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ENVIRONMENTS: ALGORITHMIC APPROACH

Anton D. Kartashov, Larysa S. Globa

Educational and Research Institute of Telecommunication Systems
Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine

Background. Multi-cloud environments present complex challenges in optimal resource allocation and provider selection.
Previous research has established a comprehensive ontological model and evaluation criteria for distributed data storage,
however efficient provider selection remains a significant challenge due to the dynamic nature of cloud services and the
multitude of interdependent factors affecting performance and cost-effectiveness.

Objective. The purpose of the paper is to develop and validate a sophisticated optimization function for cloud provider
selection in multi-cloud environments, incorporating both Reinforcement Learning (RL) and Multi-Objective Evolutionary
Algorithms (MOEAs) to address the complexity of provider selection while considering multiple competing objectives and
constraints.

Methods. The research employs an ontological approach to formalize domain concepts, relationships, and properties in
multi-cloud environments. Additionally, an optimization function is developed incorporating multiple weighted criteria derived
from the established ontological model. The study focuses on the implementation of the RL algorithm to adapt to dynamic
changes in cloud provider characteristics and integration of MOEAs to handle multiple competing objectives as well as
providing a comparative analysis with traditional selection methods and alternative optimization approaches for multi-cloud
storage settings.

Results. The proposed ontological model successfully formalizes the domain's concepts, relationships, and properties in
multi-cloud environments. The optimization function demonstrates effectiveness in selecting the most suitable public cloud
provider based on the proposed features, enhancing data management practices automation and decision-making processes.

Conclusions. The developed optimization function and suggested methodology significantly advance the state-of-the-art in
distributed multi-cloud data storage. The integration of RL and MOEAs provides a robust framework for addressing the
complexity of multi-cloud environments while offering superior performance compared to existing approaches. The
methodology successfully balances multiple objectives while adapting to dynamic changes in cloud provider characteristics.

Keywords: Cloud computing, multi-cloud environments, data storage; data access, ontological model; optimization
function; data security, scalability, cost optimization; resource management.

Introduction Building upon our previous work, which established
a comprehensive ontological model for cloud computing

The expansion of cloud computing services has led ~concepts and relationships [7], this paper introduces a
to an increasingly complex landscape of provider novel optimization function for cloud provider selection.
options, each offering distinct features, pricing models, Our approach integrates multiple evaluation criteria
and performance characteristics. In multi-cloud Within a unified mathematical framework, enabling
environments, the challenge of selecting optimal cloud ~ Systematic and objective comparison of cloud providers
providers for distributed data storage extends beyond —based on both quantitative and qualitative factors.

simple cost-benefit analysis, encompassing multiple The primary contributions of this paper are threefold:
interdependent factors that significantly impact system 1. We propose a sophisticated optimization
performance, reliability, and economic efficiency. function that leverages our previously developed

Recent studies have highlighted the limitations of ontological model to quantify and evaluate cloud
traditional cloud provider selection methods, which provider suitability across multiple dimensions.
often rely on simplified heuristics or manual decision- 2. We present a methodology by selecting
making processes [1-6]. While these approaches may Reinforcement  Learning (RL) and Multi-
suffice for basic deployment scenarios, they fail to Objective Evolutionary Algorithms (MOEAs) to
address the dynamic nature of modern multi-cloud solve the defined optimization function, designed
environments and the complexity of optimizing resource to navigate the complex decision space of a
allocation across multiple providers simultaneously. distributed multi-cloud data storage.

© The Author(s) 2024. Published by Igor Sikorsky Kyiv Polytechnic Institute.
This is an Open Access article distributed under the terms of the license CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/), which permits re-use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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3. We provide a critical analysis of alternative
approaches, examining their limitations and
demonstrating the advantages of our proposed
methodology in addressing the specific
challenges of multi-cloud optimization.

This research addresses a significant gap in the
literature by offering a comprehensive, automated
approach that considers the dynamic nature of cloud
services, data storage characteristics, and organizational
requirements. Our methodology represents a significant
advancement over existing solutions, providing a
foundation for more efficient and effective multi-cloud
deployments.

