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OPTIMAL TIMING STRATEGIES IN BLOCKCHAIN BLOCK PROPOSALS BY
ONE-BULLET SILENT DUELS WITH ONE-THIRD PROGRESSION

Vadim V. Romanuke
Vinnytsia Institute of Trade and Economics of State University of Trade and Economics, Vinnytsia, Ukraine

Background. Silent duels and related timing games offer a surprisingly deep lens into certain core challenges in blockchain
technology, especially when it comes to block proposal timing. Miners or validators effectively “compete” in a race to propose
the next block. The success of a block proposal depends not only on when it happens but also on whether others have already
succeeded or interfered — very much like the tension in a one-shot duel with uncertain outcomes. In block proposal timing for
decentralized consensus protocols, a one-shot timing game models a blockchain setting, where participants (e. g., validators or
miners) choose when to attempt block proposal or transaction insertion under uncertainty.

Objective. The paper aims to determine the best timing strategies for the participants. Considering two identical
participants, the local objective is to find pure strategy solutions of a timing game (duel) with shooting uniform jitter.

Methods. A finite zero-sum game is considered, which models competitive interaction between two subjects to make the
best discrete-time decision by limited observability. The moments to make a decision (to take an action, to shoot a bullet) are
scheduled beforehand, and each of the subjects, alternatively referred to as the duelists, has a single bullet to shoot. Shooting is
only possible during a standardized time span, where the bullet can be shot at only specified time moments. In the base pattern,
apart from the duel beginning and final time moments, every following time moment is obtained by adding the third of the
remaining span to the current moment. However, the precise time moment specification is not always realizable (e. g., due to
the distance between neighbouring time moments being measured with finite accuracy) and so the internal moments are
uniformly jittered. This means that they can be slightly shifted within the duel span. The duelist benefits from shooting as late
as possible, but only when the duelist shoots first. Both the duelists act within the same conditions by linear shooting accuracy,
and so the one-bullet silent duel is symmetric, regardless of the jitter. Therefore, its optimal value is 0 and the duelists have the
same optimal strategies, although they still can be non-symmetric.

Results. By the one-third progression pattern with jitter, the 3x3 duel always has a pure strategy solution. The 4x4 duel

is pure strategy solvable by any possible jitter except for jitter interval ((\/E —4) /9; 1/ 6). Within this interval and interval
(—11/54;-1/18) the 5x5 duel is pure strategy non-solvable. The 6x6 duel is pure strategy solvable by any possible jitter
except for jitter intervals ((\/E —4) / 9;1/ 6) and (—49/162;-1/18) . Duels with seven to nine time moments are pure strategy

solvable only by a jitter interval of [—1/ 18; (\/E —4) /9} Bigger Nx N duels, having no fewer than 10 time moments, are

pure strategy solvable only by a jitter interval of [—l/ 18;2" ’2/ 32 ) The solutions for the one-third progression pattern are

compared to the known solutions for the geometrical-progression pattern.

Conclusions. The duel pure strategy solutions obtained suggest a clear one-step-action strategic behaviour in progressive
block proposal timing for decentralized consensus protocols under uncertainty of time slots to act. The main benefit is full
fairness and a potential reward if the opponent acts non-optimally, even in a single proposal.

Keywords: block proposal timing; one-bullet silent duel; linear accuracy, matrix game; pure strategy solution;
progressing-by-one-third shooting moments.

1. Progressive discrete silent duels with jitter ~ Proof-of-Stake, validators might be selected with
probabilities and have to choose when to propose or
reveal information [5]. The success of a block proposal
depends not only on when it happens but also on
whether others have already succeeded or interfered —
very much like the tension in a one-shot duel with
uncertain outcomes [6], [7]. In block proposal timing
for decentralized consensus protocols, a one-shot timing
game models a blockchain setting, where participants
(e. g., validators or miners) choose when to attempt
block proposal or transaction insertion under
uncertainty [1], [8], [9]. The general objective is to

Silent duels and related timing games offer a
surprisingly deep lens into certain core challenges in
blockchain technology, especially when it comes to
block proposal timing (e. g., in Proof-of-Work or Proof-
of-Stake) [1], [2]. Miners or validators effectively
“compete” in a race to propose the next block [3]. Each
one makes a strategic timing decision — when to
attempt a proposal, often based on stochastic processes.
In Proof-of-Work, miners are waiting to “fire” their
computational bullet by solving a puzzle first [4]. In

© The Author(s) 2025. Published by Igor Sikorsky Kyiv Polytechnic Institute.
This is an Open Access article distributed under the terms of the license CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/), which permits re-use,
distribution, and reproduction in any medium, provided the original work is properly cited.



V. ROMANUKE, OPTIMAL TIMING STRATEGIES IN BLOCKCHAIN BLOCK PROPOSALS BY ONE-BULLET SILENT DUELS

WITH ONE-THIRD PROGRESSION

determine the best timing strategies for the participants.
A one-bullet discrete silent duel is a matrix game of
timing [10], [11]

(Xy, YN’KN>=<{xi}i]\il > {yj}jil ’KN>

with specified time moments as finite pure strategy sets

e

N
={hl ==} =T ={1 ), <[0:1]
by 1, <t,, Vg=1,N-1
and t, =0, t, =1 for Ne N\{1}, (2)

in which the player, also referred to as the duelist, must
make a decision (shoot one’s single bullet) as late as
possible but only to shoot first [7], [12]. Each of the
duelists, allowed to shoot at any of N moments in (2),
may not shoot until the final moment ¢, =1, but then

the bullet is shot automatically anyway [8], [9]. The
duelist is also featured with an accuracy function which
is a non-decreasing function of time [7], [9], [12], [13].

