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MODEL OF RANDOM-LIKE PLANAR TRAJECTORIES WITH INTERSECTIONS
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Background. Recently the task of detecting and identifying trajectories of objects whose genuine purposes are uncertain or
strike threatening has become extremely important. The known approaches produce insufficiently smooth trajectories.

Objective. The purpose of the paper is to build a model of generating random-like planar trajectories, which would have
sufficiently smooth curves. A trajectory may have self-intersections and may intersect other trajectories.

Methods. Preliminarily two starting points on a plane are generated. The distance and angle between these points are
calculated, which then are successively updated to calculate new trajectory points using the polar coordinate system. A
trajectory of N points is generated using 4N —4 values of normally distributed random variables with zero mean and unit
variance and four values of (0; 1) -uniformly distributed random variables.

Results. The random-like trajectory generator has the same time complexity as its predecessors, including the direction
randomization generator and its modifications. Exemplary trajectories appear very realistic. Self-intersections are important to
manoeuvre and confuse the opponent side. The trajectory has four parameters to adjust its heading, scattering of points, and
intensity of turns and twists. These parameters serve as magnitudes to amplify the respective properties. The highest influence
has the angle-scattering parameter. Four simple conditions can be embedded to fit the trajectory within a rectangular domain.

Conclusions. The suggested model should serve either for generating trajectory datasets to train manoeuvring-object
detectors on them or for masking reconnaissance. The model allows balancing the trajectory smoothness and randomness.
Keywords: object observation; random trajectory, random path; heading; polar coordinate system; manoeuvrability.

1. Planar trajectory modelling

Detecting and identifying trajectories of objects
whose genuine purposes are uncertain or strike
threatening is quite an important task. Until recently
this task had been not so crucial as it became since
newly developing air threats [1], [2]. Obtaining more
information about new-discovered non-static objects is
crucially needful to maintain confidence and safety.

Before detection and identification [3], [4], the
trajectory should be modelled in order to study its
specificities and probable bottlenecks of the detector
and identifier [2], [S]. The trajectory can be planar or
three-dimensional. The latter is usually obtained with
more enhanced radar systems [6], [7].

Both types of the trajectory left by objects, which
are intended and generally designed to move as more
non-revealed as possible, appear to be random-like [1],
[4], [8]. From the first glance, this could have been
called pseudorandomness [9], [10], but the object
trajectory may heavily fluctuate due to human
intervention rather than to truly random influences
(like, e. g., from weather conditions) [11], [12]. That is
why such trajectories ought to be called random-like.

Obviously, the planar trajectory is far simpler to
study. However, the two main principles to model
random-like trajectories are the same for both planar
and three-dimensional case. First, the neighbouring
points (which are the object positions registered) are not

equally distanced. Second, any heading changes of a
real-world object trajectory are not truly abrupt [13].
They only may seem abrupt due to a disadvantageous
view presentation or insufficiently frequent registrations
of the object observation while it is tracked.

There are a few known approaches to model
random-like planar trajectories or paths. They include
(in order of improving smoothness): correlated random
walk [14], [15], segment models [16], [17], random
utility inverse reinforcement learning [18], probabilistic
approaches for connecting two points [19], non-smooth
discrete element method [11], manoeuvring modelling
group model [20], time series segmentation and
clustering analysis [17], etc. However, none of these
approaches  provide sufficient smoothness and
controllability of trajectory generation.

2. Goals and tasks to achieve it

Given a starting planar point and a number of
oncoming planar trajectory points, the goal is to build a
model of generating random-like planar trajectories,
which would have sufficiently smooth curves. A
trajectory may have self-intersections and may intersect
other trajectories. To achieve the goal, the approach
with randomizing direction or heading is formalized
first. Then, motivated by the lack of smoothness,
another approach to produce much smoother and
controllable trajectories is to be formalized. The
respective computer simulations should be discussed

© The Author(s) 2024. Published by Igor Sikorsky Kyiv Polytechnic Institute.
This is an Open Access article distributed under the terms of the license CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/), which permits re-use,
distribution, and reproduction in any medium, provided the original work is properly cited.