The remainder of this paper is organized as follows:
Section 2 recaps the previous research with the defined
set of comprehensive criteria and ontological model.
Section 3 presents the formal definition of our
optimization function and its theoretical foundations.
Section 4 details the proposed RL-MOEA methodology
and discusses alternative approaches and their
limitations. Section 5 presents experimental results and
validation, followed by conclusions and future work
directions in Section 6.

Set of criteria for multi-cloud storage and defined
ontological model

The evolution of cloud computing has led to
significant ~ research  endeavours  focused on
understanding and optimizing multi-cloud
environments, particularly in the context of data storage
and retrieval mechanisms. The adoption of multi-cloud
architectures has demonstrated substantial benefits,

including enhanced system redundancy, superior
performance metrics, and robust fault tolerance
capabilities [4]. Furthermore, organizations

implementing multi-cloud strategies gain considerable
operational flexibility, enabling them to select cloud
services that align precisely with their specific
requirements while simultaneously minimizing vendor
lock-in risks and optimizing cost structures [5-6].

Drawing from our comprehensive literature analysis
presented in our previous work [7], combined with
current cloud computing standards for storage and
access patterns, we have identified a sophisticated
framework of evaluation criteria for multi-cloud data
storage. This framework encompasses a broad spectrum
of critical factors that directly influence decisions
regarding data placement, management strategies, and
retrieval mechanisms across diverse cloud service
providers. The comprehensive evaluation criteria are
presented in Table 1, representing a holistic approach to
multi-cloud storage optimization.

Table 1. Comprehensive set of Criteria

I P Measurement
” Criteria Category Specific Criteria Metric (possible)
Latency s
1 Requirements Milliseconds (ms)
5 Redundancy and Availability
S o
Data Accessibility Availability Percentagg (%)
- . Data Consistency
3 Criteria Data Consistency
Index
Encryption
4 Data Encryption Strength (e.g.,
AES-256)
. Cost per
5 Cost Efficiency GB/month ($)
Cost and Resource R "
6 Utilization Resource Allocation csource
Criteria Utilization (%)
7 Data Lifecycle Percentage of
Management Archived Data (%)
. . Data Classification
8 Data Type and Data Classification Score
9 Format Criteria Data Format Data Fo_m}a_t
Compatibility
Regulatory Compliance Audit
10 .
Compliance Score
Compliance and . Data Ownership
1 Security Criteria Data Ownership Policy Adherence
. Security Protocol
12 Security Protocols Strength
13 Scalability  and Scalability Scalability Factor
14 | Performance Performance Throughput
Metrics (requests/second)
15 Data  Migration Data Portability Data Portability
and Index
Interoperability . Interoperability
16 Criteria Interoperability Score
17 | Vendor Lock-In Vc?qdor_Lock—In Lock-In Reduction
Mitigation Score
and Vendor Vendor Reputation
18 | Criteria Vendor Reputation endorReputatio
Rating
. Recovery Time
19 Disaster Recovery Objective (RTO,
Plan
hours)
Recovery Point Recovery Point
20 | Disaster Recovery | Objective (RPO) Objective (RPO,
and Backup and RTO hours)
Data Backup Frequency (e.g.,
21
Frequency per day, per week)
2 Backup Storage Redundancy Level
Redundancy (e.g., dual-site)
23 Monitoring Tools Tool Effectiveness
- (e.g., Score)
Monitoring  and -
Reporting Reporting
24 Reporting Accuracy (e.g.,
Percentage)
25 Environmental Carbon Emission
Impact Reduction (%)
. Energy Usage
26 | Sustainability Energy Efficiency |1y
Resource
Resource .
27 L. Conservation
Sustainability
Index

To formalize the concepts and relationships in the
domain of cloud computing with a focus on data storage
and access in multi-cloud environments, we proposed
an ontological model based on the defined set of

criteria.

