of the natural frequency ®, of the isolated

resonators over the field of their natural oscillations

(e,,h)):
€| & e |
NP

To calculate the expansion coefficients ||bs|| of (1),

(1

we used the relationships that follow from Maxwell's
equations for the natural oscillations of isolated
resonators, as well as for coupled resonators. After
transformations of the fields, carried out similarly to
[42], an infinite system of linear equations for the
amplitudes was obtained:

i Kt bs _}“bt =0; (t =-0,..., OO), (2)

§=-00

where 1« - are coupling coefficients of a s —th and t —
th DR; diagonal eclements of the infinite matrix
determined only by the magnitude of the radiation of
s -th partial resonators, represented by the coupling
coefficient k.

One of the differences between system (2) and
found in [42] is that the oscillation frequency ® in (2)
takes only real values. Given the definition

A =2(w-0wy)/wy; (€)

we arrive at the requirement that the eigenvalues A
must also take only real values. Here - real part of
the frequency of isolated DRs.

It was assumed to that the determinant, and in
addition, all minors of the matrix:

ik, —A Koy Ko
det(K-AD)=det| ..., ik, =L K.,
Kionwsy K ik, =4

)

converge to a finite limit in the sense [39].
Here kg # K, - are coupling coefficients of a s—

th and t —th for different DR.

It seems that under such complex restrictions, the
solution of the system of equations (2) does not exist,
however, as will be shown below, using the examples
of a system of coupled identical resonators, placed at
the nodes of an infinite in one or several directions,
lattice, at equal distances from each other, the necessary
solutions can be constructed in analytical form.

I11. WAVE PROCESSES IN ONE-DIMENSIONAL
INFINITE LATTICES OF DRS

Initially, an infinite one-dimensional lattice of
identical DRs, located at the same distance from each
considered. Under such conditions

other, was

Kgn = Ko k, =k, and the system of equations (2)

takes the form:

(kg =1)by + Y Ky by =05 (1=, ), (5)

S#I=-00

We sought the solution of (5) in the form of
propagating harmonic waves of the amplitudes of
partial resonators [41]:

_ Fiyn
b, =be

(6)
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Fig. 1. One-dimensional infinite lattices (a, d) of identical
cylindrical DR with H;(; oscillations. Dependencies of the
real (b, e, g) and imaginary (c, f, h) parts of the longitudinal
wave parameter on the relative frequency for resonators made
of dielectric ¢}, =20; relative sizes: A=L/25=0,4 for

s==10;1 (9) (a-c); for s=0; kAz=0,7;1;2;5(g, h)
black, green, red, blue lines. The distance between the
centers of adjacent resonators: kpAz=2; ky=wg/c; ¢
speed of light.

The complex parameter v, defined from Floquet's

theorem, is not a wave number in the generally accepted
sense, since the representations (1) are not expansions in
plane waves. Solutions (6) display the wave process in
the system of coupled resonators, expressed by a more
complex spatial distribution of fields. In this sense, the
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real part y corresponds to the “wavelength number” vy,
multiplied by the distance between the centers of
adjacent resonators Az, and the imaginary part
determines the “damping” of the fields of DR at the real

oscillation frequency:

y=y-Az (7

Substituting (6) into (5) and combining the terms
located symmetrically with respect to the t-th
resonator, we obtained the characteristic equation:

(kg -2)+2 > Kigy| cos(sy) =0.

s=t+1

(®)
Given (3), we rewrote (8) as:

ﬂ:1+%1~<0 +> K cos(sy) . )

o s=1

The expression obtained is an even function vy ; it

defines the same dependence of the resonator
amplitudes (6) for waves propagating in opposite
directions. In the approximation s=1 an equation,
similar to (9), was obtained in [38].

Taking into account the accepted dependence of

solutions on time, proportional to el equation (9) was
supplemented by the condition: Im(y)<0,

corresponding to the requirement of decreasing
resonator amplitudes due to radiation energy losses.

In the first approximation, the dependence ()

can be simply calculated, taking into account in (9) the
coupling between only neighbouring resonators:

QRO

y(o) = J_rarccos{(Z - iEO) /2x, } +2st.  (10)

Mg

From where we see, that y(w) is the periodic
in the Re[y(w)]
$s=0,1,2,...,00, at that Im[y(w)] do not depend on s.

function direction defined by

Fig. 1 (b, c; e - h) show the dependencies of the
real and imaginary parts y on the frequency for one-

dimensional lattices of cylindrical DRs, in the region of
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fundamental oscillations Hj,;

found using the approximate formula (9) and by the
exact solution of equation (8) (points in Fig. 1, e, f).

of magnetic types,

The lower attenuation with coaxial arrangement of
resonators (Fig. 1, d, f) may be explained by radiation
interference processes. The obtained dependencies
demonstrate the possibility of transforming direct into
reverse waves when detuning relative to the central
frequency of the resonators (Fig. 1, e, g). It is also seen
that increasing the distance between the centers of the
resonators significantly changes the attenuation and
frequency bands of the transmission line (Fig. 1, h).

