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Background. As the digital economy expands, ensuring secure communication and data integrity becomes increasingly vital.
Traditional cryptographic algorithms such as RSA and ECC are vulnerable to quantum computing advances, necessitating post-
quantum solutions. Tree Parity Machines (TPMs), inspired by neural synchronisation principles, present a promising alternative for
secure key exchange, particularly within Internet of Things (IoT) environments.

Objective. This study aims to evaluate the effectiveness of TPMs as a lightweight, energy-efficient, and quantum-resistant
method for secure key generation and exchange in cybersecurity applications, with a focus on IoT networks.

Methods. A hybrid methodology combining theoretical analysis and practical simulations was employed. Theoretical
modelling explored TPM synchronisation mechanisms, key generation dynamics, and resilience to cyber-attacks such as man-in-
the-middle, replay, brute force, and eavesdropping. Practical simulations were conducted in a controlled network environment to
assess TPM performance in terms of synchronisation time, key generation rate, computational overhead, and resistance to attacks,
compared with traditional cryptographic methods.

Results. Simulation results demonstrated that TPMs outperform RSA/ECC across multiple parameters. TPMs achieved a
synchronisation time of 15.2 ms versus 45.6 ms for RSA/ECC, a key generation rate of 500 keys/s compared to 120 keys/s, and
reduced energy consumption (1.2 mJ vs. 3.8 mJ). They also exhibited superior resistance to man-in-the-middle attacks (99.9% vs.
90.4%) and required less computational overhead. These findings confirm TPMs’ robustness, scalability, and suitability for
resource-constrained loT environments.

Conclusions. Tree Parity Machines provide an efficient, post-quantum-secure alternative to conventional cryptography,
offering enhanced protection against emerging cyber threats. Their lightweight architecture, rapid synchronisation, and minimal
energy consumption position them as a key enabler of secure digital infrastructure. Future research should explore TPM integration
with blockchain, federated learning, and edge computing to further strengthen cybersecurity frameworks.

Keywords: Tree Parity Machine (TPM); post-quantum cryptography; secure key exchange; loT security; neural
synchronisation, cyber-attack prevention.

Introduction

In the domain of cybersecurity, ensuring Secure key
exchange in secure communication is paramount for
protecting sensitive information from unauthorised
access. In the digital age, safeguarding sensitive
information against unauthorised access and cyber-attacks
has  become increasingly critical.  Traditional
cryptographic methods, while foundational to modern
security protocols, are facing growing challenges due to

the sophistication of contemporary attack vectors and
advancements in computational power. In this context,
innovative approaches to secure communication are
essential to enhance the robustness of cybersecurity
frameworks. Tree Parity Machines (TPMs) offer a novel
solution to the challenge of secure key exchange,
leveraging the principles of neural networks to achieve
synchronisation between parties without directly
transmitting secret keys. The TPM model is distinguished
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by its ability to facilitate secure key exchange through an
iterative synchronisation process, making it a compelling
candidate for enhancing security protocols. Stypinski and
Niemiec (2022) explored the synchronisation of Tree
Parity Machines (TPMs) using nonbinary input vectors,
demonstrating enhanced robustness and versatility in
neural key exchange mechanisms. In their 2023 work,
they applied TPM-based neural networks to secure key
agreement protocols for smart grids, emphasising their
potential for reliable and energy-efficient cryptographic
applications.

TPMs are a type of artificial neural network (ANN)
designed for specific applications in cryptography and
machine learning. Inspired by biological neural networks,
TPMs are known for their ability to synchronise through
mutual learning processes, making them particularly
useful in secure key exchange protocols. Their design is
structured hierarchically, where multiple hidden neurons
feed into a single output neuron, forming a "tree-like"
architecture that enables efficient computation.

The concept of synchronisation in TPMs is pivotal to
their application in cryptography. By starting with
different initial states, two communicating entities can
achieve identical internal states after a series of training
steps without transmitting the actual state information.
This property provides a robust mechanism for generating
shared secret keys over an insecure communication
channel, making TPMs a candidate for post-quantum
cryptographic schemes (Kanter et al., 2002; Rosen-Zvi et
al., 2002). Moreover, TPMs have found applications in
machine learning tasks that require high-dimensional data
processing. Their hierarchical structure and non-linear
activation functions allow them to model complex
relationships, like other deep learning architectures, albeit
with a specific focus on security-oriented tasks (Kinzel &
Kanter, 2002).