This

model

represents

the

essential
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components, interconnections, and properties of cloud
providers, cloud services, storage systems, access
control mechanisms, data encryption algorithms, and
other key entities. The ontological model enables a
systematic and structured representation of the domain,
facilitating better understanding, knowledge sharing,
and future research:

Fig. 1. Visual representation of the Ontological model

Each concept of the proposed ontological model is
enriched with properties and relationships that allow for
detailed descriptions and associations. The axioms are
logical statements that define specific relationships,
constraints, and properties within the ontological model.
The logical representation of the axioms further
strengthens the ontological model. These axioms
provide a formal foundation for the representation and
reasoning of cloud-related concepts, enabling the
development of optimized algorithms and decision-
making processes in selecting the best cloud provider
based on the proposed features. By combining the
axioms with the ontological model, we can gain deeper
insights into the domain.

In the current context of the ontological model,
relationships play a vital role in defining the connections
and interactions between various concepts. Each
relationship is expressed through a logical statement that
establishes a link between two entities in the domain.

In summary, the logical statements describing these
relationships provide essential insights into the
associations and interactions between different
components in the ontology of cloud computing with a
focus on data storage and access in a multi-cloud
environment. These relationships form the backbone of
the ontological model, which is visually shown in
Fig. 1, enabling a comprehensive understanding of the

domain and facilitating the optimization of cloud
provider selection based on proposed features.
Formulation of the Optimization Function

The selection of optimal cloud service providers in a
multi-cloud environment presents a complex multi-
criteria decision-making problem that necessitates a
systematic quantitative approach. To address this
challenge, we propose a comprehensive optimization
function that employs a weighted scoring mechanism.

The function synthesizes critical operational
parameters presented in the comprehensive set of
criteria, including data security measures (evaluated
through standardized security metrics), performance
indicators (quantified through latency, throughput, and
IOPS  measurements), cost-effectiveness  ratios,
compliance  adherence scores, and scalability
coefficients. This approach extends the traditional
scoring methods by incorporating both deterministic and
stochastic elements, allowing for the consideration of
uncertainty in cloud service characteristics.

The weights assigned to these criteria are derived
through a combination of empirical analysis and expert
knowledge elicitation. Our optimization function builds
upon the [8], who demonstrated the effectiveness of
weighted scoring in cloud provider selection and
extends it by incorporating dynamic temporal factors
and interdependencies between criteria. The resultant
scoring mechanism provides decision-makers with a
robust, mathematically sound framework for evaluating
and selecting cloud providers that optimally align with
their organizational requirements while considering both
current needs and future scalability demands. This
approach significantly reduces the subjectivity inherent
in cloud provider selection and provides a quantifiable
basis for strategic decision-making in multi-cloud
architectures.

To define the optimization function in algebraic
form, we can express it as a weighted sum of the desired
features:

o V= Set of cloud vendors (AWS, Azure, GCP)

e F =Setof desired features

e W = Set of weights corresponding to each desired
feature

The optimization function can be defined as follows:

W [feature]

featureeFNvendor

Score(vendor) =

Where:

e Score(vendor) represents the score of a specific
cloud vendor based on the presence of desired
features and their corresponding weights.
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e feature € F N vendor denotes that the feature is both
desired and offered by the vendor.

o Wrlfeature] represents the weight assigned to each
desired feature.

The function calculates the score for each vendor by
summing the weights of the desired features that are
present in the vendor's offerings. The higher the score,
the more suitable the vendor is considered for data
storage based on the desired features and their assigned
weights.

More complex optimization function could involve
additional factors or constraints, such as cost,
performance, and reliability. An example of an extended
optimization function that considers cost and
performance along with the presence of desired features:

e V= Set of cloud vendors (AWS, Azure, GCP)

e F = Set of desired features

e W = Set of weights corresponding to each desired
feature

e (C(vendor) = Cost factor for a specific vendor

e P(vendor) = Performance factor for a specific
vendor

The optimization function can be defined as follows:

Score(vendor) = Y.¢eernv W(F) + aC(vendor) —
BP(vendor) (2)

Where:

e o and P are coefficients that determine the relative
importance of cost and performance in the
optimization function.

The function calculates the score for each vendor by
summing the weights of the desired features present in
the vendor's offerings and adjusting it based on the cost
and performance factors. The coefficients o and [
control the balance between cost and performance
considerations.