56

INFORMATION AND TELECOMMUNICATION SCIENCES VOLUME 15 NUMBER 1 JANUARY-JUNE 2024, 55-65

and an appropriate conclusion is to be made.
3. Direction randomization

The approach with direction randomization relies on
using values of normally distributed random variables
(NDRVs) and values of (0;1)-uniformly distributed

random variables (UDRVs). If the total number of
trajectory points is N, then values

{8,606, 6,0, (8,15 (9,1 (1)

of four independent NDRVs with zero mean and unit
variance (SNDRVs) are used, and values

o 2

of four independent UDRVs are used. Denote the set of
points of the trajectory by

N-1

Moo )s s W) P,

Pl ={lx »licR, 3)

where point

[x ¥l
follows point
[v. ».]fori=2,N.

First, the starting point of the trajectory [x, ] is

generated as
X, =ag, +sm;, ¥, =a, +sy,, )

where >0 is a magnitude of the normal noise
intended to scatter points. The scattering is severer as a
is set to a greater value. Value s € R is used to amplify
the random offset. The following point is generated as

©)

The initial direction along horizontal axis is determined
as

X, =ag, +sm,, y, =aC, +sy,.

d =sign(x,—x). (6)

The initial direction along vertical axis is determined in
the same way:

)

Then, using a constant probability p of the direction

d, =sign(y, - »)-

change, the following steps are executed for i =2, N -1
with already determined points (4) and (5): if p, <1-p
then

dx = _Sign(xi X );

®)

else if v, <1-p then

d,==sign(y,—y,,). )
Then
X=X +ad,-|6), v, =y +ad, |9
fori=2, N—1. (10)

The direction randomization approach is adjusted
with its three parameters

a>0,s5eR, pe(0;1). (11)

Nevertheless, the factual qualitative influence is made
by magnitude @ and probability p. An example of the

planar trajectory of 102 points by p=0.1 and a =0.52

is presented in Fig. 1 (here and below the starting point
is marked with square). Another trajectory of 102 points
generated by the twice-lower direction change
probability is shown in Fig.2 (the pseudorandom
number generator seed is different), where the trajectory
appears to be less random than that in Fig. 1. As the
direction change probability is set twice lower again,
the trajectory appears to be far less random (Fig. 3).
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Fig. 1. A planar trajectory of 102 points generated by
(1) — (10) and a relatively high probability of the
direction change (¢ =0.52, s=5, p=0.1)

As the number of points generated by (1) — (10) is
increased (i. e., the trajectory is intended to be made
longer), the trajectory appears overly randomized
(Fig. 4). However, as the probability of the direction
change is set to a lower value, a longer trajectory has
distinct changes of direction either at the same angle or
just oppositely. An example of this is presented in



Fig. 5, which can be compared to Fig.3 as they are
peers. The random-like trajectory in Fig.5 either
changes its direction at about angle 90° or changes in
opposite direction. Therefore, despite having multiple
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Fig. 2. A less-random-appearing planar trajectory of 102
points generated by (1) — (10) and the twice lower
probability of the direction change compared to Fig. 1
(a=052,s5s=5, p=0.05)
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distinct changes of direction, such a random-like
trajectory is predictable to some extent. The only “true”
randomness here is provided by the values of SNDRVs
in (10), by which the distance between the neighbouring
points is randomized.
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Fig. 3. A far-less-random-appearing planar trajectory of
102 points generated by (1) — (10) and the twice lower
probability of the direction change compared to Fig. 2

(a=0.52, s=5, p=0.025); the trajectory has four

distinct changes of direction at seemingly the same angle

5:
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Fig. 4. An overly randomized planar trajectory of 1002 points generated by (1) — (10) and a relatively high probability
of the direction change (¢ =0.52, s=5, p=0.1)
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Fig. 5. A planar trajectory of 100i points generated by (1) — (10) and ¢ =0.52, s =5, p =0.025; the trajectory has
multiple distinct changes of direction, which either have roughly the same angle or are made oppositely

The approach with direction randomization produces
either too chaotic trajectory or rectangularish trajectory,
but there is an obvious lack of smoothness. Any
manipulation with magnitude a and probability p

cannot produce realistic trajectories. Sufficient
smoothness can be imparted by sinusoidal functions,
though.

