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Background. The development of many elements of modern communication systems is increasingly based on the use of
various types of dielectric resonators (DR). The theory of coupled oscillations of resonators is the basis for further calculations
and optimisation of the scattering matrices of electromagnetic waves on various devices. When calculating devices built on a
large number of resonators, direct numerical methods are often not effective. They usually require the use of powerful
computers, therefore, the calculation of elements on a large number of DR is impossible without building analytical models of
complex structures based on electrodynamic modelling.

Objective. The study aims to find analytical expressions for the frequencies and distributions of electromagnetic fields of
natural oscillations of lattices, consisting of a large number of various types of dielectric resonators for use in various devices
of optical communication systems. To solve this problem, a linear system of equations, which relates the complex amplitudes
and frequencies of the resonators, obtained earlier from the perturbation theory, was used.

Methods. To find analytical expressions, methods of matrix theory are used. In this case, both known methods of
calculating the determinants of tri-diagonal and circulant matrices are used, as well as their modifications related to the
calculations of more complex matrices, which, after transformations, are reduced to much simpler formulas. The final result is
the receipt of new general analytical formulas for describing coupled oscillations of lattices consisting of a large number of
dielectric resonators of various types.

Results. Coupled oscillations of one-dimensional linear lattices of two types of dielectric resonators are considered. New
analytical expressions for complex frequencies and amplitudes of resonators, as well as Q-factor expressions without
restrictions on their number, are obtained. A new model of natural oscillations of two-dimensional lattices, consisting of
dielectric resonators of two different types, is constructed. General analytical solutions are found for the frequencies and
amplitudes of coupled oscillations for two types of two-dimensional lattices with different arrangements of resonators.
Analytical solutions are found for the amplitudes and frequencies of coupled oscillations of two axially symmetric ring lattices
with different types of resonators, which are characterised by different placement symmetry in free space. The obtained general
analytical expressions for the frequencies of coupled oscillations are compared with the results of calculations obtained by
numerically, by solving linear systems of equations. A very good agreement between the solutions obtained by the two
methods is demonstrated.

Conclusions. The developed theory is the basis for the design of many devices of the optical wavelength range, which are
built on the basis of the use of a large number of dielectric resonators of various types. The obtained new analytical
expressions for calculating coupled oscillations of dielectric resonators allow building new more efficient models of scattering
for optimisation of various optical communication devices.
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significantly = complicates the calculation and
optimisation of their parameters.
The calculation and optimisation of devices built

I. INTRODUCTION

Today lattices of dielectric resonators (DR) [1 —
30] find application in different devices of the
microwave, theraherce, infrared and optical wavelength
ranges. Most widely it is used in filters [1, 3, 6, 7, 11,
17, 18 — 21, 29]; multiplexers [2, 5, 8, 9, 12, 15];
antennas [13, 14, 16, 24]; modulators [22, 26, 27]; as
well as lasers [23, 28]; switches [4]; sensors [10]; meta
lenz [25], to name a few. Such lattices, as a rule,
contain a very large number of resonators, which

on lattices of dielectric resonators is usually based on
the use of direct numerical methods for solving the
system of Maxwell's equations, as well as on the use of
various analytical solutions of these equations for
scattering  problems, obtained using  various
approximations. In work [34], an analytical theory of
scattering on systems of dielectric resonators is
developed, based on the use of perturbation theory. The
indicated theory is based on expansions of solutions of
scattering problems in terms of basis functions of
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coupled oscillations of resonators. Obtaining such basis
functions is a rather complex independent task,
especially in cases where the number of resonators is
large. Dielectric resonator lattices typically contain
hundreds of elements, so constructing basis functions
for their natural oscillations is a complex task.
Numerical calculation of such basis functions is also
often very difficult. However, in some cases, such basis
functions can be calculated in analytical form.

The aim of this study is to obtaining analytical
solutions of basis functions and analyses problems of
coupled oscillations of 1-2 dimensional lattices of
different dielectric resonators.

11. COUPLED OSCILLATIONS OF DIELECTRIC
RESONATORS

In the [34] it’s looked for a solution to the problem
of coupled oscillations of a system of N DRs obtained
in the form of an expansion their field (e,h) in terms of
the natural oscillations of the same, but isolated
resonators (e_,h ) :

e) N (e
=2.b [ ] (1)
[hj s=1 ’ hs
In general, was obtained an equation system for
amplitudes ||| (1):
N
Dk bg—Ab =05 (s,t=1, 2,.., N), (2)
s=1

where

A =2(0-0y)/®y=200/0y+io"/vy); (3)
® - complex frequency of coupled oscillations; -
part of the isolated DRs;
dw=Re(®d-wy); o =Im(®).

real frequency of

The distribution of the amplitudes of coupled
oscillations of a system of resonators ||bs|| was
formulated as an eigenvalues problem for a finite-

dimensional coupling operator K=|

Kl -

ikl K Ks Kni
K ik, K3, Kno
K=| : s S )
Kina Kona King KnoNat
KiN Ko K3 N il;N

where kg # K, - are coupling coefficients of a s—th

and t—th for different DR. Diagonal elements of the
coupling operator matrix K determined only by the
magnitude of the radiation of s - th partial resonators,

represented by coupling coefficients f(s .