Fig. 2 (c - f) shows the dependencies of the real
and imaginary parts y on the frequency for one-
dimensional lattices of DRs, in the region of their
Whispering Gallery Mode oscillation HE, 5, found

using the approximate formula (10) (green lines) and by
the exact solution of equation (9) (points in Fig. 2, c, d).

Obtained dependencies (9), (10) allow us using (7)
to calculate the value of the group delay during a pulse
transmission through one period of the line. Using the
definition of a group velocity: v, =—-1/[0Re(y)/d].

we define the delay time as:. Atjpg =Az/v,.

Neglecting the imaginary part y, and using
Cauchy-Riemann differentiability conditions, we find
Ve =—Re(d0/ dy) . From (9):

Atipr :Re{[@oZK\s\ s-sin(sq/)]_l}. (11)
s=1

In the approximation of coupling only between
adjacent resonators:

1

oy Ksin(y)

1. (12)

The obtained delay time relation (11) demonstrates
the high sensitivity of the delay value to the distance
between the resonators, due to the interaction of the DR
fields. Fig. 2, b, h shows an example of calculating the
time delay using formula (11) for oscillations HE, ),

of cylindrical DRs.
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Fig. 2. Dependencies of the group delay (b); and of the real
(c, e) and the imaginary (d, f) parts of the longitudinal wave
parameter for s=0 on the relative frequency for
microresonators (a) with HE,, , oscillation; made of
dielectric €, =9,6; relative sizes: A=L/2r,=0,2; the
distance  between centers of adjacent resonators:
koAz =17,15 (9) (c — d); for k ~&"/&' =107 black lines;
107 green lines; 10™° red lines (e - ). (b): f, =200 THz; 1 -
kAz=2]15-q; 2 - kAz=2,08-q,; 3 - kAz=2,03-q,
(q, =kyry; 1, - DR radius). (b, h): fy =200 THz; (b): I -
kAz=2,15-q,; 2 - kAz=2,08-q,; 3 - k,Az=2,03-¢q,
(g0 =kpy); (): 1 - kAz=2,9-q.; 2 - kAz=3,1-q.; 3 -
kAz=3,3-q,. (q, =k,L/2).
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The dependence on the losses in the resonator
dielectric (k®~¢"/€!) can be calculated by replacing

k, in (8), (9) with k, +k® [43] (Fig. 2, e — ).

IV. COUPLED OSCILLATION WAVES IN TWO-
DIMENSIONAL LATTICES OF DRS

To calculate the parameters of waves propagating
in two-dimensional resonator lattices, equations (2)
were used, obtained under the assumption that coupling
only between adjacent resonators of a rectangular
structure was taken into account.

To obtain the solution in analytical form, we
defined the ‘“coordinates” of each resonator of the
lattice by two integers (s,t), where S denotes the
number of the position along the x axis, and the
number t of the position of the DR along the axis z in
a rectangular lattice (Fig. 3, a). The equation for the
s,t-th DR, taking into account the coupling only with

the nearest resonators, was written as:

Ky (bs—l,t + bs+1,t) + K, (bs,t—l + bs,t+1 ) + (iig() - }‘)bs.t +

Ky, (bs—Lt—l + bs—l,t+1 + bs+1,t—1 + bs+1,t+1) =0

(13)

Here we have designated: Ky s =Ky ¢ =Ky

Ko-1t-1ls,t = Ks—Lt+ls,t = Ksalt—ls,t = Kol t+1s,t = Kxz 5

K it = Ks et = K- Where « - the mutual

u,vs,t
coupling coefficients between the wu,v and s,t

resonator.
The solution of system (13) was also expressed in the
form of waves propagating in the direction of the axis z :

by, =bysin(@,5)"™,  (14)

Substituting  (14) into (13), after simple
transformations, we obtain an equation similar to (8):

2k, cos(0,) + 2k cos(y) + (iky — 1) +

+4x . cos(6,)cos(y)=0. (15)

s-1,t+1 s, t+] s+1,t+1
Q o o o (o] Q (o] e s s (O
) \‘/
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Fig. 3. 2-D infinite lattices (a, b, ¢) of DRs. Dependencies of
the real (d, f) and imaginary (e, g) parts of the longitudinal
wave parameter on the relative frequency for cylindrical

resonators made of dielectric g, =20; relative sizes:
A=L/2ry=0,4; N=5;s=0 (15); distance between the
adjacent resonators: kpAx=1; kyAz=2 (d, e); kgAx=2;

koAz =1 (f, g)
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Equation (15) was supplemented with symmetry

|bu‘t| = |bN—u+1‘t| ’
determined the N values:

conditions: from which we

(1;1-7:1); (n=1,2,.,N)

(16)

X X

Substituting (16) into (15), we get:

nmn

A =ik, +2k. cos
07T [(N+l)

1+.

