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Background. Silent duels and related timing games offer a surprisingly deep lens into certain core challenges in blockchain 

technology, especially when it comes to block proposal timing. Miners or validators effectively “compete” in a race to propose 
the next block. The success of a block proposal depends not only on when it happens but also on whether others have already 
succeeded or interfered — very much like the tension in a one-shot duel with uncertain outcomes. In block proposal timing for 
decentralized consensus protocols, a one-shot timing game models a blockchain setting, where participants (e. g., validators or 
miners) choose when to attempt block proposal or transaction insertion under uncertainty. 

Objective. The paper aims to determine the best timing strategies for the participants. Considering two identical 
participants, the local objective is to find pure strategy solutions of a timing game (duel) with shooting uniform jitter. 

Methods. A finite zero-sum game is considered, which models competitive interaction between two subjects to make the 
best discrete-time decision by limited observability. The moments to make a decision (to take an action, to shoot a bullet) are 
scheduled beforehand, and each of the subjects, alternatively referred to as the duelists, has a single bullet to shoot. Shooting is 
only possible during a standardized time span, where the bullet can be shot at only specified time moments. In the base pattern, 
apart from the duel beginning and final time moments, every following time moment is obtained by adding the third of the 
remaining span to the current moment. However, the precise time moment specification is not always realizable (e. g., due to 
the distance between neighbouring time moments being measured with finite accuracy) and so the internal moments are 
uniformly jittered. This means that they can be slightly shifted within the duel span. The duelist benefits from shooting as late 
as possible, but only when the duelist shoots first. Both the duelists act within the same conditions by linear shooting accuracy, 
and so the one-bullet silent duel is symmetric, regardless of the jitter. Therefore, its optimal value is 0 and the duelists have the 
same optimal strategies, although they still can be non-symmetric.  

Results. By the one-third progression pattern with jitter, the 3 3  duel always has a pure strategy solution. The 4 4  duel 
is pure strategy solvable by any possible jitter except for jitter interval   19 4 9;1 6 . Within this interval and interval 

 11 54; 1 18   the 5 5  duel is pure strategy non-solvable. The 6 6  duel is pure strategy solvable by any possible jitter 
except for jitter intervals   19 4 9;1 6  and  49 162; 1 18  . Duels with seven to nine time moments are pure strategy 

solvable only by a jitter interval of  1 18; 19 4 9    . Bigger N N  duels, having no fewer than 10 time moments, are 

pure strategy solvable only by a jitter interval of 2 21 18; 2 3 
N N . The solutions for the one-third progression pattern are 

compared to the known solutions for the geometrical-progression pattern. 
Conclusions. The duel pure strategy solutions obtained suggest a clear one-step-action strategic behaviour in progressive 

block proposal timing for decentralized consensus protocols under uncertainty of time slots to act. The main benefit is full 
fairness and a potential reward if the opponent acts non-optimally, even in a single proposal. 

Keywords: block proposal timing; one-bullet silent duel; linear accuracy; matrix game; pure strategy solution; 
progressing-by-one-third shooting moments. 

1.  Progressive discrete silent duels with jitter 
 

Silent duels and related timing games offer a 
surprisingly deep lens into certain core challenges in 
blockchain technology, especially when it comes to 
block proposal timing (e. g., in Proof-of-Work or Proof-
of-Stake) [1], [2]. Miners or validators effectively 
“compete” in a race to propose the next block [3]. Each 
one makes a strategic timing decision — when to 
attempt a proposal, often based on stochastic processes. 
In Proof-of-Work, miners are waiting to “fire” their 
computational bullet by solving a puzzle first [4]. In 

Proof-of-Stake, validators might be selected with 
probabilities and have to choose when to propose or 
reveal information [5]. The success of a block proposal 
depends not only on when it happens but also on 
whether others have already succeeded or interfered — 
very much like the tension in a one-shot duel with 
uncertain outcomes [6], [7]. In block proposal timing 
for decentralized consensus protocols, a one-shot timing 
game models a blockchain setting, where participants 
(e. g., validators or miners) choose when to attempt 
block proposal or transaction insertion under 
uncertainty [1], [8], [9]. The general objective is to 
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determine the best timing strategies for the participants. 
A one-bullet discrete silent duel is a matrix game of 

timing [10], [11] 

    1 1
, , , , 


NN

N N N i j Ni j
X Y x yK K  (1) 

with specified time moments as finite pure strategy sets 

       1 1 1
0;1  

     
N NN

N i N j N qi j q
X x Y y T t   

by 1q qt t  1, 1  q N   
 and 1 0t , 1Nt  for , (2) 

in which the player, also referred to as the duelist, must 
make a decision (shoot one’s single bullet) as late as 
possible but only to shoot first [7], [12]. Each of the 
duelists, allowed to shoot at any of N  moments in (2), 
may not shoot until the final moment 1Nt , but then 
the bullet is shot automatically anyway [8], [9]. The 
duelist is also featured with an accuracy function which 
is a non-decreasing function of time [7], [9], [12], [13]. 