Despite their advantages, TPMs also face challenges,
such as susceptibility to synchronisation attacks and
limitations in scalability for large datasets. Ongoing
research seeks to address these limitations, exploring
enhanced training algorithms, hybrid architectures, and
novel use cases (Klimov et al., 2002). The integration of
TPMs into cybersecurity frameworks represents a
promising advancement in secure communication
technologies. By addressing contemporary challenges in
secure key exchange, TPMs offer a novel approach that
complements existing cryptographic techniques and
enhances overall security. This research contributes to the
field by providing insights into the practical application

of TPMs and their potential to address emerging security
threats.

TPMs have a variety of applications based on their
unique properties that include synchronisation and
establishing secure communication channels. TPMs are
used for generating symmetric cryptographic keys over
public channels without prior exchange of secret
information. The synchronisation of two TPMs ensures
secure key generation resistant to man-in-the-middle
attacks. A. Sarkar and other Scholars contributing to the
application ~ of  neural networks in  wireless
communications,  focusing ~ on  synchronisation,
encryption, and secure session key management. M.
Niemiec A researcher exploring quantum cryptography
and its intersection with artificial neural networks, with a
focus on error correction techniques. Gomez, Oscar
Reyes, and E. Roa: Engineers specialising in hardware-
based cryptographic solutions, developing CMOS
implementations of neural-based key establishment
systems.

Related Work

M. Dolecki and R. Kozera: Researchers investigating
the performance and synchronisation characteristics of
Tree Parity Machines (TPMs), particularly analysing the
impact of weight distributions. S. Chakraborty, J. Dalal,
B. Sarkar, and D. Mukherjee: A group of scholars
analysing the use of neural synchronisation for secure key
exchange, summarising advancements and challenges in
the field.

P. Revankar, W. Gandhare, and D. Rathod are
Researchers who have contributed to exploring the
private input configurations of TPMs for enhanced
security applications.

A. Klimov, A. Mityagin, and A. Shamir, Esteemed
cryptographers, with Shamir being a co-inventor of the
RSA algorithm. Their work on neural cryptography
provides foundational insights into the synchronisation
dynamics of neural networks for cryptographic purposes.

[. Kanter and W. Kinzel: Pioneers in neural
cryptography, their research laid the groundwork for
secure synchronisation of interacting neural networks. R.
Metzler: A physicist contributing to the understanding of
interacting neural networks and their dynamics, often in
collaboration with Kanter and Kinzel. F. Tito Arecchi: A
researcher in nonlinear systems and quantum
synchronisation, examining the connection between
chaotic neuron dynamics and cryptography. J. Hertz, A.
Krogh, and R. G. Palmer: Renowned authors of the



38 INFORMATION AND TELECOMMUNICATION SCIENCES VOLUME 16 NUMBER 2 JULY-DECEMBER 2025 36-47

foundational text Introduction to the Theory of Neural
Computation, widely cited in neural network research.

Louis Columbus: A technology analyst who provides
insights into IoT market trends and forecasts.Michael
Thomsen: A journalist and analyst focusing on
advancements in deep learning and Al technologies,
especially regarding practical implementations.

TPMs provide a lightweight alternative to traditional
cryptographic ~ methods  for  resource-constrained
environments like IoT devices. TPMs can authenticate
devices in IoT networks by synchronising neural states,
ensuring only authorised devices communicate. TPMs are
applied to create session keys dynamically, enhancing
data security in [oT ecosystems. TPMs can synchronise
neural networks for distributed Al training or
collaborative learning without sharing raw data,
preserving privacy. They facilitate secure sharing of
neural network parameters in federated learning
scenarios. Shishniashvili, Mamisashvili, and
Mirtskhulava (2022) proposed enhancing IoT security
through multi-layer feedforward neural networks
incorporating Tree Parity Machine elements, offering
innovative solutions for data protection. Mirtskhulava,
Gulua, and Meshveliani (2019) analysed IoT security
using neural key exchange, emphasising the effectiveness
of neural networks in ensuring secure communication in
[oT systems.

TPMs are implemented for secure communication in
wireless networks, ensuring encrypted data exchange with

minimal computational overhead. They provide efficient
encryption mechanisms for resource-limited devices in
wireless sensor networks. TPMs help protect data
transmitted between smart grid components, ensuring
integrity and confidentiality. The lightweight and real-
time synchronisation capability of TPMs makes them
suitable for securing smart grid communication networks.

TPMs are utilised to enhance the reliability of
quantum key distribution (QKD) systems through neural-
based error correction mechanisms. TPMs enable secure
synchronisation and coordination between robots in
collaborative robotics and swarm systems.