4. Polar coordinate system

Along with absolute coordinates, planar trajectories
can be described by polar coordinates, wherein
sinusoidal functions are used. The approach with polar
coordinates also relies on using values (1) of four
independent SNDRVs and the first four values
{n>M,}s {w, 1y} in (2) of two independent UDRVs,

but two more SNDRVs are used additionally. The
starting first and second points are generated as (4) and
(5). The distance between these points is

2 2
r21=\/(x2—x1) +(3,=») (12)
and the respective angle is
B, = arctan 22 . (13)

X,

The following steps are executed for i=2, N —1 with
already determined points (4) and (5): distance

By = +ab,| (14)

i,i-1
and angle
Bi =B +09, (15)

are calculated for a magnitude a >0 of the normal
noise to scatter distances and for a magnitude b >0 of
the normal noise to scatter angles. Then

+hr. o

X =X 1 il T, 00,

i+1,0

cosf

_ : ()
Vin =Yt smBy, +hn, o

ylien,iWi

fori=2,N-1 (16)

for magnitudes h >0 and h >0 to additionally

scatter points by values

o) o}

(17)

of two independent SNDRVs.
The polar coordinate system approach is adjusted
with its four parameters:
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a>0,b>0, h >0, h >0, (18)

Apart from the random offset parameter s €R in the
starting first and second points (4) and (5), parameters
a, h hy serve to scatter points — magnitude a

amplifies the distance between two neighbouring
points, while parameters A, and h, amplify scattering

along horizontal and vertical axes, respectively.
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Parameter b amplifies stochasticity of changes in the
trajectory heading, while its smoothness is maintained
quite satisfactory. Indeed, a tiled plot of 15 trajectories
of 250 points by setting parameters (18) to 0.1 is shown
in Fig. 6, and the plot trajectories are much smoother
now than those in Fig. 2, 3, 5 (the trajectories in Fig. 1
and 4 remind clouds of randomly scattered points rather
than random-like trajectories or paths). Trajectories in
Fig. 6 do not have much changes (turns and twists).
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Fig. 6. A collection of 15 random-like trajectories of 250 points generated by (12) — (18) with a=b=h =h, =0.1

As parameter b is set to 0.15 (i.e., it is 50 %
increased), the 15 trajectories generated by the same
pseudorandom number generator seed become more
twisty (Fig. 7). The same pseudorandom number
generator seed means that the starting first and second
points are the same for each respective subplot in Fig. 6
and 7. Nevertheless, some trajectories in Fig. 7 still
remain resembling to those in Fig. 6. These are
trajectories ## 1, 4 in the first row, trajectories ## 2, 4,
5 in the second row, and trajectories ## 1, 2, 4 in the
third row. Trajectories in Fig. 7, despite having more
turns and twists compared to trajectories in Fig. 6, still
do not have any self-intersections. Then, as parameter
b is setto 0.2 (i. e., it is twice as increased compared to
trajectories in Fig. 6), three out of the 15 trajectories
generated by the same pseudorandom number generator

seed have self-intersections (Fig. 8). Namely, these are
trajectory #3 in the first row and trajectories ## 2, 5 in
the third row. Amazingly enough, some trajectories in
Fig. 8 still remain resembling to those in Fig. 6,
although having much more turns and twists. These are
trajectory #5 in the second row and trajectories ## 1, 4
in the third row. The trajectories in Fig. 7 and 8 are
more comparable. Thus, trajectories ## 1, 2 in the first
row, trajectories ## 4, 5 in the second row, and
trajectories ## 1, 2, 4 in the third row are pretty
resembling in the two tiled plots. The most resembling
trajectories are trajectory #5 in the second row of Fig. 7
and 8, and trajectory #1 in the third row of Fig. 7 and 8.
The latter trajectory in Fig. 8 repeats even small turns of
the respective trajectory in Fig. 7 (which can be easily
spotted by zooming in).



INFORMATION AND TELECOMMUNICATION SCIENCES VOLUME 15 NUMBER 1 JANUARY-JUNE 2024, 55-65

J

p—

e

-,

......

i
/ ~
Fig. 7. A collection of 15 random-like trajectories of 250 points generated by (12) — (18) with a=h, =h =0.1,

b=0.15, where the pseudorandom number generator seed is the same as for the collection in Fig. 6
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Fig. 8. Random-like trajectories of 250 points generated by (12) — (18) with a =/ =h, =0.1, b=0.2