Generally, in a Proof-of-Stake blockchain (like
Ethereum post-merge, or Cardano, or Cosmos), the
right to create the next block is randomly assigned to
validators [4], [6]. These validators are selected based
on how much cryptocurrency they have “staked”
(locked up as collateral), giving them an economic
incentive to follow the rules. Some of the validators are
equal, and then they are both eligible to propose a block
during a certain time window, which is broken into N
short time slots (e. g., milliseconds or seconds). During
each time slot a validator can choose to send a block
proposal to the network — this is essentially a digital
message containing a bundle of transactions, their
signature, and some metadata (like block height). Once
a block proposal is seen and accepted by the network, it
becomes part of the blockchain — and only one
proposal wins [1], [5], [6], [11]. Such a set-up (just like
similar ones) is modelled by duel (1) with (2), where
the validator is the duelist.

As both the duelists are presumed to have identical
resources, the one-bullet silent duel is symmetric
having a skew-symmetric payoff matrix (of rewards)

Ky = [k,.j :|N><N = [_kﬁ ]NXN =-Kj. 3)

Therefore, its optimal value is 0 and the duelists have
the same optimal strategies, although they still can be
non-symmetric [7], [13]. For the case of linearized
accuracy, the duelists’ linear accuracy functions are

“4)
through which entry k; of payoff matrix (3) can be

px(x)=x, py(¥)=y,

generally given as

ky =Dy (x) =Py (9,)+ P (x) Py (3, )sign (v, - x,) =
=X =Y, tXxy, Slgn(yj —xl.)
forizl,_N and j=1,_N. %)
Duel (1) with (2) —(5) is called progressive if its
time moments, apart from, maybe, ¢, =1, are specified

denser as the duel final approaches:

t, =t >t —t, Vg=2,N-2. (6)
However, the precise specification is not always
realizable (e.g., due to the distance between

neighbouring time moments is measured with finite
N-1
q=2

accuracy) and so internal moments {tq} are

uniformly jittered [14], [1
{t }Nfl

q)g=2
by still obeying (6). In block proposal timing for

decentralized consensus protocols, the jitter models
uncertainty of time slots to act.

5]. This means that moments

can be slightly shifted within duel span [0;1]

2. Geometrical progression pattern

The particular case of duel (1) with (2) — (6) was
considered in [14], where

—_— 1 1
for g=2, N-1 and &e(—g;ﬂ—zj.

specified by (7) is a shooting

™

Time moments {tq};\:

uniform jitter, which slightly moves [12], [1
N-1

(1)) by 14

5] points

1+t 2“—1

207!

DX

=1

for ¢ = 2N 1 8)

within the duel span [0;1] not violating their relative
L] by still
obeying (6). The case with >0 is called a positive

order (topology) within interval [t,;¢,

jitter, and the case with £ <0 is called a negative jitter.
Time moment

q-1 _

247!

is called positively & -jittered moment and negatively

t=E+ at g {2, N-1|
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€| jittered moment by £>0 and <0, respectively.

1 o .
Inasmuch as ¢, :5, the negative jitter must be higher

1
than —5 to ensure

Inasmuch as

2V -1 1
vty ===y =577 )
the positive jitter must be lower than (9) to ensure
N-2 _1
tN =1> E, + W

For the case of £ =0, the pure strategy solutions of
duel (1) with (2) — (6) and (8) are studied in [13]. For a
trivial 3x3 duel, in which the duelist possesses just one
moment of possible shooting between the duel
beginning and final moments, any pure strategy
situation, not containing the duel beginning moment, is
optimal. In 3x3 duels and bigger the pure strategy
solution is situation

11
X5, ={—,—1. 10
(%, 1} {2 2} (10)
In duels bigger than the 3x3 duel, optimal pure
strategy situation (10) is the single one.

The case of jitter for this duel, i.e. when £#0 in
(7), is reasonably split into subcases of positive and
negative jitter. Thus, in the duel with a positive jitter,
the only optimal behaviour of the duelist is to shoot at

.\ .. . 1
the positively & -jittered middle ¢, :E"+E of the duel
span.
3. One-third progression pattern

Due to geometrical progression pattern (8) tightens
time moments too dense, it lacks a reasonable final-to-
penultimate ratio

’L:L, (11
tN—l tN—l
which is
1 2N—2
_—— 12
ty, 2V7-1 (12)

Hence, another progression pattern is to be considered.

According to this pattern, every next time moment is
obtained by adding the third of the remaining span to
the current moment:

1=t 142t <t 3071 _pe!
=t  +—"= ‘1‘1222_1:_3 712
v 3 3 = 3 31
for g=2, N-1. (13)
For one-third progression pattern (13), final-to-
penultimate ratio (11) is
1 3N72
—_— = 14
[N71 3N—2 _ 2N—2 ( )

The difference between final-to-penultimate ratios (14)
and (12) is

3N—2 2N—2

N2 _oN-2 N2 ) -
B 3N72 _2N72 _3N72 _3N72 .2N72 +2N72 ‘2]\/72
(3N—2 _2N—2)(2N—2 _1)

gN=2 gN-2 _3N-2
- (31\/-2 _ZN—Z)(zN—z _1) -
gN-2 _gN-2

= (3N_2 _2N_2)(2N_2 _1) >0 for NeN\{1,2}. (15)

Difference (15) shows that one-third progression
pattern (13) tightens time moments less dense leaving
for the duelist a longer gap between the penultimate and
final moment of possible shooting.