Equating to zero, the determinant of system (2),

det i, (1-58,) + (ik, = )3, | =0, (5)

the characteristic equation was obtained, the solution of
which determines the frequency splitting that arises due
to the electromagnetic influence of the resonators. In
this case, each non-degenerate value of the frequency

(s=12,.,N) of s-th
oscillations of the system corresponds to its own

@ =0 +ie*" natural

column vector:
S
by

bif<|

. (s,t=1,2,..,N) (6)

by

of the coupling operator K (4), determining the
distribution of amplitudes of partial resonators. Thus, in
DR natural
oscillations, for a system consisting of N resonators is

the absence of degeneracy of the

characterised by a NxN matrix of amplitudes of
coupled oscillations:

b} bf blN
b12 bj blz\]

B= 7)

b;] b; bg
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In general cases, the solution of the equation
system (2) is carried out numerically, but, in some cases
can be found in analytical form, which significantly
simplified and increases the speed of calculations,
especially for large systems (N[ 1). We have
considered particular solutions of (2) for lattices of
different DRs.

III. COUPLING OSCILLATIONS OF ONE-

DIMENSIONAL LATTICES OF DIELECTRIC B
RESONATORS
Im(A)
To find the eigenvalues (3) and eigenvectors of K it ’*xxl 8
matrix (4) for one-dimensional DR lattice, a relatively X x -

simple case was considered, when each resonator is o
coupled only to its neighbours. We call it the first il e
approximation (Fig. 1, a). The second approximation
determined the solution obtained under the condition of . . ‘
taking into account the coupling of resonators with 7 = . 'Re())
neighbours and neighbouring neighbours (Fig. 1, b). c

Continuing this process, if desired, we can calculate

more accu.rately the parameters (')fthe .lattice. _ Fig. 1. One-dimensional lattices of N (a, b) identical
) In .the simple case of a One-dlmens.lonal lattice of N pRs. Results of the numerical calculation of the eigenvalues
identical DRs, the system of equations (2) takes the are dots; the analytical ones are crosses (a, c), obtained for

form: the first approximation (a): N=15; k;=0,5;

Ky =0,75-0,31; (c). (Here and below, the numerical values

Ky by + (kg —A)b, + Kt+1,tbt+1 =0, (t=12,..,N).(8) of the coupling coefficients are taken arbitrarily).

For identical DRs, the coupling coefficients of the Substituting (10) into equations (9), we obtained:
resonators with open space are equal to each other:
121 :120. And if the resonators are located at equal 2x,, cos0 + (ik, 1) =0 (11)
distances from each other: k_, =« =k, then the

We supplemented equations (10), (11) with the
condition of symmetry of the coupling oscillations
amplitude distribution for all resonators of the lattice

system is simplified

K15b, +(ﬂ}0 — )b, +Kpyb,y =0 9) b, :|bN_v+l (v=1,2,...,N); from which we found:
The solution of (9) is well known [32]: we [sin(0v)| = sin[6(N —v+1)]|. (12)
represented it as a set of normalized eigenvectors with
an amplitude distribution: The solution to equation (12) has also known form:
b, =b,sin(0t), (t=12,..,N) (10) 0=0"=—T_ (s=1,2,.,N) (I3)
(N+1)
Where 6 is a constant that determines the phase of The characteristic equation (11) together with (13)

the natural oscillations of the t-th resonator in the determines the N eigenvalues found in the first
lattice. approximation:
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A :il~<0 +2K]200s{ (14)

STT
(N+1) |

where each value A° corresponds s -th normalized
vector (6) of natural oscillations of the resonator system:
b; =bysin(0°t), (t=12,..,N) (15)

An interesting feature of the found solution is the
reality of the phase distribution functions of the
amplitudes of coupled oscillations, obtained in the
approximation of interaction of only neighbouring
resonators. As follows from (13), these functions do not
depend on the electromagnetic parameters but are
determined only by the number of resonators in the
lattice.

Fig. 1, ¢ shows the result of comparison of the
eigenvalues of a linear lattice consisting of 15 DRs,
calculated using formula (14) (crosses) and the
eigenvalues obtained numerically for the truncated
coupling matrix (4) (dots) for the first approximation.