Herein, it is noteworthy that setting angle-scattering
parameter b to a lower value does not imply non-self-
intersecting trajectories if such ones are generated for a
fewer points. Indeed, none of the 15 trajectories in
Fig. 6 intersects itself, but it may be due to a fewer
points of the trajectory, rather than a too low value of
the angle-scattering parameter. Thus, if to increase the
number of trajectory points up to 4500, the respective
collection of 15 random-like trajectories, generated by
the same parameters (18) all set to 0.1 and by the same
pseudorandom number generator seed used for the
collection in Fig. 6, appear far more twisty (Fig.9).
Besides, now there are just three out of 15 trajectories
without self-intersections: trajectory #3 in the first row

V. ROMANUKE, M. PABICH, MODEL OF RANDOM-LIKE PLANAR TRAJECTORIES WITH INTERSECTIONS

and trajectories ## 4, 5 in the second row. Each of the
other 12 trajectories has at least one self-intersection.
Some of these self-intersections remind knots — simple
(c. g., like that one in trajectory #1 in the first row, the
knot in trajectory #4 in the first row, the simple knots in
trajectories ## 2, 3 in the second row, the simple knots
in trajectories ## 1, 4, 5 in the third row) and more
sophisticated (c. g., like that one in trajectory #5 in the
first row, the trickier knots in trajectories ## 1, 3 in the
second row, and the not-the-easiest-to-unravel knots in
trajectories ## 2, 3 in the third row). The size and
structure of the knots vary severely — from tiny to
almost gigantic, with respect to the trajectory size and
volume (in the number of points).

Fig. 9. A collection of 15 random-like trajectories of 4500 points generated by (12) — (18) with a=b=h,=h =01,

where the pseudorandom number generator seed is the same as for the collection in Fig. 6 (obviously, every subplot
here and in any other collection visualized has its own scaling and axes aspect ratio)

Could we make a voluminous trajectory (not a
lengthy one, by the way) not so twisty as in Fig. 9 by
changing only one parameter (or, speaking for it with a
stricter style, by changing the minimum possible
number of parameters)? The answer to this question is
given in Fig. 10 whose subplots are trajectories
generated by the same pseudorandom number generator
seed as for the collection in Fig. 9, but with

a=h =h=0.1,b=0025,

1. ¢. the angle-scattering parameter is set four times
lower compared to that for Fig. 9. It is clearly seen that
all the subplots in Fig. 10 are much smoother than those
in Fig. 9, having no self-intersections or twisty parts.
Another noticeable effect is that some trajectories have
almost radically changed their heading. Trajectory #5 in
the first row is one of such examples.

Next question is how do multiple trajectories appear
in the same region (planar domain)? An example is
presented in Fig. 11, where 14 trajectories of 2000

61
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points each are generated by (12) — (18) with quite ample. The visible length of the trajectory varies

d=h =h =01.b5=0075 significantly. There are three pairs of intersecting

Y ’ o trajectories. One trajectory intersects itself. There is a

and shifting the random offset horizontally to the right great deal of turns and twists that simulate realistic
for every new trajectory. The variety of trajectories is manoeuvring of skulking objects.

ARV
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i

Fig. 10. A collection of 15 random-like trajectories of 4500 points generated by (12) — (18) with a=4_= hy =0.1,
b =0.025, where the pseudorandom number generator seed is the same as for the collection in Fig. 9

Fig. 11. A collection of 14 random-like trajectories of 2000 points in the same domain, where the trajectories are
generated by (12) — (18) with a=h, =h =0.1, b =0.075 (a different pseudorandom number generator seed is used)



However, a more realistic scenario may require
sudden changes of the trajectory “style”. It is easy to
implement by imposing a condition by which one or
more parameters (18) are set to different values. An
example of such a condition is:

p>p, and i > i,

for p, €(0;1) and 2 <i, <N -1 (19)

for a value p of a UDRV and some threshold values
Py> Iy given beforehand. So, if (19) is true, during a
trajectory is generated, one or more parameters (18) are
changed (updated) and further generation is executed at
the updated parameters. Condition (19) can be invoked
multiple times. Usually it is sufficient to update the
angle-scattering parameter solely. An example of
invoking condition

V. ROMANUKE, M. PABICH, MODEL OF RANDOM-LIKE PLANAR TRAJECTORIES WITH INTERSECTIONS

p>0.9975 and 7 > % (20)
once is visualized in Fig. 12 for N =2000, where a
collection of six trajectories is presented. As soon as
(20) turns true, the angle-scattering parameter is set to a
different value (namely, it is 10 times increased), and
the trajectory is generated onward with the new, much
severer, angle-scatterer. Practically, condition (20)
along with subsequently increasing parameter b from
0.015 to 0.15 mean that the object must drastically
strengthen its manoeuvring upon passing the one third
of its path, but not exactly at the point. Therefore, cach
of the trajectories in Fig. 12 starts smoothly and
predictably, and subsequently it develops much more
randomly, being far less predictable in its general
heading or even unpredictable.