1 . .
Inasmuch as ¢, = 3 by one-third progression pattern

. o . 1
(13), its negative jitter must be higher than -3 to

ensure

Inasmuch as

3N72 _2N72 2N72

—ty =1

! N-1 7T N2

N

=37 (16)
the positive jitter must be lower than difference (16) to
ensure

N-2 _ AN-2
3

ty=1>&+ e
Herein, the local objective is to find pure strategy
solutions of duel (1) with (2) —(6) and shooting
uniform jitter



V. ROMANUKE, OPTIMAL TIMING STRATEGIES IN BLOCKCHAIN BLOCK PROPOSALS BY ONE-BULLET SILENT DUELS 33

WITH ONE-THIRD PROGRESSION

30t !
=St =

. 1 2N—2
for g=2, N -1 and &e[—g;—j (17)

3N72

for NeN\{1,2}.

4. Saddle points in matrix (3)

Inasmuch as a pure strategy solution of duel (1) with
skew-symmetric payoff matrix (3) corresponds to a
saddle point of this matrix having entries (5), only a
zero entry of matrix (3) can be a saddle point [7], [16].
Therefore, a row containing a negative entry does not
contain saddle points; neither does the respective
column containing the positive entry. Hence, it is
conventionally possible to conclude only on saddle
points in definite rows of matrix (3), which imply the
same conclusions on saddle points in respective
columns. Thus, a nonnegative row of matrix (3) with
entries (5) contains a saddle point on the main diagonal
of the matrix [7]. If a row contains only positive entries,
except for the main diagonal entry, all the other N —1
rows of the respective column contain negative entries,
and thus this row contains a single saddle point which is
the single one in the duel. Moreover, inasmuch as

k,=-y,<0 Vj=2,N

J

then the first row of matrix (3) with entries (5) is not an
optimal strategy of the first duelist, and thus situation

{x,»}=10,0}

is never optimal in the duel [7], [9], [13], [14]. Next, if
row i contains entry

kfj,, =0 by J. 6{2,_N} and i" # j,,
where situation
Pyt =161 (13)

is optimal, then the duel has at least four pure strategy
solutions [7]: symmetric situations

{xi*’yi*}:{ti*’ti*}’ (19)

Ly =l (20)
and non-symmetric situations (18),

DR @

It is noteworthy that, despite in duels (1) with (3) the
optimal behaviour of the duelists is the same, optimal
situations (18) and (21) are, in fact, non-symmetric.

Nevertheless, symmetry in optimal situations (19) and
(20) and non-symmetry in optimal situations (18) and
(21) are equivalent owing to the duelist’s optimal
strategies in those solutions are interchangeable without
affecting the duel outcome.

5. Three moments to shoot

The most trivial geometrical progression pattern by
(7) is a triple
1

for ée(—%;aj. (22)

1
0,—+¢,1
5 g

T :{tlrtzat3}:

The respective 3x3 duel with a positive jitter has a
single optimal solution, by which the best decision is to

i . . 1
shoot at the positively & -jittered middle ¢, =5+§ of

the duel span. In the case of a negative jitter, the
optimal behaviour of the duelist is to shoot at the final
moment. Does the solution keep this structure for the
3x3 duel with one-third progression pattern

1
0,—+¢&,1
3 g

12
fOr&E(—g,gj (23)

T Z{t1’t2:t3}=

or not? The answer follows.
Theorem 1. Duel (1) by (3), (5) and (23)

B

1
0,—+&,1
3 g

1
0,—+¢&,1
3 &

<X37Y3’K3>:< ,K3> (24)
has a single optimal situation

X, 3, )= (25)

)

duel (24) has four optimal pure strategy

1 1
—+&—+
3 E“'3 .

(26)

1

B ==
y &=%¢
situations (25),

{xz’y3}={%+aal}a (27)
{xs,yz}={1aé+§}, (28)
{x, v ={L1}. (29)
By
11
e 6) (30)
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duel (24) has a single optimal situation (29).
Proof. Upon plugging elements of (23) into (5) for
(2) and N =3, the respective payoff matrix is

_ : -
0o —-—- -1
3 g
1 1
K, =[k],,= 3t 0 32l GD
1
I ==2 0
L 3 : ]
Situation (25) is single optimal if inequalities
k21:§+§>0 (32)
and
1
k. :—§+2§>0 (33)
hold simultaneously, whence
<§>—l and §>l (34)
3 6

and inequalities (34) with (23) imply condition (26). If
F,— then

ky =ky =ky, =ky; =0,
while inequality (32) still holds and k;, =1. Therefore,
matrix (31) by &z% has four saddle points: (25),

(27) — (29). By condition (30) inequality

ks, =§—2§>0 (35)

holds and situation (29) is the single saddle point. [
So, Theorem 1 reveals the boundary value of jitter,
which is &z%, that separates the two solution cases in

3x3 duels with one-third progression pattern (23). The
3x3 duel with geometrical progression pattern (22)
does not have such a boundary value (the case of {=0

is classified separately).
6. Second moment optimality

In duel (1) with (2)— (6) and shooting uniform
jitter (7) for £ >0, the only best decision is to shoot at

the positively & -jittered middle ¢, :%4—&, of the duel

span, where the number of time moments is three or

more [14]. For one-third progression pattern with jitter
(17) for three time moments, this case is narrowed to

the half-unit-length interval (%,%), by which the

positively & -jittered middle ¢, =%+§ is single optimal

(Theorem 1). See right below, whether this moment
remains optimal for bigger duels.