(17)

nm
(N+1)

+2| x, +2x,, cos| ] [cos(y).

It follows that in the direction of the axis z of a
two-dimensional lattice consisting of N resonators in
cross section, only N types different “eigen” modes can
propagate. Each such mode is characterized by its own
distribution of resonator amplitudes in the transverse
plane z=const, determined by a given number,
n=12,...N. For each value of the n, the characteristic
equation (17) determines the degenerate on s
dependence of the longitudinal number y on the

frequency in the region of natural oscillations of the
partial DR:

k nn
~ ™ = +arccosd| ——1-i~Y — k. cos /.
yry {L’o 5 K [(N+1)]
nn
/I x, +2K,, cos +2sm; (18
|:z xz [(N+l)]}} (18)

(n=L2,..,N;s=0,1,2,...,0)

Equation (18) also needs to be supplemented by
the condition: Im(y)<0,

Fig. 3 shows the dependencies of complex values
v on the frequency in the region of fundamental

HlOl

rectangular lattice of N'=5 cylindrical DRs, calculated
using (18) for s=0.

oscillations of resonators of an infinite

The obtained solutions demonstrate that in the case
of the DR arrangement shown in Fig. 3, b. the mode
composition of the waves can change significantly, both
due to a change v in the real part and due to different

attenuation values (Fig. 3, b. d, e).

In the general case, if the lattice dimensions are not
limited in two directions, the solution of the system (13)
obviously takes the form:

bs’t — boe;i\llxs¢i\uzt , (19)

in which the complex constants y,, y,, in the

directions x, z respectively, are related to each other
by a dispersion equation:

1+iky /241, cos(y, ) + K, cos(y, ) +

+2K,, cos(y, )cos(y,) =0/ w,.  (20)

V. WAVES IN THREE-DIMENSIONAL LATTICES
OF DRS

In a similar manner, the parameters of the waves of
a three-dimensional rectangular lattice, consisting of
NxM identical resonators in cross section, were
calculated (Fig. 4). To construct an analytical solution
to the system of equations (2), we also defined the
coordinates of each resonator by three integer indices
(s,t,u), where s denotes the position along the axis x,

t denotes the position along the axis y, and u

denotes the DR position along the axis z. If all
resonators are identical, then the mutual coupling
coefficients are symmetrical and for a rectangular
lattice:

Ks—l,t,u\s,t,u = Ks+1,t,u|s,t,u =Ky
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(s-1,t+1u+1) (s,t+Lutl) (s+1,t+1ut+1)
o] o] [o]
(s-Ltu+l) (s,tutl) (st1,tutl)
o] o] o]
7

(s-Lt-1,u+1)
[¢]

= Ks-%—l,t—l,u\s,t,u = Ks-%—l,H—l,u\s,t,u

Ks,t—l,u\s,t,u = Ks,t+1,u\s,t,u =K

Ks,t,u—l\s,t,u = Ks,t,qul\s,t,u =K,

Ks—1,t=Lufs,t,u = Ks—1t+Lufs,t,u =

=K

Ks—Lt,u-ls,t,u = Ks—Ltu+lls,t,u =

Kerl,t,u—l\s,t,u = Ks+l,t,u+l|s,t,u =
Ks,t—l,u—l\s,t,u = Ks,t—l,u+1\s,t,u =
= Ks,H—l,u—l\s,t,u = Ks,H—l,u-%—l\s,t,u =K

y;
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Fig. 4. Three-dimensional rectangular lattice of DR.
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o]
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= nyz

(s+1,t+1,u-1)

Xyz *

Then equation (5) for the selected DR with
“coordinates” (s,t,u), taking into account the coupling

only with the nearest resonators of the lattice (Fig. 4),
was rewritten in the form:

K, (b +bs+1’t’u)+1<y(b +bs,t+1’u)+

s-1,t,u s,t-1,u
K, (bs,t,u-l + bs,t,u+l) + (lk() - }“)bs.t,u +

+ny (bs-l,t-l,u + bs+l,t+l,u + bs+l,t-l,u + bs-l,H—l,u) +

+sz (bs-l J2tLu-1 + bs+1,t,u—1 + bs—l Jtutl + bs+1,t,u+1) +

+Kyz (bs,t-l,u-l + bs,t+1,u-l + bs,t-l,u+1 + bs,t+l,u+1) + (21)

RPN 3 JNEPTRRREE 3 JNEFRIRE TR

401 11+ Dsit et wt F Bser 101 F Dsr g1 wr1) =0

For an infinite lattice along the axis z, the solution
of the equations system (21) was sought in the form of
“plane” waves of the DR amplitudes:

b,, =bysin(,s)sin(6 1)e™"" , (22)

Substituting (22) into (21), we obtain:

A= ilgo +2x, c08(6,) + 2k, cos(8,,) + 2k, cos(y) +

+4k,, cos(6,)cos(6,,) + 4k, cos(6, ) cos(y) +

(23)

+4xk. cos(8,,) cos(y) + 8k, cos(6,)cos(B,,) cos(y)

87
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Based on the requirement to fulfil the conditions
of field symmetry in the “transverse plane” of the
waveguide structure:

|bw‘t| = |bN7w+l‘t| ; |bs.v| = |bs.M—v+l| 5
we found:

nr mr
0,=0"=—— . 0, =0"= : 24
Y N+ T T (M+)) @4

where n=1,2,..,N; m=12,..M.

From here we again came to the conclusion that in
an infinite lattice, the cross-section of which represents
NxM a rectangular DR structure, only NxM
independent degenerate “plane” waves can propagate in
the direction of the axis z, each of which is
characterised by a given distribution of the amplitudes
of the coupled oscillations of the resonators in the
transverse plane of the line.

For each such wave, the approximate dependence
of the longitudinal wave parameter on the frequency is
valid:

nt
(N+1)

]_

k
y ~ tarccos{ ﬂ—1—1'—0—1<X cos|
O 2

—K, cos[ Jcos|

mmn 1- .. cos| nm mm 11/
UM+ Y (N +)) (M +1)

LI T

(N+1) yZ

mmn
]cos[(M n 1)]}} 25t (25)

/|:KZ +2K,, cos| cos|[ 1+.

(M +1)

+4x ., cos| o
N+
(s=0,1,2,...,00)

Equation (25) also must be supplemented with the
condition: Im(y)<0.

L X X X | X X X )
L X X X (X X X )
2999 29499
0000°® . (9040
. °e . o X0
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L X X X | X N X )
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& d

Fig. 5. Three-dimensional infinite rectangular lattices (a,
b) of cylindrical DRs. Dependencies of the real (c, e) and
imaginary (d, f) parts of the longitudinal wave parameter on
the relative frequency for cylindrical resonators made of
dielectric g, =20; relative sizes: A=L/2ry=0,4;
NxM =3x3DR; s=0 (22); distance between the adjacent
resonators:  kpAx=1; kyAy=2; kyAz=2,5 (c, d); .
koAx =25 kgAy =2; kyAz =1 (e, f).
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The generalisation of the developed theory to cases
of wave propagation in arbitrary directions of an
unlimited three-dimensional lattice is obvious: the
solution of system (21) should be sought in the form

_ Fiy STy 1 FIY u
by, =bge T (26

and the corresponding dispersion equation, obtained
from the system of equations (21), must connect the
wave parameters:

o/ oy =iky / 2+, cos(y )+ Ky cos(y )+ K, cos(y, )+

+2K, cos(y ) cos(y ) + 2k, cos(y ) cos(y ) +

27)

+2K, cos(y ) cos(y . ) + 4K, cos(y . )cos(y ) cos(y )

Fig. 5 shows the dependencies of the wave
parameters on the frequency for NxM=3x3 a
rectangular DR lattice of cylindrical shape, excited on
the main types of natural oscillations H;y; for s=0

(25).

It is obvious that an increase in the dimensionality
of the spatial structure leads to an increase in the
number of natural waves and frequency distribution,
caused by an increase in the number of couplings
between resonators.

V1. THREE-DIMENSIONAL WAVEGUIDE LATTICES
OF DRS

Three-dimensional structures of coupled resonators
allow forming spatial waveguide structures of various
cross-section shapes from them. We have considered
several examples of calculating the characteristics of an
axially symmetric waveguide structure consisting of an
infinite number of ring lattices with the same number of
resonators (Fig. 6, a, b).