TPMs are studied to understand synchronisation in
complex systems, including neural networks, spin glasses,
and coupled oscillators. They are used as analogues for
exploring synchronisation in biological neural systems.
TPMs are gaining interest in post-quantum cryptography
research due to their potential resilience against quantum
computing attacks. Additionally, their applications are
expanding into edge computing and secure multi-agent
systems.

Table 1 provides a comparative overview of related
works in TPM studies, summarising their focus areas,
contributions, and applications. It covers various facets of
TPMs, including their integration into secure key
exchange protocols, machine learning tasks, and quantum

cryptography.

Table 1. Comparison of Related Works in Tree Parity Machine (TPM) Studies

Authors/Researchers | Focus Area

Contribution

Application

Stypinski and
Niemiec (2022, 2023)

Synchronisation of TPMs
using nonbinary input
vectors and neural key
exchange

Demonstrated enhanced
robustness and versatility
in TPMs for secure key
exchange; applied TPMs to
smart grid protocols.

Smart grids, energy-efficient
cryptographic applications.

Kanter et al. (2002),
Rosen-Zvi et al.

Synchronisation of TPMs

Pioneered TPM

Post-quantum cryptography,
secure communication.

for secure key exchange

synchronisation methods

data processing and

learning for modelling

(2002) without transmitting the for key exchange without
actual state the transmission of secret
keys, addressing
cybersecurity challenges.
Kinzel & Kanter Application of TPMs in Introduced the application | Cryptography, deep learning-
(2002) machine learning tasks for | of TPMs in machine based secure systems.

cryptography complex relationships in
secure systems.
A. Sarkar et al. Synchronisation, Explored the application of | Wireless communication,
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encryption, and secure
session key management in
wireless communications

neural networks in
synchronisation and
encryption for secure
wireless communication.

secure session key
management.

M. Niemiec

Quantum cryptography and
its intersection with
artificial neural networks

Investigated error
correction in quantum
cryptography using neural
networks, contributing to
robust secure systems.

Quantum cryptography, error
correction.

Gomez, Oscar Reyes,
and E. Roa

Hardware-based
cryptographic solutions in
neural networks

Developed CMOS
implementations of neural-
based key establishment
systems, improving
hardware efficiency.

Hardware cryptography,
neural-based key
establishment.

M. Dolecki & R.
Kozera

Performance and
synchronisation of TPMs,
especially with varying
weight distributions

Analysed TPM
synchronisation and the
impact of weight
distributions on their
performance in secure
communication protocols.

Cryptographic systems, key
exchange.

S. Chakraborty et al.

Neural synchronisation for
secure key exchange

Summarised advancements
in neural synchronisation
and the challenges of using
TPMs for secure key
exchange.

Secure key exchange, neural
cryptography.

P. Revankar et al.

Private input configurations

Explored private input

Secure communication,

synchronisation dynamics
of neural networks in
cryptographic applications

insights into neural
synchronisation for
cryptographic purposes,
crucial for secure systems.

of TPMs for enhanced configurations of TPMs to | private key configurations.
security enhance security and
prevent unauthorised
access.
A. Klimov et al. Neural cryptography, Provided foundational Cryptography, secure key

exchange, synchronisation.

I. Kanter & W. Kinzel

Secure synchronisation of
interacting neural networks

Pioneered the concept of
secure synchronisation of
neural networks for
cryptographic tasks.

Neural cryptography, key
exchange protocols.

R. Metzler

Dynamics of interacting
neural networks

Contributed to
understanding the
dynamics of interacting
neural networks, key to
improving synchronisation
in cryptography.

Neural networks,
cryptography.

F. Tito Arecchi

Chaotic neuron dynamics
and quantum
synchronisation

Studied the connection
between chaotic neuron
dynamics and quantum

Quantum synchronisation,
chaotic systems.
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synchronisation, bridging
chaos theory with
cryptography.

Shishniashvili,
Mamisashvili, and
Mirtskhulava (2022)

[oT security using multi-
layer feedforward neural
networks incorporating
TPM elements

Proposed solutions for
enhancing [oT security by
integrating TPM elements
into neural network
models.

[oT security, neural key
exchange.

Mirtskhulava, Gulua,
and Meshveliani
(2019)

[oT security with neural
key exchange

Analysed the use of neural
key exchange for ensuring
secure communication in
[oT systems.

[oT security, neural
cryptography.

Louis Columbus

[oT market trends and
forecasts

Provided insights into IoT
market trends, highlighting
TPM’s potential in [oT
security.

[oT, security frameworks.