Theorem 2. In duel (1) with (2) — (6) and (17) by
no fewer than four moments to shoot, situation (25) is
single optimal when only

1 2N 2
§Ei6 3V 2]
and the duel has four to six moments to shoot.

Proof. Situation (25) is single optimal if the second
row of matrix (3) is positive except for entry k,,. In

(36)

this row, inequality (32) holds and

1 1
kz;,-=—+é—y,+(§+&j-y,=

S (__g) y Vi=3N. 6D
Due to
2 N-2
g—g>o vge( 3,31”] for NeN\{1,2,3}, (38)

entry (37) is a decreasing function of y,. Entry
k —l+§—1+l+§—2§—l>0 (39)
w3 3 3

if (34) is true. However, inequality (39) is possible if
interval

1 2N 2
(6,3N2Jfor N eN\{1,2,3} (40)
is nonempty, i. e.
2N72 1 2N71 _3N73
W__=T> 0. (41)
3 6 23
Consider function
S(N)=2""-3" (42)

in the numerator of the fraction in (41). The first
derivative of function (42) is
A oV 02— 35 In3, (43)
dN

First derivative (43) turns into zero if



2" 1n2=3"".1n3, (44)
whence
2" _In3
3" 2’

(g]N‘ ~ In3
3 9In2’

2\ I3
In| = =ln——,

3 9In2
(N-1)(In2-In3)=In(In3)-In(9In2),
N(In2-In3)-In2+In3=1In(In3)-2mIn3-In(In2),

N_ln(ln3)—3ln3—ln(ln2)+ln2
- In2-In3 '
Value (45) is such that

- In(In3)-3mI3-In(In2)+In2 -
In2-In3

(45)

5.28

5.29,

so function (42) has the single extremum. The second
derivative of function (42) is

2
4T v -(In2)° =3"7(In3)*.

dN? (46)

Second derivative (46) at point (45) is negative, so (45)
is the single maximum point. As

f(4)=5, f(6)=5, f(7)=-17,
then function (42) is negative for N >7 while it is
positive for N €{4,5, 6} . Therefore, inequality (41) for

integer N above 3 holds only for N €{4,5, 6} . Under

only this condition the interval in (40) is nonempty
making the second row of matrix (3) positive except for
entry k,,, 1. €. when situation (25) is the single solution

in the duel having four to six moments to shoot by
1 2N -2
= (g, 3]\,—_2) .

When &z%, entries k,, =k,, =0 but the remaining

(47)

N —2 entries in the second row are positive. In the last
row, entry

1 3N72_2N72
kN,N—l :1_2.6_2.31\[—’2:
N-2 N-2
:2_2.i<0 (48)

3 32
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due to

3N—2

2 N2 _oN-2
3T
and thus this row cannot be an optimal strategy. This
finalizes proving the singleness of solution (25) by (36)
for Ne{4,5,6}. O
In fact, Theorem 2 implies that the second moment
is never optimal in duels having no fewer than seven
moments to shoot. The question of whether the third
moment is optimal in such duels is answered right
below.

b

7. Third moment optimality

In duel (1) with (2)— (6) and shooting uniform
jitter (7) for no fewer than four time moments to shoot,

the third & -jittered moment ¢, = % +§& is single optimal

if[14]

1 V17-5
el ——; .
4 8
See right below, whether the third & -jittered moment
t =§+§ by the one-third progression pattern can be

optimal.
Theorem 3. In duel (1) with (2) — (6) and (17),
situation

5 5
Xy, Yyt ={=+& —+ 49
{ 3 J’3} 9 3 9 3 (49)
is single optimal when only
1 v19-4
el—; 50
2 { 18 9 } (50)
for five to nine time moments and
1 2N72
el —;—— 51
5 [ 18 3N'2] GL

for duels having no fewer than 10 time moments.
Situation (49) is single optimal in the 4x4 duel when

only
1 ~19-4
Ee| ——; .
18

5 (52)
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At

1
=—— 53
g T (53)
the 4x4 duel has four optimal pure strategy solutions:

situations (49),

5
{X3,y4}= §+§71 > (54)
5
o= 2], (55)
97
() =1L1}. (56)
Proof. In the third row of matrix (3) entry
k31:§+€;>0 (57)
and entry
5 1 5 1
ky=—4+E—=—C—-| =+ || =+ |=
w=Seg-tog-(eg)(34g)
, 8 1
= -2E+—>0 58
3 93'; 57 (58)
if
e _\/E+4;\/E—4 . 59)
9 9
Entry
5 5
k3j=§+‘:_yj+(§+a)'yj:
5
==+&—|—-E|'y, Vj=4 N 60
S+e-(3-8)y, v (60)
Due to
4 1 2N
——E>0 V —_—
g ¢ &e( 3 3N-2j
for NeN\{1,2,3}, (61)
entry (60) is a decreasing function of y,. Entry
5 5 1
kyy==4+&-1+=4+E=26+=2>0 62
W=y g 5 §=2¢ 9 (62)
if
S (63)
= 18’
where
94 11 V194 1 64)

So, situation (49) is optimal if (59) and (63) are true,
which via (64) leads to condition (50). However, it is
easily checked that

V19 -4 N2
5 < e for N e{5,6,7,8,9} (65)
and
22 194
e 5 for N >10. (66)

Inequality (65) means that situation (49) is optimal in
5x5 to 9x9 duels if (50) is true, and inequality (66)
means that situation (49) is optimal in duels bigger than
the 9x9 duel if (51) is true.