From (3), (14) we easily find an analytical
expression for the quality factor of coupled oscillations
of a linear one-dimensional lattice:

o = 1+ Re(k,,)cos 6
k, +2Im(x,,)cos 0°

It is interesting that even if isolated resonators do not
radiate into the structure under consideration: k, =0, the

appearance of other resonators coupled to each other can
lead to the appearance of visible resonances, with a
quality factor

Q’ =[1+Re(x,,)c0s0°]/[2Im(x,,)cosO°].

The absence of coupling between the resonators
determines the quality factor of the lattice oscillations,
equal to the quality factor of one isolated resonator

1/k,.
From (13) it also follows that for N —o, the
eigenvalues occupy an “interval” of frequencies

determined by the deviation 6° € (0,7), therefore from
(14), (3) we find:

Re[dw’ / m,]=1/2Re[A*] € (—Re[x,,],Re[x, 1),
and

o'/ o, =1/2Im[1*] e (k, /2 —Im[k,, ]k, / 2+ Im[K,,])

for each type of oscillation of partial resonators.

The formula for the second approximation may be
found taking into account the coupling with the two
closest resonators on each side (Fig. 1, b).

>

_ Im(L)
1 %kz t-1 t+1 % N o ; "
0o—0Q o o . —QO—o .« O—o 3
g = R 5

° "Re(L)
a b

= Im(L)
i ;kl t-1 t+1 ; N ! x
0o—0O o o —0O—o0 . 00O oK xxx 0K
g e R 5

"Re(X)

Fig. 2. One-dimensional lattices of different DR; odd
number of resonators (a); even number of resonators (c). (b)
N=7; (d N=8; k; =0,1; k,=0,8; 1, =0,8-0,3i;
K71 :O,2+0,li .

Equations  describing coupled oscillations of
resonators of different types, are described formally by
the same system of equations (2), but it is necessary to
take into account that the coefficients of mutual coupling
become asymmetrical: «;, # k,, . In this case, obtaining
simple solutions in analytical form can be performed
only for lattices of alternating DR (Fig. 2).

We have examined lattices of this type (Fig. 2) in
more detail. For this purpose, we represented the system
(2), also considering the coupling only between
adjacent resonators:

i,,b,_, +(ik, =A)b, +x,,b
K,,b, + (ik, = L)b

t+1=0
=0

; (16)

t+1 + K12bt+2

where (t=12,..,N)and x, #K,,.

A non-trivial solution to the system of equations
(16) is determined by the condition:
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W, Ky O 0o 0 0
Ko Wy Ky 0o 0 0
0 Ky Wy 0o 0 0
det S . |=0. (17)
0 0O W, Ky O
0 0O Ky, Wy Kpp
0 00 0 Ky W

where w, =ik, —A; (s=1,2)

By dividing the rows (17) by «,, and x,,, and then

successively multiplying and dividing the rows and
columns by

o~ 1/2
(ﬂfz —A) Ky
(ik; — 1) 4%,

determinant (17) [33] is reduced to a symmetric form.
So up to a constant factor, (17) can be conveniently
represented as:

2x 1.0 .. 0 0 O
1 2x 1 .. 0 0 O
01 2x .. O
det| . . . .. . . .= (8)
0 00 2x 1 0
000 I 2x 1
000 0 1 2x

_sin(N+1)0

= C%\I (cos0) -
sin©

here C}\I (x) - Gegenbauer polynomial [33].

SISPLVY

- - /2
X:cosez{(lkl — Mk _7‘)} (19)

Conditions (17) and (18) again define the possible
values of the phase constants:

0°=sn/(N+1); (s=12,...,N) (20)

Equations (20), (19) allow us to calculate the
eigenvalues of the coupling operator (4):

A =%(f<1 +k)Ed; 1)
where
s 1 s 1 1
d ZE[(4COSG )2 KoKy, — (K, _k2)2]1/2 . (22)

At first glance, it seems that expressions (20), (21),
(22) contain 2N independent solutions. In fact, each of
these solutions, corresponding to the chosen sign of the
(21), determines a double set of identical values A . As
a result, the total number of distinct eigenvalues
remains equal to N .

The amplitudes of the system of different
resonators, found on the basis of using the (17), (18),
were represented in the form:

b =b5, (-)N""sin[n6%].  (23)
where
b, = sin(nﬁ)‘ - M cos
2 K, (k, =A%)

As follows from the obtained expressions, if the
resonators become identical, the relations (21) — (23)
become (14), (15).

In the general case, the amplitudes of the coupled

oscillations of different resonators by, are not equal to
each other.

Fig. 2, b, d show the results of comparison of
eigenvalues calculated numerically (dots) with the
values obtained from (21), (22) (crosses) for two
lattices with an odd and even number of resonators.