Michael Thomsen

Advancements in deep

Analysed practical

Deep learning, Al,

learning and Al implementations of deep cryptography.
technologies learning technologies,
including TPM
applications in
cybersecurity.
Tree Parity Machines (TPMs) k
Let's consider the main tools that support the 7= 1_[01'
recognition of the Ukrainian language, which is one of i=1
the most important work criteria.
Neural cryptography is a field of cryptography T

focused on exploring the use of stochastic algorithms,
particularly artificial neural network algorithms, in
encryption and cryptanalysis.

The tree parity machine (Fig. 1) is a specific type of
multi-layer feedforward neural network. It features a
single output neuron, K hidden neurons, and KxN input
neurons. The input values to the network are drawn from
the set {1, 0, +1}. The weights connecting the input
neurons to the hidden neurons are restricted to the range
{-L, ..., 0, ..., +L}. The output of each hidden neuron is
determined by summing the products of the input values
and their corresponding weights: §; = s gn(E?’z1 WijXij)
Signum is a simple function. It returns —1, 0 or 1:

-1ifx<0

0Oifx=0
lifx>0

sgn(x) =

Output of the TPM is binary and is computed by the
formula:

Fig. 1. Tree Parity Machine

Cybersecurity Challenges and TPMs

The landscape of cyber-attacks has evolved to include
various sophisticated methods, such as:

*  Man-in-the-Middle (MitM) Attacks: Attackers
intercept and potentially alter communications between
two parties, compromising the confidentiality and
integrity of the exchanged data.

* Replay Attacks: Malicious actors capture and
retransmit legitimate data to deceive recipients or gain
unauthorised access.

*  Brute Force Attacks: an intruder systematically
attempts to guess the password or key by exhaustively
trying every possible combination. How can the TPM
synchronisation process prevent this? It generates
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complex and high-entropy keys that are quite infeasible
computationally to guess over brute force attack sure
within a specified time frame. In TPM, the
synchronisation process and weight adjustment make it
complex for brute force attacks to gain the keys or
password.

*  Eavesdropping: Unauthorised parties listen to or
capture data in transit, aiming to gain sensitive
information without direct access. Eavesdropping means
when an intruder or third party can listen to the

communication established between two users or parties
to gain unauthorised access to the conversation and
information, respectively. But eavesdroppers or intruders
cannot easily compute the key thanks to TPM
synchronisation process because that does not transmit
directly the final synchronised key, and even cannot
simply listen to the communication. So, a key generation
process via synchronised learning can protect the users
against eavesdropping.

Table 2. Comparative Analysis of Cyber-Attacks and TPM Mitigation

Attack Type Description TPM Mitigation

Man-in-the-Middle | Attackers intercept and potentially | TPMs generate synchronised keys without
alter communications, transmitting them directly, preventing interception
compromising data confidentiality. | or alteration.

Replay Attacks Malicious actors capture and TPM’s dynamic synchronisation and continuous
retransmit legitimate data to updates render previous communications useless
deceive recipients. to attackers.

Brute Force Attacks | Intruders systematically guess TPMs generate high-entropy keys and adjust
passwords or keys. weights during synchronisation, making brute

force infeasible.

Eavesdropping Unauthorised parties listen to or TPM synchronisation avoids transmitting the final
capture data in transit. key, thwarting eavesdropping attempts.

Methodology *  Security Proofs: Mathematical demonstrations of

The study involves designing an experimental setup
where Tree Parity Machines (TPMs) are utilised to
establish  secure  communication channels. The
methodology combines theoretical analysis and practical
simulations to evaluate the effectiveness of TPMs in real-
world scenarios. The theoretical analysis examines the
mathematical foundations of TPMs, including their
synchronisation mechanisms and the security properties
of the generated keys.

Potential attack complexities, such as man-in-the-
middle, brute force, and replay attacks, are analysed to
demonstrate  how TPMs' synchronisation process
inherently defends against these threats. The analysis
covers the following aspects:

*  Key Generation and Synchronisation: A detailed
examination of TPM architecture, focusing on weight
vectors and update rules during the synchronisation
process.

the difficulty in predicting or replicating keys generated
by TPMs without synchronised learning.

« Attack Complexity: An evaluation of the
computational effort required for an attacker to disrupt or
intercept the synchronisation process, illustrating the
infeasibility of successful attacks within practical
timeframes.

The practical simulations are designed to test the real-
world effectiveness of TPMs in various cyber-attack
scenarios. We implement TPMs in a simulated network
environment and subject them to different attack vectors
to evaluate their resilience and performance.