The increasing complexity of multi-cloud
environments necessitates a sophisticated approach to
vendor selection and resource allocation that goes
beyond simple feature-based scoring. Traditional static
evaluation methods fail to capture the dynamic nature of
cloud services, where performance metrics, cost
structures, and workload patterns exhibit temporal
variations and non-linear relationships. The proposed
extended optimization function addresses these
limitations by incorporating temporal dynamics through
integral calculus and rate-of-change analysis via
derivatives. This mathematical framework enables the
quantification of cumulative effects of time-dependent
features while simultaneously considering the velocity

of performance changes, which is crucial for predictive
decision-making in dynamic cloud environments. The
integration of continuous variables allows for a more
nuanced evaluation of vendor capabilities across varying
operational conditions, while the derivative components
provide insights into the stability and adaptability of
cloud services under changing workload patterns.

The following is an example of how integrals and
derivatives can be incorporated into the optimization
function:

e V= Set of cloud vendors (AWS, Azure, GCP)

e F = Set of desired features

e W = Set of weights corresponding to each desired
feature

e (C(vendor) = Cost factor for a specific vendor

e P(vendor) = Performance factor for a specific
vendor

e f(t) = Continuous function representing a specific
feature's influence over time

The extended optimization function with integrals and
derivatives can be defined as follows:

Score(vendor) = Ytcpnv (W(f) . fab f(t)dt) +

aC(vendor) — B—dp(vzlsdor)

Where:
o f: f (t)dt represents the integral of the continuous

@ the derivative of the

performance factor P(vendor) with respect to time

represents

The integration and differentiation allow for more
sophisticated modelling of the factors' contributions to
the score, considering the temporal aspect or the rate of
change.

The final formula for selecting the vendor with the
highest score can be represented as follows:

Selected Vendor = argmaxyenqoreviScore(vendor)}

In this formula, argmax represents the function that
returns the vendor with the maximum score among all
the vendors in the set V. The Score(vendor) is the
previously defined optimization function that calculates
the score for each vendor based on the given features,
weights, and factors.
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Algorithm selection

The optimization of data distribution in multi-cloud
environments presents a multifaceted challenge that
necessitates sophisticated problem-solving approaches.
After careful consideration, we have identified
Reinforcement Learning (RL) and Multi-Objective
Evolutionary ~ Algorithms (MOEAs) as the most
promising methodologies for addressing this complex
optimization problem. The selection of these approaches
is predicated on several key factors that align with the
unique characteristics of the multi-cloud data
distribution scenario [9].

Complexity Management: the inherent complexity of
the multi-cloud data distribution problem, characterized
by numerous interrelated criteria and dynamic factors,
presented in Table 1, demands approaches capable of
handling high-dimensional, multi-objective
optimization. Both RL and MOEAs have demonstrated
proficiency in navigating such complex problem spaces,
making them well-suited for this application.

Adaptability to Dynamic Environments: Cloud
environments are inherently dynamic, with fluctuating
costs, performance metrics, and evolving regulatory
requirements. RL's capacity for real-time adaptation and
MOEASs' ability to rapidly generate new solutions in
response to changing conditions make these approaches
particularly valuable in this context.

Effective Trade-off Analysis: the optimization of
data distribution inherently involves balancing
conflicting objectives, such as cost minimization and
performance maximization. MOEAs excel in identifying
Pareto-optimal solutions, providing a comprehensive
view of possible trade-offs. Concurrently, RL can learn
policies that effectively balance multiple criteria over
extended time horizons.

Scalability: as the complexity of the multi-cloud
ecosystem grows with the introduction of new providers
and distribution options, the solution space expands
exponentially. Both RL and MOEAs offer scalable
frameworks capable of efficiently managing large
solution spaces, ensuring the continued applicability of
these approaches as the problem domain evolves.

Uncertainty Handling: the ability to incorporate
uncertainty into decision-making processes is crucial
when dealing with variables such as future data access
patterns and potential regulatory shifts. Both RL and
MOEAs provide mechanisms for uncertainty
management, enhancing the robustness of the resulting
optimization strategies.

Continuous Optimization: the ongoing nature of the
data distribution problem necessitates continuous
optimization. RL's inherent suitability for continuous
learning and adaptation, coupled with the iterative
applicability of MOEAs, aligns well with this

requirement, enabling persistent
response to evolving conditions.