Generally, in a Proof-of-Stake blockchain (like 
Ethereum post-merge, or Cardano, or Cosmos), the 
right to create the next block is randomly assigned to 
validators [4], [6]. These validators are selected based 
on how much cryptocurrency they have “staked” 
(locked up as collateral), giving them an economic 
incentive to follow the rules. Some of the validators are 
equal, and then they are both eligible to propose a block 
during a certain time window, which is broken into N  
short time slots (e. g., milliseconds or seconds). During 
each time slot a validator can choose to send a block 
proposal to the network — this is essentially a digital 
message containing a bundle of transactions, their 
signature, and some metadata (like block height). Once 
a block proposal is seen and accepted by the network, it 
becomes part of the blockchain — and only one 
proposal wins [1], [5], [6], [11]. Such a set-up (just like 
similar ones) is modelled by duel (1) with (2), where 
the validator is the duelist. 

As both the duelists are presumed to have identical 
resources, the one-bullet silent duel is symmetric 
having a skew-symmetric payoff matrix (of rewards) 

 T
 

          N ij ji NN N N N
k kK K . (3) 

Therefore, its optimal value is 0 and the duelists have 
the same optimal strategies, although they still can be 
non-symmetric [7], [13]. For the case of linearized 
accuracy, the duelists’ linear accuracy functions are 

   Xp x x ,   Yp y y , (4) 

through which entry ijk  of payoff matrix (3) can be 

generally given as 

         sign    ij X i Y j X i Y j j ik p x p y p x p y y x  

 sign   i j i j j ix y x y y x   

 for 1,i N  and 1,j N . (5) 

Duel (1) with (2) — (5) is called progressive if its 
time moments, apart from, maybe, 1Nt , are specified 
denser as the duel final approaches: 

 1 1   q q q qt t t t  2, 2  q N . (6) 

However, the precise specification is not always 
realizable (e. g., due to the distance between 
neighbouring time moments is measured with finite 
accuracy) and so internal moments   1

2





N
q q

t  are 

uniformly jittered [14], [15]. This means that moments 

  1

2





N
q q

t  can be slightly shifted within duel span  0;1  

by still obeying (6). In block proposal timing for 
decentralized consensus protocols, the jitter models 
uncertainty of time slots to act. 

 

2.  Geometrical progression pattern 
 

The particular case of duel (1) with (2) — (6) was 
considered in [14], where 
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1
1

2 12
2

 






     

q q
l

q q
l

t   

 for 2, 1 q N  and 2
1 1;
2 2 

   
 N . (7) 

Time moments   1

2





N
q q

t  specified by (7) is a shooting 

uniform jitter, which slightly moves [12], [15] points 

  1
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N
q q

t  by [14] 

1 1
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1

1 1 2 12
2 2 2

 
  

 


  
    

q q
q q l

q q q
l

t t
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 for 2, 1 q N  (8) 

within the duel span  0;1  not violating their relative 
order (topology) within interval  2 1; Nt t  by still 
obeying (6). The case with 0   is called a positive 
jitter, and the case with 0   is called a negative jitter. 
Time moment  

1

1
2 1

2






  

q

q qt  at  2, 1 q N   

is called positively  -jittered moment and negatively 
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 -jittered moment by 0   and 0  , respectively. 

Inasmuch as 2
1
2

t , the negative jitter must be higher 

than 1
2

  to ensure  

2 1
1 0
2

    t t .  

Inasmuch as  

 
2

1 2 2
2 1 11

2 2



  


   

N

N N N Nt t , (9) 

the positive jitter must be lower than (9) to ensure  
2

2
2 11

2






   

N

N Nt . 

For the case of 0  , the pure strategy solutions of 
duel (1) with (2) — (6) and (8) are studied in [13]. For a 
trivial 3 3  duel, in which the duelist possesses just one 
moment of possible shooting between the duel 
beginning and final moments, any pure strategy 
situation, not containing the duel beginning moment, is 
optimal. In 3 3  duels and bigger the pure strategy 
solution is situation 

    2 2
1 1, ,
2 2

x y . (10) 

In duels bigger than the 3 3  duel, optimal pure 
strategy situation (10) is the single one. 

The case of jitter for this duel, i. e. when 0   in 
(7), is reasonably split into subcases of positive and 
negative jitter. Thus, in the duel with a positive jitter, 
the only optimal behaviour of the duelist is to shoot at 

the positively  -jittered middle 2
1
2

  t  of the duel 

span. 
 

3.  One-third progression pattern 
 

Due to geometrical progression pattern (8) tightens 
time moments too dense, it lacks a reasonable final-to-
penultimate ratio  

 
1 1

1

 

N

N N

t
t t

, (11) 

which is 

 
2

2
1

1 2
2 1









N

N
Nt

. (12) 

Hence, another progression pattern is to be considered. 