*  Simulation Setup: Description of the network
configuration, including the roles of TPMs in establishing
secure communication between nodes.

«  Attack Scenarios: Implementation of common
cyber-attack techniques, such as man-in-the-middle, brute

41
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force, and replay attacks, to test the robustness of TPM-
generated keys.

¢ Performance Metrics: Measurement of key
metrics such as synchronisation time, key generation rate,
and resistance to attack-induced synchronisation failures.

*  Results and Analysis: Presentation of simulation
results, highlighting the effectiveness of TPMs in
maintaining secure communication channels under attack
conditions. Comparison of TPM performance with
traditional cryptographic methods to showcase their
superior resilience.

Simulating a Tree Parity Machine (TPM) involves
creating a model where two TPMs (commonly referred to
as Alice and Bob) synchronise their weights through a
mutual learning process with the steps as follows:

1. Initialisation: Initialise two TPMs with random
weights.

2. Input Generation: Generate random inputs for the
TPMs.

3. Output Calculation: Calculate the output of each
TPM based on the inputs and current weights.

4. Synchronisation Process: Adjust the weights of
both TPMs based on their outputs to achieve
synchronisation.

5. Repeat: Repeat the process until the weights of
both TPMs are synchronised.

The TPM synchronisation process relies on the neural
network principles, creating a shared secret key between
two parties. It doesn’t transmit the key itself. There are
the following steps to prevent the above-mentioned
attacks: 1) Securing Key Exchange, TPMs are using an
interactive learning process through which they
synchronise their weights and generate the same key in
both parties independently. This synchronisation process
is resistant to MitM attacks and eavesdropping since the
key is not directly transmitted. 2) Dynamic Interaction
can be supported by the TPMs interactive nature that
involves contiguous updates based on random inputs.
This process can prevent attackers from successfully
replaying previous communications. 3) Complex Key
Generation goes through TPM synchronisation. The
complexity and high-entropy nature of the generated keys
makes them resistant to brute force attacks.

We developed an algorithm  showing the
synchronisation process where the inputs to the TPMs are
random values for each iteration. The input values are not
derived from a dataset but are dynamically created to
facilitate the synchronisation process. The inputs (x) are
generated via a random number generator, producing

values within the range of {-1, 0, 1} for each iteration.
This random input generation ensures that the
synchronisation process is driven by a continuous and
varied set of input values. The use of random inputs
ensures that each synchronisation attempt is unique and
unpredictable, which is crucial for the security of the
TPM-based key exchange. This approach allows the
synchronisation process to be independent of any dataset,
making it unique for various applications. Algorithm
shows the synchronisation process where the random
input values which foster the security of the TPMs key
exchange process. This approach allowed the
synchronisation process to be independent of any dataset,
which made it unique for various applications.

Algorithm: Synchronisation of Two Tree Parity
Machines (TPMs)

Input: tpms, iterations
Output: weights A, weights B

1 K« tpms[0].K

2 N < tpms[0].N

3 I <0

4 while I < iterations

5 X&RANDOM_INTS(—I,Z, (K,N))

6 On, ha—tpms [0] .get output (x)

7 1f oa=0s:

8 - tpms[0].update weights (x,oa,ha)

9 - tpms[l].update weights(x, os, hs)

10 if tpms[0].weights=tpms[1l].weights:

11 - break
12 i<i+l
13 return tpms[0].weights,tpms[1].weight

The ecosystem of IoT is composed of a numerous of
interconnected devices where many of them operate
under significant resource constraints. Traditional
cryptographic methods work effectively in certain
contexts but often fall short when applied to these devices
due to their computational and energy demands. In this
challenging landscape, TPMs emerge as a transformative
solution. Their lightweight and efficient architecture is
the best solution for securing IoT networks, while
addressing the unique needs of a resource-limited
environment.

An advantage of TPMs are their ability to achieve
neural synchronisation which 1s a dynamic process and
allows two devices to establish a shared secret key,
avoiding the transmission of sensitive information. This is
an innovative mechanism that not only enhances security
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but also reduces the risk of vulnerabilities commonly
exploited by attackers. Thus, TPMs minimise exposure to
threats like interception, eavesdropping, and replay
attacks by avoiding the direct key exchange.

The practical applications of TPMs in IoT networks
are numerous. For instance, they can secure
communication between smart home devices such as
thermostats, cameras, and voice assistants, ensuring that
only authorised components interact within the system. In
industrial settings, TPMs protect sensitive data exchanges
between sensors and control systems, safeguarding
operations from unauthorised access or interference.
Moreover, their low energy consumption and minimal
computational overhead make TPMs a natural fit for
battery-operated devices, further enhancing their appeal
in IoT ecosystems.