Initially, we considered an axially symmetric ring
lattice with the same number of DRs (Fig. 6, a), which
allows an analytical description of coupled oscillations
in a general form. Let us have a linear structure of ring
lattices with the same number of resonators N. All
sublattices are located axially symmetrically relative to
the selected common axis z.

0
5384
o000 ¢
\O/ \O/ \O/
w-1 w w+l
1O 1O 1O
2/0/ \ON 2/0/ \ON 20/ \ON
/ 0 / 0 / 0
‘o0 O o 30\ O -0 3o< O -0
\ \ \
o o o o O. o
o o o
w-1 w wHl
b
Fig. 6. Three-dimensional cylindrical lattices of

identical (a); different (b) resonators

All eigenvectors of the ring lattices are the same
for the same number of resonators [44], however, for
convenience, we have designated each of the vectors of
the w-th lattice by the index w:

b;Nj 1

: I

bl =p" = by |__ L | M
(4] 0 . ‘\/ﬁ . i

by -

(w=-0m,...,40; j=0,2,..,N-1) (28)
here n; =exp(2jni/N) j-th of Nth complex root

of unity.

j-th eigenvector (28) of the isolated w -th ring
sublattice with N resonators satisfies the equation:
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( XWJ )b” + ZK b"f = (29)
n=1
(w=12,...M)
where
- N-1 .
Ay =ik, + Y k) ()", (j=0,1..,N-1) (30)
v=l

The axially symmetric arrangement of sublattices
with the same number of resonators also allowed us to
reduce the total number of mutual coupling coefficients.

Taking into account the rotational symmetry of the
=K;,) of the
consideration, we determined the “vector” of mutual
coupling between the u -th and w -th sublattices:

resonators Ky, system  under

€2y

uw = : ;
uw
KN-1

as well as the vector of mutual coupling of the
resonators in the w-th sublattices:

(32)

Next we regrouped the terms in equations (2) into
two partial sums, the first of which related to the
oscillations of the selected w-th sublattice and the sum
related to the remaining sublattices:

~ )b, +ZK b, + f ZK b,=0 (33)

u#w=—00 v=0

The solution to the system of equations (33) for the
Jj-th type of oscillations of the resonators of the w-th

sublattice was sought in the form:

bV =a" b ; (34)

Multiplying equation (29) by a™
from (33), we get:

and subtracting it

+o0
> ZK“W bY]-a" =0.(35)

uzw=-0 v=0

(M —n)a"

Since the sum ZK“W b, is taken over all

v=0
resonators of the u -th sublattice, it does not depend
on the initial value of the index and can be rewritten as:

Z Ky bv] = Z K(Hv)t bng)j, (36)

Substituting (36) into (35), we found:

. +00
S b X (3R Tt <0,

uzw=-00 v=0

(L)
(37)

Dividing (37) by bg , and taking into account (28):

i .
b DI /bl = NBYY,

we ended up with an equation that does not depend
on the t -th DR,

. +00
O 0" +IN Y ZK b{"i]-a" =0, (38)

uzw=-00 v=1

determined only by the parameters of the ring

sublattices. Here we also used the condition
uw
Ky =Kqoy

Equation (38) can be rewritten in a more compact
form, taking into account definition (31):

. +00 .
(712" + N Y (K, b)) at =0 (39)

U#EW=—
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Fig. 7. Three-dimensional cylindrical lattice (a) of identical
resonators in the position A (a); B (d); C (g). g, =20;
relative sizes: A=L/2ry=0,4; N=6; s=0; kyAr=2;

koAz=2 (b, c;e,f); kgAr=1,6; kyAz =1 (h, ).

The infinite system of equations (39) in general
form determines the frequencies and amplitudes of
coupled oscillations of periodic waveguide structures of
axially symmetric ring sublattices with the same
number N of resonators.

From (39) it also follows that the coupling vectors
of the ring sublattices (32) are not included in the
system in an explicit form. They determine the
frequencies of natural oscillations of the sublattices.

v
2

By analogy with the oscillations of individual
resonators (4), we may introduce into consideration the
infinite coupling matrices of the ring sublattices:

KY = (40)

W INKbD) N, D))
\/ﬁ(walw’bi) 7\‘:4 \/ﬁ(KwHw’bi)
\/ﬁ(wale 9bf>) \/ﬁ(waH 7bi) )\Z‘H‘U

the eigenvalues and eigenvectors of which, together
with (30), determine the parameters of the structure.

From this it follows that if all sublattices are no
interact, K, =0, the eigenvalues of the matrix K"

are determined by the set of eigenvalues of isolated ring
sublattices 1" (30).