As (64) holds, then, as a corollary from Theorem 2,
situation (25) is not optimal by (50) for
Ne{56,7,8,9} and it is not optimal by (51) for

NeN \{1,_9} This resolves the case of when £y, =0

V19 -4
by &= 5

the third row are positive. Another case to resolve is
when k;, =0 by (53), while the remaining N -2

entries in the third row are positive. In the last row,
entry

, while the remaining N —2 entries in

1 3N—2_2N—2
ky n-i =1+2'§_2' 3N-2 -
N-2 _ AN-2
Z%—Z'%<O (67)
due to
N-2
§N—2<g:1—g for N>5,
5 2N—2 3N—2 _2N—2
§<1_ 3N-2 = 3N-2 ’
10 3N—2 _2N—2
DR

whence the last row cannot be an optimal strategy by
(53) for no fewer than five moments to shoot. Hence,
optimal situation (49) is single for 5x5 and bigger
duels.

In the 4x4 duel, situation (25) is not optimal by
(50). Owing to (57) and the reasoning by statements
(58) — (64), which support the case with four time
moments as well, optimal situation (49) is single by
(52). If (53) is true, then

k33:k34:k43:k44:0=
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and
1
k =
31 2
s s 1
22 18 218 12°
k41_1a
5 4
k,=1-2-—=—_,
“ 18 9

which implies optimality of the quadruple of situations
(49), (54) —(56). O

A corollary from Theorem 3 is that the third moment
is not optimal in duels having no fewer than four
moments if

(68)

It is natural to continue investigation beyond the third
moment for such duels whose moments are jittered
below the value of (53).

8. Beyond the third moment

. . 1
First consider fourth moment ¢, :2—3+E, that

follows moment ¢, = g +§.

Theorem 4. In duel (1) with (2) — (6) and (17) by
no fewer than five moments to shoot, the fourth
moment is never optimal, whichever jitter is.

Proof. Situation

19 19
SVt =i—=+E& —=+ 69
(v ={ by ) (69)
can be optimal only if
19 5 19 5
TR (27 aj(9 éj
, 34, 59
=—§ -——E-——20 70
: 27é 243 (70)
Inequality (70) holds if
e _4ﬁ+17;4\ﬁ—17 | a1
27 27
Besides, situation (69) can be optimal only if
19 19 11
kyy=—+&-1+—+E=26+—20. 72
w =5 e k=284 (72)

Inequality (72) holds if

11
2__1 73
g 2 (73)
where
—l<—4ﬁ_17<—£. (74)
3 27 54

Inequality (74) implies that situation (69) is never
optimal because inequality (73) cannot hold when (71)
is true and vice versa. [

Now, before considering next time moments, it will
be needful to use the following lemma.

Lemma 1. Entry

ki+l,i =X — Vi =X (75)

of payoff matrix (3) as a function of i=2,N-2 is a
decreasing function.

Proof. In entry (75),
3[71 _ 2[*]
=y =% +T
and
3-2
X =V =6 "'—3,« )
SO
X =V =
3i _ 2i 31’71 _ 21'71 21’71 2i
=g+ ——C— - =—— 76
é; 3 i 3171 3171 31 ( )
Denote the difference in (76) by
2!‘71 2i
a=—-——. 77
31—1 31 ( )
Then
X =V =X Ta. (78)

Similarly to (78), value (77) is used to re-write entry

ki+2,i+l =X = Vi X2 Vin s (79)
where
Xivp = Vi =
3 g 3-20 20 2" 2
=g+t - —G— —=————=—¢q (80
a 3z+l a 31 31 3z+l 3 ( )
and
2 2
tz=xl.+1+—a=xi+a+—a=xi+§a. (81)
3 3 3

37
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Simplify the difference between entry (75) and entry
(79) for i=2, N -3 by using (76) — (78), (80), (81) to
express it with only x, and (77):

ki+1,i

=X TV T X _(xi+2 —Vin _xi+2yi+l)=

=a-(x +a)x, —@a—(x,. -I-%a)(xl. +a)j:

-k

i+2,i+1 =

2 2 2, S 5,
=a—X —ax,——a+x, +—ax,+ax, +—a =
3 3 3
5 2
=—a+—ax,+—a =
33 003
=§(5a+5xl.+l)>0fori:Z,N—3. (82)

Inequality in the last line of (82) directly means that

entry (75) is a decreasing functionof i =2, N-2. 0O
Now, it is just time to proceed with later moments,
moving onward by considering 5x5 and bigger duels.
Theorem 5. In duel (1) with (2) — (6) and (17) by
no fewer than five moments to shoot, the time moments
between the fourth and the (N —1)-th one are never
optimal, whichever jitter is.
Proof. The assertion claims that time moments

3971 _ 94l
1, =8+ for g=4, N -1
1 2N72
and&e( 3,3N2)by NeN\{L4}  (83)

in 5x5 and bigger duels are never optimal. The non-
optimality of the fourth moment is proved by
Theorem 4. To prove the non-optimality of time
moments

{t) s

consider the fifth row of matrix (3) and its entry &, :

At

forNeN\{l,_s},

27
122 1019
=& -——E—— 84
3 F’ 2187 (84)
if
fe _2x/166+61;2x/166—61 ’ (85)
81 81
where

V166 -61 1 (36)
81 3

Inequality (86) means that inequality (84) is impossible

due to &> —%. Therefore, k;, <0. Inasmuch as entry

(75) is a decreasing function of i =2, N -2 (Lemma 1),
entries

k

i+1,i

<0 fori=4, N-2. (87)

Inequalities (87) along with Theorem 4 directly imply
that the rows from the fourth down to the (N —1)-th

one do not contain saddle points. [

In 4x4 duels, the third moment is followed only by
the final moment.