While Reinforcement Learning (RL) and Multi-
Objective Evolutionary Algorithms (MOEAs) have been
identified as the most suitable approaches for resolving
the proposed optimization function in multi-cloud data
distribution, it is important to consider alternative
methodologies and provide a critical analysis of their
limitations in the context of our specific optimization
problem. Linear Programming is a widely used
optimization technique for problems with linear
objectives and constraints. Integer Programming is an
extension of LP that deals with discrete variables and is
potentially useful for allocating indivisible resources.
Gradient Descent-based Optimization — a family of
algorithms that iteratively move towards the optimal
solution by following the gradient of the objective
function. Simulated Annealing — a probabilistic
technique for approximating the global optimum of a
given function. Particle Swarm Optimization (PSO) — a
population-based stochastic optimization technique
inspired by the social behaviour of bird flocking or fish
schooling. Constraint Programming (CP) — a paradigm
for solving combinatorial problems that is based on
inferring and propagating constraints. Bayesian
Optimization — a sequential design strategy for global
optimization of black-box functions. While each of these
alternative approaches has its strengths and could
potentially contribute to solving aspects of the multi-
cloud data distribution problem, they all fall short in
addressing the full complexity of our optimization
scenario. The key limitations revolve around their
inability to effectively handle:

e Multi-objective optimization with potentially

conflicting goals

optimization in

e Dynamic and uncertain environments

characteristic of cloud systems
o Scalability to large solution spaces
¢ Continuous learning and adaptation
between

e Complex, non-linear

variables

relationships

In contrast, Reinforcement Learning and Multi-
Objective Evolutionary Algorithms provide a more
comprehensive  framework for addressing these
challenges. RL's ability to learn and adapt in dynamic
environments, coupled with MOEAs' proficiency in
handling multi-objective optimization and revealing
Pareto-optimal solutions, makes them better suited for
the complexities inherent in multi-cloud data
distribution optimization. These approaches offer the
flexibility and robustness required to navigate the
intricate landscape of cloud resource allocation, data
management, and performance optimization, while also
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providing mechanisms for continuous improvement and 4| Methodology Advantages Limitations
adaptation to changing conditions. As such, they ro—— —

o, X ) ptimization parallelization convergence
represent the most promising solutions for advancing the (PSO) simplicity susceptibility
state of the art in multi-cloud environment optimization. - Non-linear - Constrained
The comparative analysis of optimization approaches for optimization optimization

. .l . . . proficiency challenges
multi-cloud data distribution is presented in Table 2. - Continuous and - Dynamic

Table 2. Comparative Analysis of Optimization g;srfgﬁfgvanable Zggtzgr;f n

Approaches for Multi-Cloud Data Distribution limitations
Methodology Advantages Limitations Constraint' - Highly co.nstr.a ined - Scalabilit}./

# Programming problem suitability challenges in
Reinforcement - Dynamic - Reward function (CP) - Efficient search extensive problems
Learning (RL) environment design complexity space pruning - Uncertainty

adaptation - Potentially 8 - Complex constraint optimization
- Robust uncertainty prolonged training modelling inadequacy
handling periods expressiveness - Continuous