According to this pattern, every next time moment is 
obtained by adding the third of the remaining span to 
the current moment: 

1 1 1 1
1 1

1 1
1

1 1 2 2 3 2
3 3 3 3

   
 

 


  
    

q l q q
q q

q q l q
l

t t
t t   

 for 2, 1 q N . (13) 

For one-third progression pattern (13), final-to-
penultimate ratio (11) is 

 
2

2 2
1

1 3
3 2



 





N

N N
Nt

. (14) 

The difference between final-to-penultimate ratios (14) 
and (12) is 

2 2

2 2 2
3 2

3 2 2 1

 

   
 

N N

N N N  

  
2 2 2 2 2 2 2

2 2 2
3 2 3 3 2 2 2

3 2 2 1

      

  

     
 

 

N N N N N N N

N N N  

  
2 2 2

2 2 2
2 2 3

3 2 2 1

  

  

 
 

 

N N N

N N N  

    
  

2 2

2 2 2
4 3 0

3 2 2 1

 

  


 

 

N N

N N N  for . (15) 

Difference (15) shows that one-third progression 
pattern (13) tightens time moments less dense leaving 
for the duelist a longer gap between the penultimate and 
final moment of possible shooting. 

Inasmuch as 2
1
3

t  by one-third progression pattern 

(13), its negative jitter must be higher than 1
3

  to 

ensure  

2 1
1 0
3

    t t .  

Inasmuch as  

 
2 2 2

1 2 2
3 2 21

3 3

  

  


   

N N N

N N N Nt t , (16) 

the positive jitter must be lower than difference (16) to 
ensure  

2 2

2
3 21

3

 




   

N N

N Nt . 

Herein, the local objective is to find pure strategy 
solutions of duel (1) with (2) — (6) and shooting 
uniform jitter 



33V. Romanuke, oPTImaL TImInG STRaTeGIeS In BLoCkCHaIn BLoCk PRoPoSaLS BY one-BuLLeT SILenT DueLS 
WITH one-THIRD PRoGReSSIon

1 1

1
3 2

3

 




  

q q

q qt   

 for 2, 1 q N  and 
2

2
1 2;
3 3





   
 

N

N  (17) 

for . 
 

4.  Saddle points in matrix (3) 
 

Inasmuch as a pure strategy solution of duel (1) with 
skew-symmetric payoff matrix (3) corresponds to a 
saddle point of this matrix having entries (5), only a 
zero entry of matrix (3) can be a saddle point [7], [16]. 
Therefore, a row containing a negative entry does not 
contain saddle points; neither does the respective 
column containing the positive entry. Hence, it is 
conventionally possible to conclude only on saddle 
points in definite rows of matrix (3), which imply the 
same conclusions on saddle points in respective 
columns. Thus, a nonnegative row of matrix (3) with 
entries (5) contains a saddle point on the main diagonal 
of the matrix [7]. If a row contains only positive entries, 
except for the main diagonal entry, all the other 1N  
rows of the respective column contain negative entries, 
and thus this row contains a single saddle point which is 
the single one in the duel. Moreover, inasmuch as 

1 0  j jk y  2, j N  

then the first row of matrix (3) with entries (5) is not an 
optimal strategy of the first duelist, and thus situation 

   1 1, 0, 0x y  

is never optimal in the duel [7], [9], [13], [14]. Next, if 
row *i  contains entry  

*
*

0i jk  by  * 2,j N  and *
*i j , 

where situation 

    * *
* *

, ,j ji ix y t t  (18) 

is optimal, then the duel has at least four pure strategy 
solutions [7]: symmetric situations  

    * * * *, ,i i i ix y t t , (19) 

    
* * * *
, ,j j j jx y t t , (20) 

and non-symmetric situations (18), 

    * *
* *
, ,j ji ix y t t . (21) 

It is noteworthy that, despite in duels (1) with (3) the 
optimal behaviour of the duelists is the same, optimal 
situations (18) and (21) are, in fact, non-symmetric. 

Nevertheless, symmetry in optimal situations (19) and 
(20) and non-symmetry in optimal situations (18) and 
(21) are equivalent owing to the duelist’s optimal 
strategies in those solutions are interchangeable without 
affecting the duel outcome. 

 

5.  Three moments to shoot 
 

The most trivial geometrical progression pattern by 
(7) is a triple  

    3 1 2 3
1, , 0, ,1
2

   T t t t  for 1 1;
2 2

   
 

. (22) 

The respective 3 3  duel with a positive jitter has a 
single optimal solution, by which the best decision is to 

shoot at the positively  -jittered middle 2
1
2

  t  of 

the duel span. In the case of a negative jitter, the 
optimal behaviour of the duelist is to shoot at the final 
moment. Does the solution keep this structure for the 
3 3  duel with one-third progression pattern  

    3 1 2 3
1, , 0, ,1
3

   T t t t  for 1 2;
3 3

   
 

 (23) 

or not? The answer follows. 
Theorem 1. Duel (1) by (3), (5) and (23)  

    3 3 3 3
1 1, , 0, ,1 , 0, ,1 ,
3 3

    X Y K K  (24) 

has a single optimal situation  

    2 2
1 1, ,
3 3

    x y  (25) 

by  

 1 2;
6 3

  
 

. (26) 

By 1
6

   duel (24) has four optimal pure strategy 

situations (25),  

    2 3
1, ,1
3

  x y , (27) 

    3 2
1, 1,
3

  x y , (28) 

    3 3, 1,1x y . (29) 

By 

 1 1;
3 6

   
 

 (30) 
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duel (24) has a single optimal situation (29). 
Proof. Upon plugging elements of (23) into (5) for 

(2) and 3N , the respective payoff matrix is 

 3 3 3

10 1
3

1 10 2
3 3

11 2 0
3



     
 