In the case of identical resonators in all sublattices,
the eigenvalues of matrix (40) are determined by the
expression:

A=A +0,
where 1 =1!, and Al - eigenvalue of a matrix:

KY = (41)
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0 \/ﬁ(wafl ’bi) \/ﬁ(Kwwa] ’bi)
\/ﬁ(walw ,bi) 0 \/ﬁ(Kwﬂw 7bi)
\/N(walwﬂ’bi) \/N(waH’bi) 0

For a infinite number of sublattices, with the
same DR, we seek the solution of system (39) in the
form:

w Fiyw

a" =ae™", (42)
where a, and y are constant also do not depend on
the sublattice numbers.

Substituting (42) into (38), after simple
transformations and reduction of amplitudes a,, we

find:

. . o .
W= 42N (K .,b) ) cos(uy) .

u=l1

(43)

Equation (43) together with (30) and the
condition Im(y)<0, also determine the N sets of

dispersion functions of the waves that may be
propagated in the ring structures of resonators.

In the approximation of taking into account the
coupling only between adjacent sublattices:

M 2 A +2c0s(y)VN(K;,,b))
or

2w/ oy -1)-1]

- +2smt. (44
2\/§(K12=b3))} R

y(o)~t arccos[

Where kg defined by (30).

Fig. 7 shows the frequency dependencies of the
wave parameters of ring, axially symmetric lattices with
cylindrical DRs of different spatial orientations. The
obtained data show a significantly smaller spread of
modal parameters. Unlike the “solid” lattices considered

in III-V, hollow waveguide structures are characterized
by a lower in-band and a higher attenuation value outside
the transmission frequencies. (Fig. 7, ¢, f, 1).

We considered also an infinite linear structure of
identical coaxial sublattices, shown in Fig. 6, b, each of
which consists of a N+1 DR. We designated the
resonators of each sublattice (Fig. 6, b) by numbers
s=0,1,2,...,N; resonators located on the axis z of the
sublattices was designated by indices 0, while
resonators located on a ring of the sublattice, was
designated by s=1,2,..,N. The distance between
resonators of the adjacent sublattices we also designed
by Az.

We denoted the amplitudes of the resonators by

by’ , where t - is the resonator number, w - number of

the
between

sublattice. The mutual coupling coefficients
s-th and t-th resonators in the w-th

W,
st »

sublattice we denoted by i« ; the mutual coupling

coefficients between s -th resonator of u -th sublattice
and t -th resonators in the w -th sublattice we denoted
by kg (u#w). The coupling coefficients of the axial
resonators with the external structure are denoted by
1;0, and the coupling coefficients of the resonators with
the external structure located on the ring sublattices was
denoted by k, .

We broke down the sum included in the system of
equations (2) into terms related to the w -th sublattice
with the selected t-th resonator and to the remaining
sublattices:

. N
(ik, =M)b) + Y kg by +

s=1,8#t

+00 N
> XKy b =0.(49)
u=—o0,u#ws=0

We explicitly selected in (45) the amplitudes of the
DR related to the resonators located on the axis z:

N +00
7 w wow uwy U
(ko =Mby + 2 ki b+ Y, Kgobg +
s=1 U=—00,UEW
+00 N
+ 2 2K by =0;
u=—0,u#ws=1
(46)
" N +00
. w Wi W wow uw U
(tky =)b) +xgby + X Ky b+ D kg by +
s=1,s#t U=—00,U#W
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LS S,

u=—o0,u#ws=1

For resonators located on the axis z, we

considered only oscillations whose fields are

azimuthally symmetrical. For such oscillations, the

coefficients of mutual coupling «}, and K, are the

C W W
same and do not depend on s: Ky =Kk{y; Kyy =K -

In this case, two subsets of solutions can be
defined in (46):

1) Ring sublattices oscillations with by =0

+00

N
KmZbW 2. Ko b5 =

U=—00,U#W s=1
(47)
N

2, Kby +

s=1,8#t

(iky = 1)b) +

S =0

u=—0,u#ws=1

2)  Azimuthally uniform oscillations: b, =b,":

» +00 N
(ko =2)bg + 20 Kb +bI' YKy +

U=—00,UEW s=1

+ z buz uw  _

u=—ou#w  s=I

(43)
]; )\‘bw wbw bw al w R uwiu
(i =W)by" + Kby +b1" X kg + X wpybg+
s=1,s#1 U=—00,U#W

S D

u=—oou#w  s=1

We will seek the solution to the system of
equations (47) in the form (34):

by =a"bd; 49)

under an additional condition: 1< j<N—1. In this case,

N N
as it's follows from (28): ) by =a") by =0. Than

s=1 s=1

the first equations of the system (47) are satisfied. The
second equation of the system coincides with (33), the
solutions of which we have already found (42) — (44).
These solutions coincide with the solutions for the ring
lattices for 1<j<N-1.