1 - Continuous learning - Hyperparameter learning capability

capability sensitivity absence
- Multi-objective Bayesian - Efficiency for - High-dimensional
temporal balancing Optimization computationally computational
- Scalability to expensive evaluations complexity
extensive solution 9 - Noisy observation - Discrete variable
spaces robustness quantity limitations
Multi-Objective | - Superior multi- - Convergence - Prior knowledge - Multi-objective
Evolutionary objective optimization | latency in extensive incorporation optimization
Algorithms - Pareto-optimal problems capability constraints
(MOEAs) solution identification - Solution quality
- Non-linear dependence on
2 relationship algorithm Algorithm formulation
management configuration
- Scalability to large- - Domain-specific
scale problems customization We propose two distinct methodologies for resolving
pg)tt:'itlla\ie adaptation | requirements the optimization function and defining appropriate
Lincar ~Efficiency in linear | - Linearity weights. The first approach leverages Reinforcement
Programming constraint scenarios assumption Learning (RL), specifically implementing a Q-learning
(LP) m];zlf}tlae?nh:t}:s:l 11E2320ns algorithm to determine optimal weights for features and
- quacy for . .
3 foundation dynamic coefficients o and B. In this RL framework, we
- Rapid solution environments conceptualize the state space as the current distribution
computation for - Multi-objective . . .
modest-scale problems | optimization of data across cloud vendors, while the possible actions
deficiencies encompass data movement and redistribution decisions.
Integer - Discrete variable - Computational The system's reward function is directly derived from
Programming optimization intensity for large- e . . .
(IP) - Tndivisible resource | scale problems our optimization function Score, allowing the RL agent
allocation capability - Non-linear to iteratively learn and refine which combinations of
4 - Complex logical relationship weights and coefficients yield the highest performance
constraint modelling limitations
- Absence of scores.
continuous learning
Gradient ~Efficiency for mizlcl:?;spn&a RL algorithm for optimizing data distribution in a
Descent-based smooth, convex convergence risk multi-cloud environment
Optimization | problems . - Differentiable 1: Initialize Q(s, a) arbitrarily foralls € S,a € A
5 - (?OIItIII-lLIOUS variable obje‘_:tlve function R _ .
suitability requirement 2: For eplsode =1toM:
- Rapid convergence - Discrete 3: Initialize s < So
in well-conditioned optimization _ X
scenarios incompatibility Fort=1to T:
Simulated - Local optima escape | - Convergence 4: Choose a from s using s—greedy pOliCy
Annealing (SA) | mechanism latency in large-scale derived from Q
- Non-convex problems .
landscape optimization | - Multi-objective S: Take action a, observe r = R(s, a, t), and
6 - Broad problem optimization next state s'
applicability limitations . . ' 1
- Continuous 6: Q'(S, a) < Q(s, a) + [r + vy - max_a" Q(s,,
learning mechanism a) - Q(S, a)]
absence 7. Update W_s, W t, a, and B using gradient
7 | Particle Swarm | - Implementation and - Premature descent - -
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s« s

9: If converged, break

Return optimal state s* and corresponding Q-
values

%

The second methodology employs a Multi-Objective
Evolutionary Algorithm (MOEA) approach, specifically
utilizing the NSGA-II (Non-dominated Sorting Genetic
Algorithm II) to identify Pareto-optimal solutions. This
evolutionary approach enables us to effectively
navigate the complex multi-dimensional optimization
space while considering multiple competing objectives
simultaneously.

Algorithm for MOEA approach

1: Initialize population P = {pi, p2, ..., pn}, Where
each p; represents a solution vector containing
weights and coefficients

For generation g =1 to G:

3: Evaluate the fitness of each pi € P using

Score(pi) = ZfEFS(Ws [f] : fvalue(pi)) +
Yser, (WeIf] - £(t, pi)) + - C(p;) — B - P(py)

»

4: Perform non-dominated sorting:
F = {F\, F2, ..., Fx} where F. is the set of non-
dominated solutions

5: Calculate crowding distance for each p;:

M
CD(pi) — Z I:m(pi+1) :fm(pi—l)
m=1 Mmax Mmnin

6: Select parents using tournament selection:
Forj=1ton/2:

p1, p2 = TournamentSelect(P, k)

O =0 U Crossover(ps, pz2)
7: Apply mutation to offspring population O:
For each o; € O:
= Mutate(o;, )

8: Combine P and O to form R=P U O
9: Select next generation P:

P = SelectBest(R, n)
Return non-dominated solutions S* = {s € P |
ApeEP:p>s}

10:

To evaluate the practical efficiency of these
approaches, we conducted extensive experimental
comparisons using real-world multi-cloud deployment
scenarios. Our experimental setup consisted of three
major cloud providers (AWS, Google Cloud, and
Azure) with varying data center locations and pricing
models. We analysed both algorithms' performance
across several key metrics. The following scenario was

taken to compare the performance of the MOEAs for
resolving the optimization function:

1. The optimization task is run for 1000 iterations.

2. Performance is measured by a composite score
(0-100) that takes into account multiple
objectives (e.g., cost efficiency, latency, data
consistency, and security).