80 INFORMATION AND TELECOMMUNICATION SCIENCES VOLUME 16 NUMBER 1 JANUARY-JUNE 2025 75-86

IV. COUPLING OSCILLATIONS OF TWO-
DIMENSIONAL LATTICES OF DIFFERENT
DIELECTRIC RESONATORS

Obtained results for one-dimensional lattices, can be
generalized to the case of two-dimensional rectangular
lattices of NxM various resonators (Fig. 3, 4, a). To
do this, we defined the “coordinates” of each resonator
by two numbers (s,t), where s denotes the number of
the horizontal position, and t the number of the vertical
position of the DR in a rectangular lattice. Equation (2)
for the s,t th DR, also taking into account the coupling
only with adjacent resonators of the lattice, was written
in the form:

Kot 1.t Ds-1e1 + Kot gstDso1e T

K 1 15, Oset 401 T Kot Os o1 + (kg —=A)bg, +

s 115t D561 T K1 oo, Dst 1,01 +

K1 st Ost1.t T Kot 1015, Os+1,001 =0 (24)

(s=12,..,N; t=1,2,..M).

Here we have designated « the coefficients of

u,v[s,t
mutual coupling between the resonator u,v and the
resonator S,t.

Next we considered the case of periodic placement of
two different types of resonators, shown in Fig. 4, 5, a.

In the general system (2), two equations were
identified for describing the oscillation amplitudes of
resonators of the first and second types.

For resonators of the first type (Fig. 3, a), shown
by small circles, we designated coupling coefficients by

_ _ _ R b
Ks,t-qs+1,t = K t+ljs+1,t = Ks+2,t—1s+1,t = Ks+2,t+1s+1,t = Kxy >

_ _ 20
Kt t—lls+1,t = KsaLt+ljs+1,t = Ky 5

_ 21
Ks,t\s+1,t - Ks+2,t\s+l,t =Ky -

For resonators of the second type, shown in Fig. 3,
a by large circles, the mutual coupling coefficients were
designated by

— _ _ _ 22
Ks—1,t-1s,t = Ks—1t+1s,t = Ks+1t-1s,t = Kst+1,t+1fs,t = Kxy»

— _ 12 _ _ 12
Ks,t—1|s,t - Ks,t-%—l|s,t - Ky ’ Ks—l,t\s,t - Ks-%—l,t\s7t =Ky -

(e} ) (o) o o] )
M - « . e « . e
s-Ltrl s thl s+l tH] 42, t+1 Im(h)
(o) o O o
NIXI/ T me
ok (Y S R i XK
°©—0—o°—0 ° X
s-l.t/s t><+1,l/<+2,t )
|
.0 ° o 0 + 0O
s-1,t-1 s,t-1 s+1,t-1 s+2,t-1 -
o @ v e ’ " Re(M)
o (o) o O o o
1 N
a b

Fig. 3. Two-dimensional "chessboard" lattice of different
resonators (a). The results of the numerical calculation of the
eigenvalues are dots; the analytical ones are crosses. (b):
N=4; M=3; k; =035; ky=0,75; «2=0,7-0,3i;
K21 =0,3+0,2i ; Ky =0,5+0,2i;
Ky =0,25+0,151 k)0 =0,35+0,3i; K3y =0,15+0,2i;

Ky =0,5-0,2i; 22 =0,5+0,3i.
Then equations (24) could be rewritten as:

21 1.2 2 21 1.2 2
Ky (bgy +bga) + K, (b5 01 +bgrr )+

+(i/€1 - )\')b}v+l.t + Kic)l; (b;,t—l + bé,tﬂ + b;+2,t—l + b;+2,t+1) =0
(25)

12 4.1 1 12 1.1
K, (bs_l,t +bs+1’t)+1<y (b

1
sl Thsp) +

7 2 242 2 2 2 _
+(iky —A)by, + Ky (b5 1 +D5 g 1 F b5y 11 H 05 41) =0

We were looking for a solution in the form:

byt =bg” sin(0,5)sin(0, 1), (26)

where the amplitudes b})’z and phase constants 0, 6,

do not depend on the number of resonators.

Substituting (26) into (25), after simple transformations,
we obtained a system of two equations for the
amplitudes of resonators of different types:
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[(ik, — 1)+ 4k} cosO, cosO, ]-by +
+2[k; cos O, +x; cos,]-by =0;
27)

2[k,’ cosO, +1,’ cosO, |- b, +
+(ik, — 1) + 4K cos®, cosO, ]-b; =

By analogy with the representation for a one-
dimensional lattice, we put:

_pn nw _am _ mm .
YN+ Y Y M+
(n=12,..,N; m=1,2,...M) (28)

Having equated the determinant of system (27) to zero,
we found:

At =%(121 +ky)+ 2(1<1(1y + Ki}%)COS 0y cosby, £d; (29)

where
d= %{16[1(;2 cosO, + Klyz cos ey][Ki‘ cosO, + Kf,] cosO ]+

~ ~ 1/2

+Hi(k, —k,) +4(«c,, - )cos6, cos, T’ }
Relations (28) together with (29) determine the

NxM eigenvalues of a rectangular two-dimensional

lattice of different DRs, shown in Fig. 3, a. The result of

comparison of analytical and numerical values is shown
in Fig. 3, b.