For azimuthally uniform oscillations, further

simplification of equations (48) is possible if all
resonators of each sublattice are located periodically
along the axis z. In this case, the solution can be
represented as:

+1\VW

by =bg e (50)

The complex parameter v , is also not function on

Substituting (50) into (48), we obtained, provided

that the coupling between adjacent sublattices is taken
into account and for only the azimuthal symmetry of the
coupling coefficients:

[(1120 -A)+2 cos(\y)K}]%]bO + N[K}O + ZCOS(\V)K% 15, =0
[KOl + ZCos(\p)K ]bo +
H(ik, =) + Z K+ 2cos(w)z K'21b, =0
s=2 s=l1
(1)

The solution of the system (51) is:

+

F_

KoozK

+
Y~ =arccos{

1+ 2sm, (52)

12 12
KjoK Ol

where

121

+ 2.1 1207
= N(K;pKo; + Ko1K10) — Kool (ik; —A) +

ﬁowZﬁi

N
+2 Ky ]
s=2
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Fig. 8. Three-dimensional coaxial lattice (a) of identical DRs
with H;q; oscillations. (b —e): €, =20; A=L/2r=0,4;
N=24; s=0; kyAz=L5;

resonators of ring sublattice: kyAr =3.

distance between adjacent

d

- N
{{No«;zx'm ) - KEIGR, —2+ 3 -
s=2
B N N
~(iky =)D kY =40 YK = Nigjorq ]
s=1 s=1
. N N 1/2
'{(iko - 7")[(ikl - }“) + ZKil] - NKioK:n}} .
s=2
And the amplitude ratio:

by Kio + 2cos(\u)1<h2)
b, (1120 -N)+ 2cos(\|1)1<})%) '

(53)

Equation (52) also must be supplemented with the
condition: Im(y)<0.

In the particular case where «j, =0 and x5 =0,

the axial and ring sublattices of the resonators oscillate
independently of each other. In this case, for the axial
sublattice the dispersion dependence takes the form (9),
and for ring sublattices (44).

Fig. 8 shows the frequency dependencies of the
wave parameters of coaxial lattices cylindrical DRs
calculated from (52) — (53) for axially symmetrical
oscillations. The obtained data demonstrate the existence
of frequency regions in which the main power is
transmitted through the central lattice of resonators
(Fig.8, d, e).

VII. CONCLUSION

A perturbation theory to describe the processes of
waves propagating in the lattices of DR that are not
limited in one or several directions has been developed.

General systems of equations, describing wave
processes in an infinite structure of axial ring lattices
with the same number of resonators, are derived.

General analytical solutions for the frequency
dependencies of the amplitudes of DR of one-, two- and
three-dimensional waveguide structures are obtained.

The obtained general expressions allow us to
calculate the delay time of pulse propagation in various
transmission lines built on DR.

The developed theory serves as a basis for
constructing a wide class of optical devices for different
communication systems.
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Tpyoin 0.0.
Teopisi cipsiMOBaHUX XBUW/Ib B HECKIHYEHHUX CHCTeMAaX 3B’I3aHUX JieJIeKTPHYHUX Pe30HATOPIB
Haguanvno-nayrxosuii incmumym menexomynixayitinux cucmem KIII im. leops Cikopevroeo, m. Kuis, Yxpaina

IpodaemaTnka. OgHuM 13 6araToOOIIIOYNX €IEMEHTIB CUCTEM ONTHYHOTO Ta KBAHTOBOTO 3B’SA3KYy € Pi3HOMAHITHI JIiHii
3aTPUMKH, NMOOYMOBaHI HA BHCOKO JOOPOTHUX JiE€NEKTPUYHUX pe3oHaTopax. Taki miHil 3a3BH4all CKJIAJAIOThCA 3 BEIUKOTO
YHCITa eICMEHTIB TOMY ONTHMI3alis X mapaMeTpiB NPU3BOIUTH O 3HAUHHUX TPYIHOIIIB. Teopis AieNeKTPUIHUX PE30HATOPIB €
OCHOBOIO JIJIsl PO3YMIHHS, PO3PaXyHKIB Ta ONTHMI3allii apaMeTpiB JiHiil 3aTPUMKH Ta IHIIUX IMPUCTPOIB, SKa JI03BOJISIE
CYTTEBO CKOPOTHTH PO3PaxyHKOBI pecypcH, sIKi TOTpeOyI0Th BAKOPUCTAHHS MOTYKHUX KOMIT IOTEPIB.