           
 
  
  

ijkK . (31) 

Situation (25) is single optimal if inequalities 

 21
1 0
3

   k  (32) 

and 

 23
1 2 0
3

    k  (33) 

hold simultaneously, whence  

 1
3

    and 1
6

   (34) 

and inequalities (34) with (23) imply condition (26). If 
1
6

   then  

22 23 32 33 0   k k k k , 

while inequality (32) still holds and 31 1k . Therefore, 

matrix (31) by 1
6

   has four saddle points: (25), 

(27) — (29). By condition (30) inequality 

 32
1 2 0
3

   k  (35) 

holds and situation (29) is the single saddle point.       
So, Theorem 1 reveals the boundary value of jitter, 

which is 1
6

  , that separates the two solution cases in 

3 3  duels with one-third progression pattern (23). The 
3 3  duel with geometrical progression pattern (22) 
does not have such a boundary value (the case of 0   
is classified separately). 

 

6.  Second moment optimality 
 

In duel (1) with (2) — (6) and shooting uniform 
jitter (7) for 0  , the only best decision is to shoot at 

the positively  -jittered middle 2
1
2

  t  of the duel 

span, where the number of time moments is three or 

more [14]. For one-third progression pattern with jitter 
(17) for three time moments, this case is narrowed to 

the half-unit-length interval 1 2;
6 3

 
 
 

, by which the 

positively  -jittered middle 2
1
3

  t  is single optimal 

(Theorem 1). See right below, whether this moment 
remains optimal for bigger duels. 

Theorem 2. In duel (1) with (2) — (6) and (17) by 
no fewer than four moments to shoot, situation (25) is 
single optimal when only 

 
2

2
1 2;
6 3





  
 

N

N  (36) 

and the duel has four to six moments to shoot. 
Proof. Situation (25) is single optimal if the second 

row of matrix (3) is positive except for entry 22k . In 
this row, inequality (32) holds and  

2
1 1
3 3

          
 j j jk y y  

 1 2
3 3

        
  jy  3, j N . (37) 

Due to  

  2 0
3
    

2

2
1 2;
3 3





   
 

N

N  for , (38) 

entry (37) is a decreasing function of jy . Entry 

 2
1 1 11 2 0
3 3 3

          Nk  (39) 

if (34) is true. However, inequality (39) is possible if 
interval 

 
2

2
1 2;
6 3





 
 
 

N

N  for  (40) 

is nonempty, i. e. 

 
2 1 3

2 2
2 1 2 3 0

63 2 3

  

 


  



N N N

N N . (41) 

Consider function  

   1 32 3  N Nf N  (42) 

in the numerator of the fraction in (41). The first 
derivative of function (42) is 

 1 32 ln 2 3 ln 3    N Ndf
dN

. (43) 

First derivative (43) turns into zero if 
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 1 32 ln 2 3 ln 3   N N , (44) 
whence 

1

3
2 ln 3

ln 23



 
N

N , 

12 ln3
3 9ln 2


   
 

N

, 

12 ln 3ln ln
3 9ln 2


   
 

N

, 

      1 ln 2 ln3 ln ln 3 ln 9ln 2   N , 

     ln 2 ln 3 ln 2 ln3 ln ln3 2ln 3 ln ln 2     N , 

    ln ln 3 3ln3 ln ln 2 ln 2
ln 2 ln3

  



N . (45) 

Value (45) is such that 

   ln ln3 3ln3 ln ln 2 ln 25.28 5.29
ln 2 ln3

  
 


, 

so function (42) has the single extremum. The second 
derivative of function (42) is 

    
2

2 21 3
2 2 ln 2 3 ln3    N Nd f

dN
. (46) 

Second derivative (46) at point (45) is negative, so (45) 
is the single maximum point. As 

 4 5f ,  6 5f ,  7 17 f , 

then function (42) is negative for  while it is 
positive for  4, 5, 6N . Therefore, inequality (41) for 
integer N  above 3 holds only for  4, 5, 6N . Under 
only this condition the interval in (40) is nonempty 
making the second row of matrix (3) positive except for 
entry 22k , i. e. when situation (25) is the single solution 
in the duel having four to six moments to shoot by 

 
2

2
1 2;
6 3





  
 

N

N . (47) 

When 1
6

  , entries 22 2 0 Nk k  but the remaining 

2N  entries in the second row are positive. In the last 
row, entry 

2 2

, 1 2
1 3 21 2 2
6 3

 

 


     

N N

N N Nk  

 
2 2

2
2 3 22 0
3 3

 




   

N N

N  (48) 

due to 
2

2
2 2 11

3 33



   
N

N  for , 

2 2 2

2 2
1 2 3 21
3 3 3

  

 


  

N N N

N N , 

2 2

2
2 3 22
3 3

 




 

N N

N , 

and thus this row cannot be an optimal strategy. This 
finalizes proving the singleness of solution (25) by (36) 
for .       

In fact, Theorem 2 implies that the second moment 
is never optimal in duels having no fewer than seven 
moments to shoot. The question of whether the third 
moment is optimal in such duels is answered right 
below. 