Theorem 6. In 4x4 duel (1) with (2) — (6) and
(17) for N =4 and (68) situation (56) is single optimal.

Proof. Situation (56) is single optimal if the last,
fourth, row of matrix (3) is positive, except for entry
k, =0.Entry

ky, =1-2y,>0 for j=1,3. (88)

Inasmuch as
5
W< <) 25‘*‘&:’

inequality (88) holds if

5 1
ZtE<—,
9 2 2
whence
1
<=,
. 18

i.e. by (68) the final moment is the only optimal
strategy. [

Amazingly enough, but Theorem 5 also holds for
duels (1) with (2) — (6) and shooting uniform jitter (7)
[14]. In such duels, having no fewer than five moments
to shoot, the final moment is single optimal if

et l]
27 2 ¥

See right below whether at sufficiently high negative
jitter the final moment is single optimal by the one-third
progression pattern in 5x5 and bigger duels.

(89)

9. Final moment
Theorem 7. In 5x5 duel (1) with (2)— (6) and
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(17) for N =5 situation
{xw v} ={L1} (90)

is single optimal by
o)

In 6x6 duel (1) with (2)—(6) and (17) for N=6
situation (90) is single optimal by

(92)

Duels having no fewer than seven moments are not
solved in pure strategies by (68).
Proof. Situation (90) is optimal if entry

ky=1-2y,20 for j=1,N-1. (93)

Obviously, entry (93) is a strictly decreasing function of
y; and thus, in the last row of matrix (3), entry ky ,

is minimal not considering entry k, ,, = 0. Inasmuch as

N2 _pN-2
Y <Vya= e +§ for j=1,N-2,

inequality (93) holds if

3N72 _2N72 1
3N—2 + E~’ < 5 4
whence
1 3N—2 72N—2 1 2N—2
Sy Ty O

Clearly, value

1 2N72
) + 3N-2

is a decreasing function of natural N, so by N =5
inequality (94) turns into inequality

1 8 11
<—+—=—— 95
. 2 27 54 )
and by N =6 inequality (94) turns into inequality
1 16 49
<——F+—=—, 96
. 2 81 162 6)

whereas by N > 7 inequality (94) turns into inequality
132 179 1

C——+—=—<——. 97
: 2 243 486 3 @)

39

As inequality
1
< ——
: 3

is impossible, inequality (97) means that inequality (93)
is impossible for duels having no fewer than seven
moments to shoot. Along with Theorem 3, this also
implies that duels having no fewer than seven moments
are not solved in pure strategies by (68).

Meanwhile,

3 54 18
Then inequality (98) means that by (91) the final
moment is optimal in the 5x5 duel, in which entry

1 11< 1 (98)

kN,N—l =k, =0
if only
11
=——. 99
g 2 99)

However, at (99) entry
kN—l,N—Z =k

being the parabola in inequality (70) is negative due to
inequality (70) holds by (71), where the latter is not true
by (99) as (74) holds. Therefore, at (99) situation (90)
for N =5 remains single optimal.

Another inequality is

149 11 1

< —<——,
3 162 54 18

Inequality (100) means that by (92) the final moment is
optimal in the 6 x 6 duel, in which entry

(100)

kN,N—l = k65 =0
if only
49
=——. 101
& ™ (101)

However, at (101) entry

kN—l,N—Z = k54

being the parabola in inequality (84) is negative due to
inequality (84) holds by (85), where the latter is not true
by (101) as (86) holds. Therefore, at (101) situation (90)
for N =6 remains single optimal. [

10. Non-solvability in pure strategies

By one-third progression pattern with jitter (17),
3x3 duels are pure strategy solvable at any jitter, but
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the 4x4 duel is not solved in pure strategies if

&6[5—4;1}

o (102)

This is a corollary from Theorems 2, 3, 6. The 5x5
duel is not solved in pure strategies by (102) and by

(103)

This is a corollary from Theorems 2, 3, 4, 5, 7. The
same assertions are followed by a corollary that the
6x6 duel is not solved in pure strategies by (102) and

by
4 1
(-2, 1)
162" 18
Duels with seven to nine time moments are pure
strategy non-solvable by

(\/5—4 N2
el ——i5s

9 > 3N72

(104)

j for Ne{7,8,9}  (105)

and by (68),1.e. 7x7, 8x8, 9x9 duels are not solved
in pure strategies if the positive jitter is higher than

value

or the negative jitter is lower than value

—% (Theorems 2, 3, 4, 5, 7). Non-solvability in pure

strategies is recognized easier in bigger duels (having
no fewer than 10 time moments): they are pure strategy
non-solvable when just the negative jitter is lower than

1
value ——.
18

11. Conclusion

By one-third progression pattern with jitter (17), the
3x3 duel always has a pure strategy solution
(Theorem 1). The 4x4 duel is pure strategy solvable
by any possible jitter

()

In the 4x4 duel any moment, except for the duel
beginning moment, can be optimal. The second moment
is single optimal by (Theorem 2)

1 4
==
</573)
the third moment is single optimal by (52) (Theorem 3),
and the final moment is single optimal by (68)

(106)

(107)

(Theorem 6), whereas the third and final moments in
the 4x4 duel are both optimal at the boundary value of
jitter (53) (Theorem 3).