In the case of a “linear” arrangement of different
resonators, shown in Fig. 4, a, the solution was carried
out in a completely similar manner. In this case, in the
equation for resonators of the first type, we designated
the coupling coefficients as:

_ _ _ _ 2L
Ks—l,t—l\s,t - Ks—l,t+1\s,t - Ks+1,t—l|s,t - Ks+1,t+l|s,t - ny >

21

_ _ A1 _ _
Ks,t—l\s,t - Ks,t+1\s,t - Ky ’ Ks—l,t|s,t - Ks+1,t|s,t =Kx >

and in the equations for resonators of the second
type, the coupling coefficients were designated as:

_ _ _ _ 12
Ks,t—lls+1,t = Ks,tlls+1,t = K2, t-Is+1,t = Ke2,t41js+1,t = Kxy >

KIZ

Ks,tls+1,t = Ks2,s+1,t = Kx 5

_ )
Kstt—ls+1,t = Ks+Lt+lls+1,t = Ky -

]

(o) o (o] o o

s-Lt+l s t+] s+l t+] s+2, t+1

0 o 3= Im(%)
x
DA ZA
511/></< s 5‘
sltlstls+lils+2,tl
e Sana S Sase s tmg
! a N b

Fig. 4. Two-dimensional "linear" lattice of various
resonators (a). The results of the numerical calculation of the
eigenvalues are dots; the analytical ones are crosses. (b):

N=4; M=3; k; =035; k,=0,75; «2=0,7-0,3i;
:0,3+O,2i; =0,5+0,251 ;
2 20,35+0,251 1 kl2 =0,35+0,3i; k2 =0,15+0,2i.

Then the system of equations obtained from (24)
for a resonator of different types takes the form:

12! (b? It+bsﬂt)+1<”(b tl+b )+

+(ik1 }\‘)bst + K (bs el T bs—l,t+l + bs+l,t—l + b§+l,t+l) =0
(30)
12 1.1 2
iy (b s+2t)+K (bs+1 1 Fhs )+
+(if<2 Mbsﬂ t (b 1 +bst+1 + bs+2 w1t bs+2 1) =0

Again we sought a solution in the form of (26).
Substituting (26) into (30), after small transformations,
we obtained a system of equations that also does not
depend on the number of resonators:
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[(ik, — 1)+ 2k cos0, ]-by +
+2[c + 21()2(; cos 6, Jcos O, by =0;

31

2 + 2Ki2y cos0,]Jcos6, by +
+(ik, = %) + 21> cos@,)]- b =0

where also:

D0, =0"=—T . (32)
(N+1) Yl (M+))

(n=12,..,.N; m=L2,...M)

o nmw _ am

X X

Expressions (32) together with (31) defined the
NxM eigenvalues of a rectangular two-dimensional
"linear" lattice of different DRs:

=L o sty 245 69

where

1
d= E{16[1{1(2 +2i, cos 0, [k} + 2k, cosB, ](cosB,)” +

ik, k) + 206! — ) cos6, T

In the ~case of identical resonators: if
A § B N § B R
k =k, =k, k0 =17 =K 50y =K =Ky
12 21

Ky =Ky =K

xy =Kxy =Ky, the found expressions (29), (33)

A =iky + 2K, cos(0,) + 2Ky cos(6y) +

+4K,, cos(8, )cos(8,) .

A comparison of the calculation results obtained
from expressions (33) with the numerical calculations
of the eigenvalues is given in Fig. 4, b.

V. COUPLING OSCILLATIONS OF RING
LATTICES OF DIELECTRIC RESONATORS

At the beginning we have considered particular
solutions of (2) for a lattice of identical DRs (12s = 1~<0 )

INFORMATION AND TELECOMMUNICATION SCIENCES VOLUME 16 NUMBER 1 JANUARY-JUNE 2025 75-86

(s=1,2,..,N ), indicated by circles, located at the
vertices of a regular polygon in a ring structure (Fig. 5,
a).