 

7.  Third moment optimality 
 

In duel (1) with (2) — (6) and shooting uniform 
jitter (7) for no fewer than four time moments to shoot, 

the third  -jittered moment 3
3
4

  t  is single optimal 

if [14] 

1 17 5;
4 8

 
  

 
. 

See right below, whether the third  -jittered moment 

3
5
9

  t  by the one-third progression pattern can be 

optimal. 
Theorem 3. In duel (1) with (2) — (6) and (17), 

situation  

    3 3
5 5, ,
9 9

    x y  (49) 

is single optimal when only 

 1 19 4;
18 9

 
  

 
 (50) 

for five to nine time moments and  

 
2

2
1 2;

18 3





   
 

N

N  (51) 

for duels having no fewer than 10 time moments. 
Situation (49) is single optimal in the 4 4  duel when 
only 

 1 19 4;
18 9

 
  

 
. (52) 
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At  

 1
18

    (53) 

the 4 4  duel has four optimal pure strategy solutions: 
situations (49), 

    3 4
5, ,1
9

  x y , (54) 

    4 3
5, 1,
9

  x y , (55) 

    4 4, 1,1x y . (56) 

Proof. In the third row of matrix (3) entry 

 31
5 0
9

   k  (57) 

and entry 

32
5 1 5 1
9 3 9 3

               
  

k  

  (58) 

if 

 19 4 19 4;
9 9

  
  

 
. (59) 

Entry 

3
5 5
9 9

          
 j j jk y y  

 5 4
9 9

        
  jy  4, j N . (60) 

Due to  

4 0
9
    

2

2
1 2;
3 3





   
 

N

N   

 for , (61) 

entry (60) is a decreasing function of jy . Entry 

  (62) 

if 

 , (63) 

where 

 19 4 1 1 19 4 10
9 3 18 9 6
 

        . (64) 

So, situation (49) is optimal if (59) and (63) are true, 
which via (64) leads to condition (50). However, it is 
easily checked that  

 
2

2
19 4 2

9 3








N

N  for  , 7, 8, 95, 6N  (65) 

and 

 
2

2
2 19 4

93








N

N  for . (66) 

Inequality (65) means that situation (49) is optimal in 
5 5  to 9 9  duels if (50) is true, and inequality (66) 
means that situation (49) is optimal in duels bigger than 
the 9 9  duel if (51) is true. 

As (64) holds, then, as a corollary from Theorem 2, 
situation (25) is not optimal by (50) for 

 , 7, 8, 95, 6N  and it is not optimal by (51) for 
. This resolves the case of when 32 0k  

by 19 4
9


  , while the remaining 2N  entries in 

the third row are positive. Another case to resolve is 
when 3 0Nk  by (53), while the remaining 2N  
entries in the third row are positive. In the last row, 
entry 

2 2

, 1 2
1 3 21 2 2

18 3

 

 


     

N N

N N Nk  

 
2 2

2
10 3 22 0
9 3

 




   

N N

N  (67) 

due to 
2

2
2 4 51

9 93



   
N

N  for , 

2 2 2

2 2
5 2 3 21
9 3 3

  

 


  

N N N

N N , 

2 2

2
10 3 22
9 3

 




 

N N

N , 

whence the last row cannot be an optimal strategy by 
(53) for no fewer than five moments to shoot. Hence, 
optimal situation (49) is single for 5 5  and bigger 
duels. 

In the 4 4  duel, situation (25) is not optimal by 
(50). Owing to (57) and the reasoning by statements 
(58) — (64), which support the case with four time 
moments as well, optimal situation (49) is single by 
(52). If (53) is true, then  

33 34 43 44 0   k k k k , 
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and  

31
1
2

k ,  

32
1 5 1 5 1
2 18 2 18 12

    k , 

41 1k , 

42
5 41 2

18 9
   k , 

which implies optimality of the quadruple of situations 
(49), (54) — (56).       

A corollary from Theorem 3 is that the third moment 
is not optimal in duels having no fewer than four 
moments if 

 1 1;
3 18

    
 

. (68) 

It is natural to continue investigation beyond the third 
moment for such duels whose moments are jittered 
below the value of (53). 

 

8.  Beyond the third moment 

First consider fourth moment 4
19
27

  t  that 

follows moment 3
5
9

  t . 

Theorem 4. In duel (1) with (2) — (6) and (17) by 
no fewer than five moments to shoot, the fourth 
moment is never optimal, whichever jitter is. 

Proof. Situation  

    4 4
19 19, ,
27 27

    x y  (69) 

can be optimal only if 

43
19 5 19 5
27 9 27 9

               
  

k  

 . (70) 

Inequality (70) holds if 

 4 7 17 4 7 17;
27 27

  
  

 
. (71) 

Besides, situation (69) can be optimal only if 

 . (72) 

Inequality (72) holds if 

 , (73) 

where 

 1 4 7 17 11
3 27 54


    . (74) 

Inequality (74) implies that situation (69) is never 
optimal because inequality (73) cannot hold when (71) 
is true and vice versa.       

Now, before considering next time moments, it will 
be needful to use the following lemma. 

Lemma 1. Entry  

 1, 1 1    i i i i i ik x y x y  (75) 

of payoff matrix (3) as a function of 2, 2 i N  is a 
decreasing function. 