/7

Fig. 12. A collection of six random-like trajectories of 2000 points generated by (12) — (18) with a=h, =h =0.1,
b =0.015, and by condition (20) with N =2000 to set »=0.15

5. Discussion

As experience has shown, the random-like trajectory
generator has the same time complexity as its
predecessors, including the direction randomization
generator by (1) — (10) and its modifications. Overall,
trajectories by the direction randomization approach
remind of pipeline screensaving (see Fig. 5, although

Fig. 2 and 3 fit as well), so they hardly can be used in
most practical tasks. Self-intersections are important to
manoecuvre and confuse the opponent side. The
respective exemplary trajectories in Fig. 9 appear very
realistic, as well as some trajectories in Fig. 8, 11, 12.

A trajectory of N points requires generating

442-(N=2)+2-(N-2)=4N—4
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values of SNDRVs and four values of UDRVs. An
additional UDRV is required to add supplementary
conditions like (19) in order to change trajectory
properties during its generation. Speaking less strictly,
all those pseudorandom values can be drawn from only
one SNDRV and one UDRV this will not
significantly decline non-correlatedness and other
stochastic properties of such values.

A few additional constraints can be embedded. They
relate to domain limits. Say, if an object trajectory must
be within a rectangular domain, four simple conditions

2D

xi <xmin’ xi >xmax’ yi <ymin’ yi >ymax

are additionally checked while the trajectory is
generated. If one of conditions (21) turns true, the
respective coordinate is re-generated until it turns false.
Conditions (21) would be similar to fit within circular
or elliptic domain limits, where only right terms in (21)
should be substituted for respective curve functions.

6. Conclusion

The suggested model of generating random-like
planar trajectories consists in preliminarily generating
two starting points (4), (5), calculating distance (12)
and angle (13) between them, which then are
successively updated as (14) and (15) to calculate new
trajectory points by (16) using the polar coordinate
system. The suggested approach uses six independent
SNDRVs and two independent UDRVSs. The trajectory
has four parameters (18) to adjust its heading, scattering
of points, and intensity of turns and twists. These
parameters serve as magnitudes to amplify the
respective properties. The highest influence has the
angle-scattering parameter b. Unlike the direction
randomization approach, which generates rather too
chaotic trajectories or too rectangularish trajectories, the
polar coordinate system approach generates sufficiently
smooth trajectories. Moreover, the trajectory “style”
can be varied during its generation by adding
supplementary conditions like (19) with some threshold
values, upon exceeding which one or more parameters
(18) are set to different values. So, apart from
rectangular domain conditions (21), the polar
coordinate system approach generates controllable
trajectories also.

The polar coordinate system approach allows easily
balancing smoothness and randomness of the trajectory.
The intensity and size of self-intersections, as well as
intersections with other trajectories generated in the
same domain, cannot be straightforwardly regulated,
though. Nevertheless, unpredictability of the trajectory
is increased as the angle-scattering parameter is set to a
higher value. It efficiently masks the genuine

destination or purposes of the manoeuvring object. The
suggested model of generating random-like planar
trajectories with intersections should serve either for
generating trajectory datasets to train manoeuvring-
object detectors on them or for masking reconnaissance.
The research must be furthered by studying methods
of identifying multiple trajectories generated in the
same domain by the polar coordinate system approach.
For this, in particular, density-based and shape-free
clustering methods like DBSCAN [21], [22] may be
used. However, handling trajectory intersections is
likely to be an additional problem to prevent merging
different trajectories and severing one trajectory with
self-intersections (with simple or sophisticated knots).
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Speech

Mopeb BUNIQIKOBHX HA BUIJISI/I TPAEKTOPIii 3 MepeTHHAHHSIMH HA IVIOMIMHI
IIpodsemaTnka. OctaHHIM YacoM 3ajadya BHUSBICHHS Ta ifeHTU(]IKalil TpaekTopiil 00’ eKTiB, uui cripaBXkHI Hamipu abo
HeBU3HAYCHI, a00 3aTPOXKYIOTh yIapaMH, CTaja eKCTPEMAIbHO BaXKIMBOK. Binomi Mmiaxoau NpoayKyrTh HEAOCTATHBO TMIa/Ki

TpaeKTOPil.