It’s assumed that the coefficients of mutual coupling
of the identical resonators satisfy two conditions: the
symmetry: K, =%, and translation: k, 6 =k

st T NtEw,s+w
(w=1,...,N—1). The last condition can also be rewritten

as: K, =K, =K, =Kk_ , where V:|s—t|. In this case,

s—t
matrix (4) becomes a circulant matrix [31, 32]; the
elements of each row are obtained by cyclically
permuting the elements of the previous one.

1

O
2 O@O N m,

/ " 1 b 3 x
3 . O » x
\ B o »
x
0 () R . .
o T TR
a b

Fig. 5. Ring lattices of N identical DRs (a). (b): N=11;
ky=0,5; i, =0,340,3i; Ky =0,25+0,1i;
k3 =0,2-0,1i; k4, =0,15-0,2i; k5 =0,1+0,1i

The eigenvalues of such a circulant matrix are well
known [32], for the coupling operator (4):

A =ik, + 3 K, ()" (34)
v=1
where
n, =exp(%); (s=0,1,...N-1)

is the s -th complex N -th root of unity.

The matrix of normalized eigenvectors of a circulant
has the form [32]:

1 1 1
1 Lo g
B=—1 7 Mo 35
\/ﬁ :l N 1 ( )
Lo .



A. TRUBIN. COUPLING OSCILLATIONS OF LATTICES OF DIFFERENT DIELECTRIC RESONATORS

As follows from (34), (3), the frequencies of
natural oscillations of regular ring structures of identical
DRs are linear functions of the coupling coefficients,
and the eigenvectors (6) do not depend on the coupling
coefficients at all, but are determined only by the
number of resonators in the system.

Fig. 5, b shows the result of comparison of the
eigenvalues of the ring structure 11 DR, found
numerically (points) and calculated using formula (34)
(crosses).

VI. COUPLING OSCILLATIONS OF RING
LATTICES OF DIFFERENT DIELECTRIC
RESONATORS

Next we considered two ring lattices of different
DR. The parameters of the first type of resonators were
designated by the number 1; the parameters of the
second type of resonators by the number 2. The
equations describing the coupled oscillations of ring
lattices of resonators of different types are also
described by the same system of equations (2), also
taking into account the asymmetry of the coupling

coefficients between resonators of different types:

21
K12 # Ky -

The amplitudes of natural oscillations of resonators
1 and 2 of the lattice were designated as:

(36)

where b, are the amplitudes (35).

For the lattice shown in Fig. 6, a, the system of
equations for the amplitudes, taking into account the
definition of the Toeplitz matrices of each individual

lattice: «;”,, =k, =7, takes the form:
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Fig. 6. Ring lattices of 2N (a, b) different DR. (e):

N=4; k5 =025; ky,=075; 5 =0,4-05i;
Kh=—0,2-0,li; K2 =0,5+0,251; «3'=0,35+0,15i;
=0,15+0,25i ; 21— 0,25-0,151; k52 =0,2+0,2i;

3! =0,1+0,1i ; k¥ =0,3+0,3i; k3 =—0,15-0,1i;

(d: N=4; k;=05; k,=0,75; xl =0,6-0,5i;
Kh=—0,2-0,li; K> =0,45+0,25i; «3'=0,15+0,1i;
k2 =0,24+0,2i;  «3'=0,140,151; «}=-0,3+0,3i;
K3 =—-0,15-0,1i.

The results of the numerical calculation of the
eigenvalues are dots; the analytical ones are crosses (c - d).

[2Y° A, -x!cos(2smj/ N) +(ik, —1)]-a' +

+[2D A, -k cos(2smj/ N)]-a* =0;

sez’ : 37
[2) A, -« cos(2smj/ N)]-a' + @7
+H2D A, -« cos(2smj/ N) + (ik, —1)]-a” =0

seZ

where Ay =1/(1+06,9+06 y);
N
2
=2'=0,1,2,...,(N=1)/2 for odd number of resonators;
==12,..(N/2); Z'=0,1,2,..,(N/2) for an even
number of resonators.

E=12,.,(N=1)/2;
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The condition for the existence of a non-trivial
solution of system (37) determines the eigenvalues:

=—(k +k,)+ Y A [kl + K ]cos(2smj/ N) +d, (38)

seE

where

d=%{16[ZA cos(2 i }{ZA K. cos(2 i }

seZ seZ

{l(k KD H23A (e )cos(zsm)} } ;

and amplitudes:

a'/a’ = —[22 A, -k cos(2smj/ N) + (il~<1 M1/

seZ

N2D° A, k' cos(2smj/ N)].