The 5x5 duel is pure strategy solvable by any
possible jitter

ée{(—%;%)\{\/rgg_“;ﬂu(—;—i;—%)}}. (108)

The 6x6 duel is pure strategy solvable by any possible
jitter

116, [(V19-4 1 49 1
F’e{( 3’ SIJ\{[ 9 ’6]U( 162° 18)}}'(109)
In 5x5 and 6x6 duels only the second (Theorem 2),
third (Theorem 3), and final (Theorem 7) moments can
be optimal.

Duels with seven to nine time moments are pure
strategy solvable only by (50). Bigger duels, having no
fewer than 10 time moments, are pure strategy solvable
only by (51). Unlike duels with the geometrical
progression pattern, the third time moment is the only
possible pure strategy solution in duels having no fewer
than seven time moments (Theorems 3 and 7).
However, the jitter interval, at which the pure strategy
solution exists, gradually vanishes as the duel size
increases off 10. In 7x7, 8x8, and 9x9 duels, to the
contrary, the jitter interval, at which the pure strategy
solution exists, is constant.

Overall, as the duel becomes bigger, its pure strategy
solvability worsens — the subset of jitter values, at
which pure strategy solutions exist, becomes narrower
(except for duels with seven to nine time moments).
Another distinct property is that the optimal time
moment, if any, moves away from the duel beginning as
jitter becomes lower (the positive jitter becomes lower
or the negative jitter becomes lower).

The duel pure strategy solutions obtained above
suggest a clear one-step-action strategic behaviour in
progressive block proposal timing for decentralized
consensus protocols under uncertainty of time slots to
act [1], [3], [17], [18]. The main benefit is the full
fairness and a potential reward if the opponent acts non-
optimally, even in a single proposal [19], [20]. When
the network receives two blocks at once, the network
splits briefly: some nodes build on the first duelist’s
block, others on the second duelist’s. This temporarily
creates two competing chains (a network fork) at the
same height [2]. Nevertheless, most Proof-of-Stake
blockchains, for instance, have rules that resolve forks
deterministically by the criteria of which block was
seen first by the majority, which validator has higher
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stake weight or reputation, which block has more valid
attestations (votes from other validators) [4], [6]. As a
result, one block wins, and the other one is orphaned:
one block becomes part of the canonical chain, the
other one is discarded [1], [5]. Further research may be
focused on considering other progression patterns and a
decaying value of loss.
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Pomaniox B.B.

OnTumajibHi cTparerii yacy y npono3uuisx 0J0K4eiiH-010KiB 3ac00aMH 0JHOKYJIbOBUX (e3IYMHUX
Ayesieii 3 0/IHOTPETHHHOIO NMPOTpeci€lo

Binnuyvkuii mopaoeensro-ekoHoMiuHul incmumym [{epacagnoco mop2oeesibHo-eKOHOMIUHO20 YHigepcumeny,
M. Binnuysa, Vkpaina

IpobaemaTuka. besmymHi ayeni Ta moB’si3aHi 3 HUIMH iTpH HAa BUOIp Yacy NMPOMOHYIOTH HECTIOIBAHO TIIMO0KE PO3yMIHHS
MEBHUX KIIOYOBMX BHUKIHKIB Yy TEXHOJOTII OJOKYeiHy, 0COONMBO MIOAO TaiMmiHry mpomo3umii 01oky. MaiiHepu abo
BaJTiIaTOpU (PAaKTUYHO “3MAraloThCs”’ Y TOHII 33 MPABO 3alPONOHYBATH HACTYIHHH OJOK. YCITX MPONO3uIlii OJI0KY 3aNekKUTh
HE TLIBKH BiJI MOMEHTY HOTO 3JIHCHEHHS, a i Bijl TOTO, YM BXKE XTOCh IHIIMI HE IOCAT yCIiXy a00 He 3aBaJIUB bOMY TPOLECY
— IyXe CXOXKe Ha HalpyTy y Ayeli 3 OJHUM IIOCTPIIOM i HeBH3HAYCHUM PE3YJIBTATOM. Y TAalMIHTY MPOMO3HIi OM0KY JUIs
JICICHTPATI30BaHUX TIPOTOKOJIB KOHCEHCYCY OJIHOPa30Ba Ipa Ha BHOIP 4acy MOJIEIIOE CHTYAIl0 B OJOKYCHHI, ¢ YYaCHUKH
(HampuKIan, BamigaTopu abo MaiiHepH) oOMParOTh MOMEHT JUIsl CIIPOOM 3ampoNOHYBAaTH OJIOK ab0 BCTABHTH TPAH3AKILIO 32
YMOB HEBU3HAYEHOCTI.

Merta npocaimkeHHsI. 3arajpbHOI0 METOI) € BU3HAYEHHS HAWKpAIIWX CTPATeriil TaiiMiHry s yyacHHWKiB. Po3riamaroun
JIBOX 1JICHTMYHUX YYACHHKIB, JIOKAJIbHA META MOJISITAa€ Y 3HAXO/DKCHHI PO3B’A3KIB Y YMCTUX CTPATErisxX Tpu Ha BUOIp yacy
(myemi) 3a pIBHOMIPHOTO JUKHTEPA MOMEHTY TTOCTPIIy.