Merta npocaimkennsi. IToOyxyBaTi MoJenb TeHEpyBaHHS BHIAIKOBHX Ha BUTIIAA TPA€KTOPiH Ha IUTOMIMHI, SKI Mamu OH
JIOCTaTHBO TJIA/IKi KpHBI YacTHHU. TpaeKkTOpis MOKE MaTH MEPETHHAHHS caMoi cebe Ta MOXKe MepEeTHHATH 1HIIII TPAEKTOPIi.
Metoauka peanizauii. [lepmonoyatkoBo Ha IJIONMHI T€HEPYIOTHCS ABI TOUKH. OOUMCIIOIOTHCS BIICTaHB Ta KyT MiX

muvu ToukaMu. Lli BimcTaHb Ta KyT Jaii TOCIIJOBHO OHOBIIOIOTHCS I OOYMCIEHHS HOBHX TOYOK TPAEKTOPIl 3
BUKOPUCTAHHSIM CHCTEMH TOJSIPHUX KoopauHat. Tpaexropis 3 N TOYOK IeHEepyeTbcsi 3 BUKOPHCTaHHAM 4N —4 3HaueHb
HOPMaJIbHO PO3MOJIICHHX BHIIAJKOBHX 3MIHHHMX 3 HYJIBOBUM CEpPEIHIM W OJMHHYHOIO JIUCIIEPCIEI0 Ta YOTHPHOX 3HAYCHD
piBHOMIpHO po3moinenux Ha iHrepsaii (0;1) BUMAAKOBHX 3MiHHHX.

PesysnbTaTn aociikenns. ['eHepaTtop BHMAIKOBHX HA BUIIISAA TPAEKTOPi Mae Ty caMy YacoBY CKJIAQHICTB, SK HOTO
TIOTIEPETHAKY, BKITIOYHO 3 TEHEpPAaTOPOM Ha OCHOBI paHIOMi3alii HampsAMKy Ta iforo moxmudikamiii. [Ipukmamnosi TpaekTopil
BUIJIANAIOTh BEIbMHU peaticTHdHo. [lepermHaHHs TpaekTopii camoi ceGe BaxIIMBI JUII MaHEBPYBAaHHS Ta 3aIlTyTyBaHHSI
CTOPOHHM NPOTHBHMKA. TpaexTopis Mae 4OTHpU TapaMeTpy il HiAJalTyBaHHS 11 HampsIMKy, pO3CIIOBaHHS TOYOK Ta
IHTeHCHBHOCTI TOBOPOTIB i BuTHHIB. L[i mapameTpW BHCTYMalOTh y SAKOCTI aMIUTITYZA IS MiACWICHHS BiIIOBITHUX
BiacTuBocTel. HalicHiIpHIMIMIT BIIIMB Mae TapaMeTp KyTOBOTO PO3CitoBaHHA. YOTHPU MPOCTHX YMOBH MOXYTb OyTH JOJaHi
JUISL TOTO, 1100 3reHepyBaTH TPAEKTOPII0 y MEKax JeSIKOI MPSIMOKYTHOT 00macTi.

BucHoBKH. 3amponoHoBaHa MOJENb MOBHHHA CIyTyBaTH a00 IS TeHEepyBaHHS HAOOPIB TPAEKTOPIH 3 METOI0 HaBUaHHS
CHCTEM BHABJICHHS MAaHEBPYIOUMX 00’ €KTiB, a00 JUI1 MacCKyBaHHS pO3BiAyBanbHUX akuiil. LI Momens 1o3Bose 30amaHcyBaTi
TJIQJIKICTh Ta BUMAJAKOBICTh TPAEKTOPIT.

Knwouogi cnoea: cnocmepedsicenns 3a 00’€kmom; unaokosa mMpackmopis, SUNAOKOSULl WLIAX, HANPAMOK, CUCHeMd
NOJAPHUX KOOPOUHAM, MAHEEDEHICIb.