By providing a robust and efficient alternative to
traditional cryptographic methods, TPMs have the
potential to revolutionise [oT security. Their lightweight
design and ability to adapt to the constraints of resource-
limited devices position them as a cornerstone technology
in the evolving landscape of secure, interconnected
systems.

In this process, a key exchange protocol has been used
through the synchronisation of two neural networks to
encrypt communication between two parties using the
Hebbian learning rule. The given TPM model includes
two parties, A (Alice) and B (Bob), where person A
establishes and communicates with person B. They need
to gain and exchange a key over a secure channel. This is
impossible until the weights and inputs of both networks
are identical. The maximum number of epochs has been
equal to 1000, where the networks get paired, which is
achieved when the weights of the neural networks are
absolutely matched. In the given model, both A and B
parties represent two identical neural networks:

with different random values of weights: w;; €
{-L,..,0,..,+L}

where L represents the number of weight values

Input values: x;; € {—1, 0, 1}

The values of hidden layers are computed with the
formula: g; = sgn(¥}_, wi;x;))

Output value: T = [[X, g

We're computing the output values of both parties.
When they match using the Hebbian learning rule, the
process will be repeated until the weights of both parties
are equal. So, identical values of the weights generate the
paired key (Fig. 2), where they were synchronised and

paired after 500 iterations. Fig. 3 shows not paired TPMs
before 500 iterations, where the weight is not identical.

weights a

weightsg

paired

1002\ oams (1002

12-30 g 12-30

3113 3113
Fig. 2. Paired TPMs.

weights g

TA| OB1
Taz 18
do not train
Ga2 02
not paired

2-10-3 » 13-20
12-30) """ (4032
3013 2 1-1-2

Fig. 3. Not paired TPMs.

weightsg

[teration 1

Alice's weights: Bob's weights:

(2—10—3) (13—20)
12-30 -10-32
-3013 21-1-2

Iteration 2

Alice's weights: Bob's weights:
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(2—10—3) (13—20)
12-30 -10-32
-3013 21-1-2
Iteration 500
Alice's weights: Bob's weights:
(100—2) (100—2)
12-30 12-30
-3113 -3113
Synchronised after 500 iterations
Alice's weights after synchronisation:
Bob's weights after synchronisation:
(100—2) (100—2)
12-30 12-30
-3113 -3113

Validating the effectiveness of TPMs in securing
IoT environments

To validate the effectiveness of Tree Parity Machines
(TPMs) in securing loT environments, we conducted
comprehensive  simulations across various attack
scenarios and performance metrics. The results
underscore the superiority of TPMs over traditional
cryptographic methods like RSA/ECC in several critical
areas:

1. Synchronisation Time: TPMs demonstrated a
significantly faster synchronisation process, with an
average time of 15.2 milliseconds compared to 45.6
milliseconds for RSA/ECC. This efficiency is crucial for
IoT devices that require rapid key exchanges to maintain
seamless communication.

2. Key Generation Rate: TPMs excelled in
generating secure keys at a rate of 500 keys per second,
surpassing the 120 keys per second achieved by
RSA/ECC. This capability enhances scalability and
supports high-demand IoT applications.

3. Energy Consumption: With an average energy
consumption of just 1.2 millijoules, TPMs consume
considerably less power than RSA/ECC, which requires
3.8 millijoules. This efficiency makes TPMs ideal for
resource-constrained [oT devices, extending battery life
and reducing operational costs.

4, Resistance to Man-in-the-Middle (MitM)
Attacks: TPMs exhibited exceptional resilience against
MitM attacks, achieving a resistance rate of 99.9%
compared to 90.4% for RSA/ECC. This highlights their
robust security capabilities in safeguarding sensitive
communications.

5. Computational Overhead: TPMs impose minimal
computational demands, with an overhead of only 2.5
kilobytes compared to 8.1 kilobytes for RSA/ECC. This
lightweight nature ensures compatibility with low-power
and memory-constrained loT devices.

These findings establish TPMs as a highly efficient
and secure alternative to traditional cryptographic
methods, offering substantial advantages in [oT
applications where speed, energy efficiency, and robust
security are paramount. The results also reinforce TPMs'
potential to address the unique challenges of IoT
ecosystems, paving the way for widespread adoption in
diverse operational environments.