=
sex

For the structure shown in Fig. 5, b, by grouping
symmetric resonators in different ring sublattices, we
obtained:

(N-1)/2 5
[2 D «xlcos(2mjs/N)+(ik, —21)]-a' +
s=1
(N+1)/2 .
+ Z Vs,(N+l)/2K§1fsj -a’=0;
s=1
(N+1)/2 ]
Vs,(N+])/2K12fsJ .al +
s=1
(N-1)/2 »
+2 D« cos(2mjs/ N)+(ik, —21)]-a* =0

s=1

for an odd number of resonators;

(39)

N/2-1 ~
[2 D« cos(2mjs/ N)+(ik, —21)]-a' +
s=1
N/2 )
+y k') -a* =0
s=1
N/2

ZKlsz a' +
N/2-1

+2 Y «Zcos(2mjs / N) + (ik, —1)]-a’ =0

s=1

for an even number of resonators.

Here vy =1/(1+0,);

£l = e—jni/N[ezj(s)ni/N te

2j(N—s+1)rri/N]
s .

(40)

The appearance of the common phase factor (40)
in (39) is due to the condition of correspondence
between the solutions for two lattices consisting of N
DR and the solution for one ring lattice of 2N
resonators, when the resonators are placed at the same
distance from the common axis of the structure.

From the condition of existence of non-trivial
solutions of the system of equations (39), we also
determined the eigenvalues:

* :—(k +k,)+ Y AfK! +x]cos(2smj/ N) £d, (41)

seE

where

{ {EA Klzfj}[gE:As ~K§1fsj:|+

{mk —E) 23 A, (! — i) cos(BY “J)” ;

seZ

Fig. 6, c, d show the results of comparison of the
eigenvalues of the coupling matrices -calculated
numerically (dots) with the values obtained from (41)
(crosses).
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VII. CONCLUSION

General analytical solutions of equations
describing coupled oscillations of one-dimensional and
two-dimensional rectangular and ring lattices of
dielectric resonators of various types are obtained.

The solutions found significantly simplify the
calculation of the parameters of coupled oscillations of
complex lattices of different DR and are the basis for
constructing a more effective scattering theory.

The developed theory is the basis for constructing
a wide class of optical communication devices built
using dielectric resonators of various types.
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Tpyoin O.0.
3B's13aHi KOJMBAHHS I'PATOK Pi3HUX BH/IB JieleKTPUYHUX Pe30HATOPIB
Hasuanvno-nayxosuii incmumym menexomynixayitinux cucmem KIII im. leops Cikopcoroeo, m. Kuis, Yxpaina

IIpodaemaruka. Po3poOka 6araTboX €JIEMEHTIB Cy4aCHHUX CHUCTEM 3B’SI3Ky BCE€ 4YacTille 0a3yeTbCsi HA BHUKOPUCTaHHI
PI3HUX BUJIB JICICKTPUUHUX pe30HATOPiB. Teopis 3B’s3aHUX KOJIMBaHb PE30HATOPIB € OCHOBOIO /ISl TIPOBECHHS MOAATBIINX
PO3paxyHKIB MAaTpHUIlb PO3CIIOBAaHHSA EJIEKTPOMArHITHUX XBM/Ib Ha PI3HUX NPHUCTPOSAX, NOOynoBaHUMX Ha ix ocHOBI. Ilpu
po3paxyHKaX LUX IPHCTPOIB, MOOYJOBAHMX HA BEIMKOI KITBKOCTI PE30HATOPIB, NpsAMi UYHCENbHI METOAM YacTo HE €
epexTMBHUMHU. BOHM sK IpaBUiIO MOTPeOyIOTh BUKOPUCTAHHS IMOTY)XKHHUX KOMII'IOTEpiB, TOMY PO3PaxyHOK 1 ONTHMi3awis
€JIEMEHTIB, MOOY/IOBAaHUX HAa BEIUKOI KUIBKOCTI JIENIEKTPUYHUX PE30HATOpaX, HEMOKIMBO 0e3 TOOYJ0BH aHAIITHYHHX
MOJIEJICH CKIIaTHUX CTPYKTYP, sIKi 0a3YI0ThCSI Ha €JIEKTPOJMHAMIYHOMY MOJICIIIOBAHHI.

Mera pocrigkeHb. MeTo0 IaHOTO MOCTIIKGHHA € TIONIYK AaHANITHYHAX BHPA3iB OIS YacTOT Ta PO3IOJLTIB
€JICKTPOMArHiTHUX TOJIiB BIACHUX KOJUBAaHb I'DPATOK, SIKi CKIAAIOThCA 3 BENUKOI KUTBKOCTI AICJNICKTPUYHHX PE30HATOPIB
PI3HUX BHIIB JUIsl BUKOPUCTAHHS iX B PI3HOMAHITHHX MPHCTPOSX CHCTEM ONTHYHOTO 3B’s3Ky. J[yisl BupilieHHs 1€l 3axadi
BUKOPUCTOBYBAJIACh JiHiIlHA cHUCTEMa PiBHSAHb, sIKa IOB’S3ye€ MDK COOOI0 KOMILIEKCHI aMIUIITYAX Ta 4acTOTU PE30HATOPIB,
OTpHMaHa paHilie i3 Teopii 30ypeHs sl piBHSIHb MakcBesia.