Proof. In entry (75),  
1 1

1
3 2

3

 




   

i i

i i ix y  

and 

1 1
3 2

3 


   
i i

i i ix y , 

so 

1  i ix y  

 
1 1 1

1 1
3 2 3 2 2 2

3 3 3 3

  

 

 
       

i i i i i i

i i i i . (76) 

Denote the difference in (76) by 

 
1

1
2 2
3 3



 
i i

i ia . (77) 

Then 

 1 1   i i ix y x a . (78) 

Similarly to (78), value (77) is used to re-write entry 

 2, 1 2 1 2 1       i i i i i ik x y x y , (79) 

where 

2 1  i ix y  

 
1 1 1

1 1
3 2 3 2 2 2 2

33 3 3 3

  

 

 
        

i i i i i i

i i i i a  (80) 

and 

 2 1
2 2 5
3 3 3       i i i ix x a x a a x a . (81) 
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Simplify the difference between entry (75) and entry 
(79) for 2, 3 i N  by using (76) — (78), (80), (81) to 
express it with only ix  and (77): 

1, 2, 1   i i i ik k  
 1 1 2 1 2 1           i i i i i i i ix y x y x y x y  

   2 5
3 3

             
   i i i ia x a x a x a x a  

2 2 22 5 5
3 3 3

        i i i i ia x ax a x ax ax a  

21 5 5
3 3 3

   ia ax a  

  5 5 1 0
3

   i
a a x  for 2, 3 i N . (82) 

Inequality in the last line of (82) directly means that 
entry (75) is a decreasing function of 2, 2 i N .       

Now, it is just time to proceed with later moments, 
moving onward by considering 5 5  and bigger duels. 

Theorem 5. In duel (1) with (2) — (6) and (17) by 
no fewer than five moments to shoot, the time moments 
between the fourth and the  1N -th one are never 
optimal, whichever jitter is. 

Proof. The assertion claims that time moments 
1 1

1
3 2

3

 




  

q q

q qt  for 4, 1 q N   

 and 
2

2
1 2;
3 3





   
 

N

N  by  (83) 

in 5 5  and bigger duels are never optimal. The non-
optimality of the fourth moment is proved by 
Theorem 4. To prove the non-optimality of time 
moments  

  1

5





N
q q

t  for , 

consider the fifth row of matrix (3) and its entry 54k : 

54
65 19 65 19
81 27 81 27

               
  

k  

  (84) 

if 

 2 166 61 2 166 61;
81 81

  
  

 
, (85) 

where 

 2 166 61 1
81 3


  . (86) 

Inequality (86) means that inequality (84) is impossible 

due to 1
3

   . Therefore, 54 0k . Inasmuch as entry 

(75) is a decreasing function of 2, 2 i N  (Lemma 1), 
entries 

 1, 0 i ik  for 4, 2 i N . (87) 

Inequalities (87) along with Theorem 4 directly imply 
that the rows from the fourth down to the  1N -th 
one do not contain saddle points.       

In 4 4  duels, the third moment is followed only by 
the final moment. 

Theorem 6. In 4 4  duel (1) with (2) — (6) and 
(17) for 4N  and (68) situation (56) is single optimal. 

Proof. Situation (56) is single optimal if the last, 
fourth, row of matrix (3) is positive, except for entry 

44 0k . Entry 

 4 1 2 0  j jk y  for 1, 3j . (88) 

Inasmuch as 

1 2 3
5
9

    y y y , 

inequality (88) holds if 

5 1
9 2
   , 

whence 

1
18

   , 

i. e. by (68) the final moment is the only optimal 
strategy.       

Amazingly enough, but Theorem 5 also holds for 
duels (1) with (2) — (6) and shooting uniform jitter (7) 
[14]. In such duels, having no fewer than five moments 
to shoot, the final moment is single optimal if 

 2
1 1 1;
2 2 2 

      N . (89) 

See right below whether at sufficiently high negative 
jitter the final moment is single optimal by the one-third 
progression pattern in 5 5  and bigger duels. 

 

9.  Final moment 
 

Theorem 7. In 5 5  duel (1) with (2) — (6) and 
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(17) for 5N  situation 

    , 1,1N Nx y  (90) 

is single optimal by 

 1 11;
3 54

     
. (91) 

In 6 6  duel (1) with (2) — (6) and (17) for 6N  
situation (90) is single optimal by 

 1 49;
3 162

     
. (92) 

Duels having no fewer than seven moments are not 
solved in pure strategies by (68). 

Proof. Situation (90) is optimal if entry 

  for 1, 1 j N . (93) 

Obviously, entry (93) is a strictly decreasing function of 
jy  and thus, in the last row of matrix (3), entry , 1N Nk  

is minimal not considering entry , 0N Nk . Inasmuch as 

2 2

1 2
3 2

3

 

 


   

N N

j N Ny y  for 1, 2 j N , 

inequality (93) holds if 

, 

whence 

 . (94) 

Clearly, value  
2

2
1 2
2 3



 
N

N  

is a decreasing function of natural N , so by 5N  
inequality (94) turns into inequality  

  (95) 

and by 6N  inequality (94) turns into inequality  

 , (96) 

whereas by  inequality (94) turns into inequality  

 . (97) 

As inequality  

1
3

     

is impossible, inequality (97) means that inequality (93) 
is impossible for duels having no fewer than seven 
moments to shoot. Along with Theorem 3, this also 
implies that duels having no fewer than seven moments 
are not solved in pure strategies by (68). 