Meta nociizkeHb. MeTOIO JaHOTO JOCITIIKEHHS € OTPHUMaHHS aHAJITHYHMX BUPA3IB JIUCICPCIHHUX 3aICKHOCTEH Ta
PO3MOALTIB ENCKTPOMATHITHHUX IOJNIB Pi3HUX BHIIB JiHIH mepenadi, SKi CKIaTalOThCs 3 BEIMKOi KINBKOCTI JiEIEKTPHYHUX
PE30HATOPIB 3 LULII0 BHKOPUCTAHHS iX B PI3HOMAHITHUX IPHCTPOSX ONTHYHOrO 3B’s3Ky. s BupimmeHHs wmiei 3amadi
BUBOJIMTHCSI HECKIHUEHA JIIHIHHA CHCTeMa PIBHSIHB, OTPUMaHa i3 Teopii 30ypeHb sl PiBHSIHL MaKcBeIlTy, sika MOB’SI3y€ MiXk
c00010 KOMIUIEKCHI aMIUTITYIM, XBHJICB] YHCIIA Ta YAaCTOTH PE30HATOPIB.

Metoauka peanizamii. {11 momyky aHaJiTHYHMX BHpa3iB BHUKOPHCTOBYIOTBCS METOAM Teopii 30ypeHb Ta Teopis
HECKIHYCHUX JIHIMHUX piBHAHb. KiHIIEBMM pe3yabTaToM € HOBI 3arayibHi aHAMITHYHI (GOPMYNH IS OMHCY TUCHEPCIiHUX
KPHUBHX PEIIITOK, SKi CKIAJIAFOTHCS 13 HECKIHIEHOTO YUCIa AieTICKTPUIHNX PE30HATOPIB PI3HUX BHIIB.

Pe3yabraTu qociiikeHb. Po3BUHYTa TEOpis pO3MOBCIOKEHHS XBIJIb B CUCTEMax 3B’S3aHUX MiXK COOOIO OJTHO-, IBOX- Ta
TPBOX-BUMIPHHUX PEIITOK IiETCKTPUYHUX PE30HATOPIB HECKIHYCHHX B OJHOMY a00 AEKiIbKOX HampsMkax. OTpuMaHi HOBI
AQHANITUYHI BUPA3W I JAWUCTIEPCIHHUX 3aJeKHOCTEH BIACHWX XBWJIb, YaCy 3aTPUMKH, a TaKOX PO3MOUIB KOMIUIEKCHHX
aMIUTITYZ pe30HATOpiB, 0e3 OOMEKEeHHS Ha iX KUTBKICTh. 3a JIOMOMOTo0 Teopii 30ypeHsb, MOOyZOBaHA HOBAa aHATITHIHA
MOZENb, sIKa OIHCY€ BIACHI XBHJII TPU-BUMIPHUX PENITOK, SKi CKIAJAIOThCS 13 OAHAKOBHX KIUIBLEBUX CTPYKTYP
JETeKTPUYHUX PE30HATOPiB. 3HANACHO 3arajibHi aHATITHYHI PIMICHHS IS 9aCTOTHHUX 3aJIEKHOCTEH Ta aMILTITYA Ui OJHO-,
JIBO- Ta TPU-BUMIPHUX PEIIITOK 3 Pi3HUM PO3TAIIyBaHHIM PE30HATOPIB.

Bucnoskn. Po3po0iiena Teopisi € OCHOBOIO JUlsi KOHCTPYIOBAHHSI HOBUX BHIB JIHII 3aTPUMKH a TaKOX 0araThox IHIINX
MPHUCTPOIB ONTHYHOTO Aiarna3oHy JOBXKUH XBHIIb, sIKi OYyIYIOThCS Ha OCHOBI BUKOPHUCTaHHS BEJIMKOIO YHCHA JICNEKTPHYHUX
pe3onaTopiB. OTpHMaHi HOBi aHATITUYHI BHPA3U AL PO3PAaXyHKY MapaMeTpiB XBUIb, SIKi PO3MOBCIOKYIOTHCS B CKIIAHUX
CTPYKTypax AiCNCKTPUYHHX PE30HATOPIB, T03BOJSIIOTH Oy IyBaTH HOBI OUTII epEeKTHBHI MATEMATHYHI MOJEINI PiI3HOMAHITHUX
HPHUCTPOIB ONITHYHOTO 3B SI3KY.

Knwwuosi cnosa: dienexmpuunuil pe3onamop, 61ACHI X6Ull, pewimka,; 36'13ana pe3oHamopha JiHis nepeoavi; Xeunesoo,
meopis 30ypenn,; NiHis 3amMPUMKU.
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