Higher scores indicate better performance

4. Both algorithms start with similar initial
performances but evolve differently over time

Performance Comparison: RL vs MOEA

100
— RL Performance
~—— MOEA Performance

80

Performance Score

0 200 400 600 800 1000

This graph illustrates that RL tends to show rapid
initial improvement but may plateau earlier; MOEAs
may start slower but can potentially achieve better long-
term results, especially in complex, multi-objective
scenarios; the choice between RL and MOEA may
depend on the specific requirements of the optimization
task, such as the need for quick initial results versus
long-term  optimization. The results of these
comparisons provide valuable insights into the strengths
and limitations of each approach in the context of
distributed multi-cloud data storage optimization. This
analysis forms the foundation for our subsequent
detailed discussion of experimental results and their
implications for practical implementations.

Conclusion

Our research presents several significant
contributions to the field of multi-cloud optimization.
First, we develop a comprehensive mathematical
framework for optimisation of distributed multi-cloud
data storage, which incorporates multiple weighted
criteria derived from our ontological model. This
framework serves as a foundation for systematic
decision-making in multi-cloud environments. Second,
we introduce a novel RL-MOEA methodology that
effectively handles the dynamic nature of cloud
services, comparing the adaptive learning capabilities of
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reinforcement learning with the multi-objective
optimization strengths of evolutionary algorithms.
Third, through empirical validation, we demonstrate the
performance of the suggested approach and define its
efficiency over traditional selection methods.

Despite these achievements, our research reveals
several critical areas that present further investigation
potential in the field of multi-cloud optimization.
Further advancement of learning mechanisms
constitutes a crucial research direction. This includes
the implementation of deep reinforcement learning
techniques for enhanced decision-making, the
development of transfer learning approaches to leverage
knowledge across different cloud scenarios, and the
investigation of federated learning possibilities for
distributed optimization.

Scalability and performance considerations demand
attention through the extension of our framework to
handle ultra-large-scale cloud data storage, the
development of real-time optimization capabilities for
dynamic workloads, and its impact on provider
selection processes.

Security and compliance aspects present additional
research opportunities, specifically in integrating
advanced security metrics into the optimization
function, developing compliance-aware selection
mechanisms, and investigating privacy-preserving
optimization techniques.

The results of this research not only contribute to the
academic understanding of multi-cloud optimization but
also provide practical value for organizations seeking to
implement efficient multi-cloud strategies. As cloud
computing continues to evolve, the methodologies and
frameworks presented in this paper will serve as

Kapmawos A./1., I'nooa JI.C.

valuable building blocks for future advancements in the
field.
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OnTuMmizanis po3noaijieHoro 30epesKeHHs TaHHX Y MYJIbTHXMAPHUX cepPe0BUIIAX: AJITOPUTMIYHMIA miaxin

IIpo6iaemaTuka. MynsTHXMapHi CEpeIOBUINA CTBOPIOIOTH CKIATHI BHKIMKH B ONTHMAIBHOMY PO3IOALTI pecypciB Ta
BHOOpI MocTavyaybHUKIB TOCHyr. IlomepenHi JOCIIPKEHHS BCTAHOBMJIM KOMIUIEKCHY OHTOJIOTIYHY MOJENb Ta KpuTepil
OIIIHIOBAaHHS JUISI PO3MOJIICHOr0 30epiraHHs JaHWX, MpoTe e(QEeKTHUBHUHA BHOIp TMOCTAYaNbHUKIB 3aJUIIAETHCS 3HAYHUM
BUKJIMKOM depe3 AMHAMIYHYy IPUPONY XMapHHX CEpBICIB Ta MHOXHHY B3a€EMO3AJEXHUX (DaKTOpiB, IO BIUIMBAIOTH Ha

MPOAYKTUBHICTb Ta EKOHOMIYHY €()eKTUBHICTb.