Meanwhile, 

 1 11 1
3 54 18

     . (98) 

Then inequality (98) means that by (91) the final 
moment is optimal in the 5 5  duel, in which entry  

, 1 54 0  N Nk k   

if only 

 11
54

   . (99) 

However, at (99) entry  

1, 2 43  N Nk k   

being the parabola in inequality (70) is negative due to 
inequality (70) holds by (71), where the latter is not true 
by (99) as (74) holds. Therefore, at (99) situation (90) 
for 5N  remains single optimal.  

Another inequality is 

 1 49 11 1
3 162 54 18

       . (100) 

Inequality (100) means that by (92) the final moment is 
optimal in the 6 6  duel, in which entry  

, 1 65 0  N Nk k   

if only 

 49
162

   . (101) 

However, at (101) entry  

1, 2 54  N Nk k   

being the parabola in inequality (84) is negative due to 
inequality (84) holds by (85), where the latter is not true 
by (101) as (86) holds. Therefore, at (101) situation (90) 
for 6N  remains single optimal.       

 

10.  Non-solvability in pure strategies 
 

By one-third progression pattern with jitter (17), 
3 3  duels are pure strategy solvable at any jitter, but 
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the 4 4  duel is not solved in pure strategies if 

 19 4 1;
9 6

 
 

 
. (102) 

This is a corollary from Theorems 2, 3, 6. The 5 5  
duel is not solved in pure strategies by (102) and by 

 11 1;
54 18

    
 

. (103) 

This is a corollary from Theorems 2, 3, 4, 5, 7. The 
same assertions are followed by a corollary that the 
6 6  duel is not solved in pure strategies by (102) and 
by 

 49 1;
162 18

    
 

. (104) 

Duels with seven to nine time moments are pure 
strategy non-solvable by 

 
2

2
19 4 2;

9 3





 
 

 

N

N  for  7, 8, 9N  (105) 

and by (68), i. e. 7 7 , 8 8 , 9 9  duels are not solved 
in pure strategies if the positive jitter is higher than 

value 19 4
9
  or the negative jitter is lower than value 

1
18

  (Theorems 2, 3, 4, 5, 7). Non-solvability in pure 

strategies is recognized easier in bigger duels (having 
no fewer than 10 time moments): they are pure strategy 
non-solvable when just the negative jitter is lower than 

value 1
18

 . 
 

11.  Conclusion 
 

By one-third progression pattern with jitter (17), the 
3 3  duel always has a pure strategy solution 
(Theorem 1). The 4 4  duel is pure strategy solvable 
by any possible jitter 

 1 4 19 4 1; \ ;
3 9 9 6

           
. (106) 

In the 4 4  duel any moment, except for the duel 
beginning moment, can be optimal. The second moment 
is single optimal by (Theorem 2) 

 1 4;
6 9
   

, (107) 

the third moment is single optimal by (52) (Theorem 3), 
and the final moment is single optimal by (68) 

(Theorem 6), whereas the third and final moments in 
the 4 4  duel are both optimal at the boundary value of 
jitter (53) (Theorem 3). 

The 5 5  duel is pure strategy solvable by any 
possible jitter 

1 8 19 4 1 11 1; \ ; ;
3 27 9 6 54 18

                     
 . (108) 

The 6 6  duel is pure strategy solvable by any possible 
jitter 

1 16 19 4 1 49 1; \ ; ;
3 81 9 6 162 18

                     
 . (109) 

In 5 5  and 6 6  duels only the second (Theorem 2), 
third (Theorem 3), and final (Theorem 7) moments can 
be optimal. 

Duels with seven to nine time moments are pure 
strategy solvable only by (50). Bigger duels, having no 
fewer than 10 time moments, are pure strategy solvable 
only by (51). Unlike duels with the geometrical 
progression pattern, the third time moment is the only 
possible pure strategy solution in duels having no fewer 
than seven time moments (Theorems 3 and 7). 
However, the jitter interval, at which the pure strategy 
solution exists, gradually vanishes as the duel size 
increases off 10. In 7 7 , 8 8 , and 9 9  duels, to the 
contrary, the jitter interval, at which the pure strategy 
solution exists, is constant. 

Overall, as the duel becomes bigger, its pure strategy 
solvability worsens — the subset of jitter values, at 
which pure strategy solutions exist, becomes narrower 
(except for duels with seven to nine time moments). 
Another distinct property is that the optimal time 
moment, if any, moves away from the duel beginning as 
jitter becomes lower (the positive jitter becomes lower 
or the negative jitter becomes lower). 