Table 3. Numerical Parameters

Metric TPM RSA/EC
(Proposed) | C

(Traditional)

Synchronisation Time (ms) 15.2 45.6

Key  Generation Rate 500 120

(keys/s)

Energy Consumption (mJ) 1.2 3.8

Resistance  to  MitM 99.9 90.4

Attacks (%)

Computational ~ Overhead 2.5 8.1

(kB)

Conclusions

Tree Parity Machines offer a secure, energy-efficient,
and scalable method for post-quantum key exchange,
positioning them as a core technology for securing digital
economy infrastructures. As trust, data integrity, and low-
latency secure communication become critical for digital
transactions and services, TPMs enable robust protection
against advanced cyber threats. Our simulation results
show that TPMs outperform traditional cryptography in
key generation rate, synchronisation time, and resilience
under attack. These properties make them ideal for
securing e-commerce transactions, [oT communications,
digital identity systems, and other essential components
of the digital economy. Future work will explore TPM
integration with blockchain and edge computing to
further support distributed and decentralised platforms.

The findings indicate that TPMs offer significant
advantages in preventing cyber-attacks. The synchronised
key generation process of TPMs is shown to be resilient
against various types of attacks, ensuring secure
communication. Our simulations demonstrate that TPMs
can effectively prevent attempts to intercept, eavesdrop or
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manipulate data, thereby providing a robust defence
mechanism. TPMs present a promising avenue for
enhancing cybersecurity measures. Their ability to
generate secure keys through synchronised learning offers
a novel approach to preventing cyber-attacks. Future
research should focus on optimising the performance of
TPMs and exploring their application in various
cybersecurity contexts. This study lays the groundwork
for further investigation into the potential of TPMs in
creating secure and resilient cyber defence systems. The
algorithm presented in this paper

Tree Parity Machines (TPMs) represent a
transformative approach to securing IoT ecosystems,
addressing the unique challenges posed by resource-
constrained devices and evolving cyber threats. The
simulations conducted in this study highlight the clear
advantages of TPMs over traditional cryptographic
methods like RSA and ECC. TPMs excel in
synchronisation speed, energy efficiency, key generation
rate, and computational overhead, making them
particularly suited for IoT applications. Furthermore, their
robust resistance to Man-in-the-Middle (MitM) attacks
and other sophisticated threats demonstrates their
potential to enhance the security and reliability of
interconnected systems.

By leveraging neural synchronisation, TPMs provide a
lightweight, efficient, and scalable cryptographic solution
that aligns with the operational requirements of modern
[oT environments. Their ability to generate high-entropy
keys without direct transmission ensures a secure
communication framework that can withstand both
traditional and emerging cyber-attacks.

As IoT networks continue to expand in scope and
complexity, the adoption of TPM-based security
architectures offers a promising pathway to achieving
both efficiency and resilience. Future research should
explore the integration of TPMs with advanced
technologies such as blockchain, federated learning, and
post-quantum cryptography to further enhance their
capabilities. By addressing current limitations and
expanding use cases, TPMs can establish themselves as a
cornerstone technology in the quest for secure and
sustainable IoT ecosystems.
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Poun kibepOesnexu y po3BuTky HudppoBoi ekonomiku: MamuHHuil miaxix HA 0CHOBI 1ePeBOBHIHOTO NAPUTETY

'Kagpeopa komn 'tomeprux nayk, Toinicokuii Oepaicasnuii ynieepcumem im. leane JJoccasaxiweini, Ipysis

Hasuanvno-naykosuti incmumym menexomynixayitinux cucmem KIII im. lzopsa Cikopcokozo, m. Kuis, Ykpaina

SKagpedpa ingpopmamuxu, Daxynomem mamemamuku ma komn'tomepnux nayk, Cyxymcokuil Oepicasnuti yuigepcumem,
Toinici, Ipysia

‘Kagpeopa rxomn'omepnux nayx, ®axyiomem mucmeyms i nayk, Amepukancokuii ynisepcumem y Boneapii, Brazoceepao,
Boneapia

IpobsiemaTuka. 3 po3BUTKOM IU(POBOI EKOHOMIKM 3a0e3MeueHHs 0e3MeYHOro 3B'A3Ky Ta HUTICHOCTI JaHUX CTA€ BCE OiIbII
KUTTEBO BOXIMBUM. Tpamumiiini kpunrorpadivuni anropurmu, Taki sk RSA ta ECC, € BpasimuBuME 10 TOCATHEHb KBAHTOBHX
004HCIIeHb, 110 TIOTPeOYE MOCT-KBAHTOBHX pillleHb. J{epeBono iioni Mammau napHocti (TPM), HaTXHEHHI IPUHIUITIAMA HEHPOHHOT
CHHXPOHI3aIIil, TPEICTABIIOTh 0AraToOOIIMI0Yy aNbTePHATHBY JUIA OE3MEYHOr0 OOMiHY KIIOYaMHM, OCOOJNIBO B CEPEHOBHIII
[aTepuery peueit (IoT).