Mera pocaimkens. Po3pobutn Ta BamigyBatH cKiagHy (QyHKIiFO ONTHMI3amii 11 BUOOPY XMapHHX MOCTaYaIbHHKIB Y
MYJIBTHXMapHUX CEpeloBHINAX, MO Moeanye Metomu Hapuanns 3 Ilimkpimtennsm (HIT) ta BararouinsoBi Eosromiiini
Anroputmu (BEA) mnst BupileHHS cKJIagHOCTI BUOOPY NOCTa4yalbHUKIB 3 YpaxyBaHHSIM MHOXKHHHM KOHKYPYIOUHMX IieH Ta

00MEKEHD.

Metoauka peamizamii. J[ocni/ykeHHS BHKOPHCTOBYE OHTOJOTIYHMM MiAXim Uit ¢opmamizamii KOHIEMIH MpexMeTHOl
00JacTi, BIIHOCHH Ta BJIACTHBOCTEH y MyJbTHXMAapHUX cepemoBumiax. [lomatkoBo po3pobieHo (YHKIIIO ONTUMI3alii, 1o
BKIJIIOYA€ MHOKHHY 3BOKEHHUX KPUTEPiiB, OTPIMAHKX 3 BCTAHOBJIEHOI OHTOJIOTiYHOT Mozeni. JlocmikeHHS 30cepe/KyeThCs Ha
BIpoBa/KeHHI anroputmy Hapuanus 3 IliakpimiaeHHAM s ajanrtanii 10 JUHAMIYHAX 3MiH XapaKTePUCTHK XMapHUX
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MOCTAYaNIbHUKIB Ta iHTerpaiii bararonineoBux EBOMOMIHHUX ANTOPUTMIB Uil 0OPOOKH MHOXHHH KOHKYPYIOUHX IlJICH, a
TAaKOX Hajla€ MOPIBHUIBHUH aHANI3 3 TPaAULIMHUMU METOlaMH BHOOpPY Ta aJIbTEPHATUBHUMH MiAXOAAMH [0 ONTUMI3ALi 115
MYJIBTHXMapHUX CEPEIOBHII 30epirants.

PesyapTaT gocaifzKeHb. 3alpOIIOHOBaHA OHTOJIOTIYHA MOJENB YCIIITHO (popMali3ye KOHIIEMIIl MpeaMeTHOi obmacTi,
BIIHOCHHH Ta BJIACTHBOCTI B MYJBTHXMapHHX cepemoBumax. DyHkmis onTuMmizarii JeMoOHCTpye edeKTHBHICTH y BHOOpI
HaHOUTBII TMAXOIIOr0 MyOJIiYHOTO XMAapHOTO ITOCTayadbHUKA Ha OCHOBI 3aIPOIIOHOBAHUX XapaKTePHUCTHK, MOKPANIyIOdH
ABTOMATH3ALLiI0 NIPAKTHK YIPABIIHHS JaHUMH Ta IPOLECIB MPUHHATTS PiIlICHb.

BucnoBkn. Po3pobiena ¢yHKuis ontumizamii Ta 3alpoNOHOBaHA METOJOJIOTISL 3HAYHO IIPOCYBAIOTh CYYacHHUH CTaH
po3MoiIeHoro MyIbTHXMapHoro 30epiranasa maHux. Iarerpanis HIT ta BEA 3abe3neuye HamiifHy OCHOBY IS BHpIIICHHS
CKJIAJTHOCTI MYNBTUXMApHUX CEPENOBHIN, MPOMOHYIOUN BHILY POAYKTHBHICTE MOPIBHAHO 3 ICHYIOUHMH ITiTXOJaMH.
Metonomnoris  ycmimHO 0OanaHCye MHOXHHHI IUT, aJanTylOYMCh 1O JWHAMIYHMX 3MiH XapaKTepPUCTHK XMAapHHX
MOCTaYaNbHHUKIB.

Kniouogi cnosa: xmapui obuuciennss;, Myromuxmapui cepedosuwa; 30epicants 0anux; 0ocmyn 00 OaHuX, OHMOIOSIUHA
Modenw, pyHKYia onmumizayii;, Oe3nexa OaHux;, Macumado8aHicmsy, ONMUMI3AYIA GUMPAm,; YNpPAasiiHH pecypCami.