The duel pure strategy solutions obtained above 
suggest a clear one-step-action strategic behaviour in 
progressive block proposal timing for decentralized 
consensus protocols under uncertainty of time slots to 
act [1], [3], [17], [18]. The main benefit is the full 
fairness and a potential reward if the opponent acts non-
optimally, even in a single proposal [19], [20]. When 
the network receives two blocks at once, the network 
splits briefly: some nodes build on the first duelist’s 
block, others on the second duelist’s. This temporarily 
creates two competing chains (a network fork) at the 
same height [2]. Nevertheless, most Proof-of-Stake 
blockchains, for instance, have rules that resolve forks 
deterministically by the criteria of which block was 
seen first by the majority, which validator has higher 
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stake weight or reputation, which block has more valid 
attestations (votes from other validators) [4], [6]. As a 
result, one block wins, and the other one is orphaned: 
one block becomes part of the canonical chain, the 
other one is discarded [1], [5]. Further research may be 
focused on considering other progression patterns and a 
decaying value of loss. 
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Романюк В.В. 
Оптимальні стратегії часу у пропозиціях блокчейн-блоків засобами однокульових безшумних 

дуелей з однотретинною прогресією 
Вінницький торговельно-економічний інститут Державного торговельно-економічного університету, 

м. Вінниця, Україна 
 
Проблематика. Безшумні дуелі та пов’язані з ними ігри на вибір часу пропонують несподівано глибоке розуміння 

певних ключових викликів у технології блокчейну, особливо щодо таймінгу пропозиції блоку. Майнери або 
валідатори фактично “змагаються” у гонці за право запропонувати наступний блок. Успіх пропозиції блоку залежить 
не тільки від моменту його здійснення, а й від того, чи вже хтось інший не досяг успіху або не завадив цьому процесу 
— дуже схоже на напругу у дуелі з одним пострілом і невизначеним результатом. У таймінгу пропозиції блоку для 
децентралізованих протоколів консенсусу одноразова гра на вибір часу моделює ситуацію в блокчейні, де учасники 
(наприклад, валідатори або майнери) обирають момент для спроби запропонувати блок або вставити транзакцію за 
умов невизначеності. 

Мета дослідження. Загальною метою є визначення найкращих стратегій таймінгу для учасників. Розглядаючи 
двох ідентичних учасників, локальна мета полягає у знаходженні розв’язків у чистих стратегіях гри на вибір часу 
(дуелі) за рівномірного джитера моменту пострілу. 

Методика реалізації. Розглядається скінченна гра з нульовою сумою, яка моделює конкурентну взаємодію між 
двома суб’єктами у прийнятті найкращого дискретного рішення за умов обмеженої спостережуваності. Моменти для 
прийняття рішення (виконання дії, пострілу кулею) призначаються заздалегідь, і кожен із суб’єктів, яких також 
називають дуелянтами, має лише одну кулю для пострілу. Стріляти дозволено тільки протягом стандартизованого 
проміжку часу, де кулю можна випустити лише у визначені моменти часу. У базовій моделі, окрім початкового та 
кінцевого моментів дуелі, кожен наступний момент визначається додаванням третини залишкового проміжку до 
поточного моменту. Однак точна специфікація моментів часу не завжди здійсненна (наприклад, через обмежену 
точність вимірювання відстані між сусідніми моментами), тому внутрішні моменти часу зазнають рівномірного 
джитера. Це означає, що вони можуть бути злегка зміщені в межах проміжку дуелі. Дуелянту вигідно стріляти 
якомога пізніше, але тільки якщо він стріляє першим. Обидва дуелянти діють в однакових умовах за лінійної 
влучності пострілу, тому дуель із однією кулею є симетричною, незалежно від джитера. Відповідно, її оптимальне 
значення дорівнює 0, а дуелянти мають однакові оптимальні стратегії, хоча ці стратегії можуть бути також і 
несиметричними. 

Результати дослідження. За моделлю однотретинної прогресії з джитером 3 3 -дуель завжди має розв’язок у 
чистих стратегіях. 4 4 -Дуель розв’язується у чистих стратегіях за будь-якого можливого джитера, окрім інтервалу 
джитера   19 4 9;1 6 . У межах цього інтервалу та інтервалу  11 54; 1 18   5 5 -дуель не розв’язується у 
чистих стратегіях. 6 6 -Дуель розв’язується у чистих стратегіях за будь-якого можливого джитера, окрім інтервалів 
  19 4 9;1 6  та  49 162; 1 18  . Дуелі із семи до дев’яти моментів часу розв’язуються у чистих стратегіях лише 

при джитері в інтервалі  1 18; 19 4 9    . Більші N N -дуелі, де кількість моментів часу не менше 10, 

розв’язуються у чистих стратегіях тільки при джитері в інтервалі 2 21 18; 2 3 
N N . Розв’язки для моделі 

однотретинної прогресії порівнюються з відомими розв’язками для моделі геометричної прогресії. 
Висновки. Отримані розв’язки у чистих стратегіях для дуелей пропонують чітку однокрокову поведінку при 

прогресуючому таймінгу пропозицій блоків у децентралізованих протоколах консенсусу за умов невизначеності 
часових слотів для дій. Основною перевагою є повна справедливість і можливість отримати винагороду, якщо опонент 
діє неоптимально, навіть за однієї спроби пропозиції. 

Ключові слова: таймінг пропозицій блоків; безшумна дуель з однією кулею; лінійна влучність; матрична гра; 
розв’язок у чистих стратегіях; прогресуючі на третину моменти пострілу. 
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