Mera pociimkenns. Lle nocmimkeHHS Mae Ha MeTi OUIHMTH e(ekTuBHICTH TPM sK 7erkoro, eHeproe(eKTHBHOTO Ta
KBAaHTOBO-CTIMKOT0 METOTY JUTs O€3MeuH01 TeHeparii Ta 00MiHy KIT04aMu B JI0j1aTKax KibepOe3nekw, 3 akiieHToM Ha Mepesxi [oT.

Metoauka peasnizanii. Buxopyuctano riOpugHy METOJ0JIOTI0, 10 MOEAHY€E TEOPETHYHH aHAII3 1 MPAKTUUHE MOJICTIOBAHHS.
TeopeTiane MOmENIOBAaHHS IOCTIMKYBATO MeXaHi3MH cHHXpoHi3amii TPM, muHamiky reHepamii KIOYIB Ta CTIHKICTH J0
Kibeparak, TaKuX 5K «TIOJMHA OCEPEMHI», TOBTOPHE BIATBOPEHHS, Ipyda Cuia Ta MiAcTyXoByBaHHs. [IpakTHuHe MoaeTIOBaHHS
TPOBOAMIIOCS B KOHTPOJIHOBAHOMY MEPEKEBOMY CEPEIOBHIII TS OIHKH TpoaykTHBHOCTI TPM 3 TOUKH 30py Hacy CHHXpOHi3aIli,
INBUJIKOCTI TEHepallii KIYiB, OOYMCITIOBAIBHMX HAKIAJIHUX BUTPAT 1 CTIMKOCTI M0 arak y MOPIBHSAHHI 3 TPaJUIiHAMU
KPHUNTOTPAd)IIHAMA METOIAMH.

Pesyabratu gociigkenus. Pesynbratm MonenmoBaHHs Tokasamd, mo TPM mepesepytors RSA/ECC 3a Garathma
napamerpamu. Yac curxporizauii TPM cranoButs 15,2 Mc mporn 45,6 Mc y RSA/ECC, mBuakicts renepauii kmodis - 500
Kmouis/c mpotu 120 kirodis/c, a eneprocmoxkuBanis - Menmre (1,2 mJIx npotu 3,8 M/[x). BoHu Takox mpoieMOHCTPYBaJIH KpaiLy
CTiliKiCTh 10 aTak «3moBMHUCHHKa mocepequni» (99,9% mpotu 90,4%) 1 moTpebyioTh MeHme oOumMcmoBanibHUX BHUTpaT. Lli
PE3yIbTaTH MATBEPUKYIOTh HAIiHHICTh, MacmTaboBaHicTh i mpuaatHicts TPM mist cepenosum [oT 3 oOMexxeHHME pecypcami.

BucHoBkn. ManmmHy Ha OCHOBI JepPEBOBHIHOI NMAapHOCTI € €(EKTHBHOI, IOCT-KBAHTOBO-OE3MEYHOI albTEPHATHBOIO
TPAJMIIHHIA KpunTorpadii, MPOMOHYOYH MOCHICHUH 3aXUCT BiJ HOBHX KiOep3arpo3. Jlerka apxiTekTypa, MIBHIKA CHHXPOHI3AIlIs
Ta MiHIMAJIbHE CIIOKMBAHHS €HEPrii POOIIATH iX KIIFOUOBMM IHCTPYMEHTOM [Tl CTBOPEHHS Oe3neqHoi ippoBoi iHPpacTpyKTypH.
Maii0yTHi JOCTi/UKEHHS MOBHHHI BUBYHTH iHTerpamito TPM 3 OmoxdeiiHOM, (enepaTHBHIM HABYAHHAM i mepudepiitHnMu
00YMCIIEHHSIMH JUTS TIOJIANBIIOTO 3MIITHEHHS CHCTEM KibepOesmekH.



L. MIRTSKHULAVA, L. GLOBA, N. GULUA, M. GUGUNASHVILI, S. SULIMA. THE ROLE OF CYBERSECURITY IN
FACILITATING DIGITAL ECONOMY: A TREE PARITY MACHINE-BASED APPROACH

Knrouosi cnosa: Jlepeso napumemnux mawun (TPM); nocm-xeanmosa kpunmozpagis, 6esneunuti 0oMin kiouamu,; besnexa
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