Metoauka peanizamii. /{1 momyky aHamiTHYHMX BHPa3iB BHKOPHCTOBYIOTbCS METOIM Teopii maTpuub. [Ipu mpomy,
BUKOPHCTOBYIOTBCS SIK BiZIOMi METOIM PO3pPaxyHKIB TPH AiarOHAJBHHUX Ta IUPKYISHTHUX MATPHIb, TaK 1 3alPOIIOHOBaHI iX
Moudikallii, MOB’s3aHi 3 PO3paxyHKaMH OUIbII CKJIAQJAHUX MaTPHIlb, SIKI MICJS MEPETBOPEHb, 3BOIATHCS 0 3HAYHO O1IBII
HPOCTHUX CHiBBiAHOMEHb. KiHIIEBUM pe3ylbTaTOM € OTPHMAHHS HOBHX 3arajbHHUX aHAITHYHHUX (hOPMYII LIS OIHCY 3B’ I3aHHUX
KOJIMBaHb PEIIITOK, SIKi CKJIQAAIOTHCS 13 BEJIMKOTO YHCIA TieICKTPUYHUX PE30HATOPIB Pi3HUX BUIIB.

Pe3yabTaTn fociaigkedb. Po3rsHyTO 3B°s13aH1 KOJIMBaHHS JNiHIMHUX OJHO-BUMIPHUX I'PATOK Ai€IEKTPUUHHUX PE30HATOPIB
nBOX BHIIB. OTprMaHI HOBI aHAJITUYHI BUpa3HW IJI KOMIUICKCHHX YacTOT Ta aMIUIITYJ PE30HATOpPiB, & TaKOX BHPa3H
Jn00poTHOCTI 6e3 oOMexeHHs Ha X KiibkicTb. IloOynoBaHa HOBa MOJENb BIACHUX KOJMBaHb ABOBUMIDHHMX IDATOK, fKi
CKJIAJAIOTECS i3 MICNEKTPUYHMUX PE30HATOPIB JIBOX PI3HUX THUIIB. 3HAWACHO 3arailbHi aHANITHYHI PINICHHS JIA YacTOT Ta
aMIUNITYJl 3B'3aHUX KOJMBaHb AJs ABOX BUJIB JABOBUMIPHHMX IDPAaTOK 3 Pi3HUM pO3TallyBaHHAM PE30HATOPIB. 3HaNIEHO
aHAMITHYHI PIMICHHS AJS aMIUNTYJ Ta YacTOT 3B'I3aHUX KOJHMBaHb JIBOX aKCialbHO-CUMETPHUUHHX KIIBIEBHX IPATOK 3
PI3HMMH TUIIAaMH PE30HATOPIB, SKi XapaKTEPU3YIOTbCA PI3HOIO CHMETPI€I0 PO3MIlLIEHHsS Yy BUIbHOMY mHpocTopi. OTpumani
3araiabHi aHANITHYHI BHUPa3W JUI 9acTOT 3B’S3aHHMX KOJNMBAHb IOPIBHIOIOTHCSA 3 PE3yIbTaTaAMH, PO3PaxXyHKIB, OTPUMAaHUMHU
HUISIXOM YHCENIbHOTO BUPILICHHS JIHIHHUX CHCTEM PiBHSHb. J[EMOHCTPYETBCS Iy)Ke TrapHe 30ir pillleHb, OTPUMAHUX JBOMA
crocobamu.

BucHoBku. Po3Bura Teopis € 0CHOBOIO ISl KOHCTPYIOBAaHHS 0araTboX NPUCTPOIB ONTUYHOIO Jiana3oHy JOBXKHH XBUIIb,
AKi OyJAyIOThCS HAa OCHOBI BHKOPHUCTaHHS BEJIHKOTO YHCIA [INEeKTPHYHHX PE30HATOPIB Pi3HMX BHAIB. OTprMaHi HOBI
aHANITHYHI BUPA3¥W Ul PO3PAxXyHKY 3B’SI3aHUX KOJIMBaHb JICJICKTPUYHHUX PE30HATOPIB JO3BOJISAIOTH OyIyBaTH HOBI OUIBII
e(heKTUBHI MOJeINi PI3HOMAHITHUX IPUCTPOIB ONTUYHOIO 3B’ A3KY.

Knrouoegi cnoea: dienexmpuyunuil pe3oHamop, 61acCHi KOTUBAHHS, TPAMKA, MPUOIA2OHATbHA MAMPUYSL, YUPKYIAHIMHUIL.
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