Metoauka peasnizanii. Po3riinaeTses CKiHUEHHA Ipa 3 HYJNHOBOIO CYMOIO, SIKa MOJEITIOE KOHKYPEHTHY B3a€MOJII0 MiX
JIBOMA Cy0’€KTaMH Y IPUAHSTTI HAWKPAIIOTO JUCKPETHOTO PIlICHHS 32 YMOB 0OMEXKEHOT CIIOCTepeXyBaHOCTI. MOMEHTH JUIst
TPUHHATTS pIMICHHS (BUKOHAHHS [ii, MOCTPUTY KyJE0) NMPH3HAYAIOTHCS 3a3/aneriib, i KOXKeH i3 Cy0’€KTiB, SKHX TaKOX
HA3WBAIOTh TyeISTHTAMH, Ma€ JIHIIE OJHY Kyl Wi mocTpimy. CTPULATH JO3BONECHO TiNBKH MPOTATOM CTAHIAPTH30BAHOTO
HPOMDKKY 4acy, Je KyJII0 MOXKHA BHITyCTHTH JIMIIC y BH3HAYECHI MOMEHTH 4acy. Y 0a30Bilf Mogemni, OKpiM MOYaTKOBOIO Ta
KIHIICBOTO MOMEHTIB Jyeli, KOXEeH HACTYIHHH MOMEHT BH3HAYA€ThCS JOJaBAHHAM TPETUHH 3JIUIIKOBOTO MPOMIKKY 10
MOTOYHOTO MOMeHTY. OJHaK TOYHa crenu(ikaiis MOMEHTIB Yacy He 3aBXIH 3[iHCHEHHa (HANpHKIa, Yepe3 OOMEKeHy
TOYHICTh BUMIPIOBAHHS BifICTaHI MK CYCITHIMH MOMEHTAaMH), TOMY BHYTpIIIHi MOMEHTH 4Yacy 3a3HAIOTh DPIBHOMipHOTO
mxutepa. Ile o3Hayae, Mo BOHM MOXYTh OYTH 3JerKa 3MINICHI B MekKaX MPOMDKKY ayeini. JIyensHTy BHTIIHO CTPUIATH
SKOMOTA TI3HINIe, alle TUTbKM SKIIO BiH cTpuiste mepmmM. OOHaBa NyeNsHTH JiOTh B OJHAKOBHX YMOBax 3a JiHIHHOI
BIIYYHOCTI MOCTPLITY, TOMY Jyellb i3 OJIHIEI0 KYJE € CHMETPUYHOI0, HE3alIeXkHO BiJ JpKuTepa. BidmosigHo, ii onTiManbHe
3HaueHHs JopiBHIOE 0, a JIYyensHTH MAarTh OJHAKOBI ONTUMAJNBHI CTpaTerii, Xxoya Imi cTpaTterii MOXyTh OYyTH TakoX i
HECUMETPUYHIMH.

Pe3yabTaTn gociimkeHHs. 32 MOJCIUII0 OMHOTPETUHHOI MpOrpecii 3 HKUTEPOM 3x 3 -Iyenb 3aBXKAU Ma€e PO3B 30K Y
YUCTHX CTpaTerisix. 4x4 -Jlyenb po3B’s3yeTbCs Y YHCTHX CTPATETisX 3a OyIb-sKOT0 MOKIHMBOTO DKHTEpPA, OKPIM IHTEpBAIY

JUKATEPA ((5—4)/9;1/6). YV mexax 1poro intepsanmy Ta inrtepamy (—11/54;-1/18) 5x5-nyens He pos3e’szyetbes y
YICTHX CTPATerisx. 6x 6 -/lyens po3B’A3yeThCs y UUCTHX CTPATETIAX 32 Oy/Ab-IKOTO MOKIMBOTO JUKATEPA, OKPIM iHTEpBAIIB
((\/@ - 4) / 9;1/ 6) Ta (—49/162; -1/18) . [dyeni i3 cemu 10 IeB’SITH MOMEHTIB 4acy pO3B’sI3yFOThCS y YHCTHX CTPATETisX JIHIIIE

NpU JOKUTEPI B IHTEpBaI [—1/18;(«/@ —4)/9]. binbmi N x N -myeni, Je KiIbKiCTh MOMEHTIB 4Yacy He Menie 10,
PO3B’A3YIOTBCSA Y YUCTUX CTpaTerisix TUIbKM TIpH JDKUTEpi B iHTEpBai [—1/18;2N ‘2/ 3N'2). Po3p’s3ku st mopeni

OJHOTPETUHHOI MPOrpecii MOPIBHIOIOTHCA 3 BIAOMUMH PO3B’ A3KaMu IS MOJIEITl TeOMETPUYHOT Iporpecii.

BucxoBku. OTpuMaHi po3B’SI3KM Y YHCTHX CTpaTeriix i Jyeled MPOMOHYIOTh YiTKY OJHOKPOKOBY TOBEHIHKY NPH
HPOrpecyoyoMy TaiMIHTY Hpono3uuiil OJOKIB y AELEHTpPaNi30BaHUX MPOTOKOJIAX KOHCEHCYCY 3@ YMOB HEBH3HAUEHOCTI
YacOBMX CJIOTIB Ul Aiid. OCHOBHOIO IIEPEeBaroko € MOBHA CIPaBeIMBICTb 1 MOXIIMBICTE OTPUMATH BUHATOPO.Y, SKIIO ONIOHEHT
Jli€ HEONTHMANBHO, HABITh 32 OJIHIET CIIPOOU MPOTO3HIILL.

Knwouosi cnosa: maiimine nponosuyiti 6710Kig; Oeswymna dyeib 3 OOHICIO Kyiel, MHILHA GIYYHICb, MAMpPUuHa 2pa;
D036 130K Y YUCTUX CIPATNERISX, NPOSPeCyIoUi Ha MPemuHy MOMEHMU NOCMPITY.
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