
35

ISSN 2219-9454, Telecommunication Sciences, 2013, Volume 4, Number 2
© 2013, National Technical University of Ukraine “Kyiv Polytechnic Institute”

UDC 621. 93

AN APPROACH TO DYNAMIC WEB SERVICE COMPOSITION

Dmytro S. Pukhkaiev, Tetiana M. Kot, Larysa S. Globa

National Technical University of Ukraine “Kyiv Polytechnic Institute”, Kyiv, Ukraine

Today, changeable requirements to modern web-oriented services demand their fast development and constant re-
engineering. This is realized via dynamic composition of services, allowing to estimate changes of both functional and non-
functional service parameters. The last ones are considered using Web Services Agreement technique. Nevertheless, state-of-
the-art SLA-aware methods are not able to consider all classes of non-functional parameters. They also don’t provide service
run-time support and dynamic reconfiguration. The novel approach to dynamic Web Services Composition, extending SLA
with QoS ontology, is described in the paper. It includes service selection agents that use the QoS ontology and WS-
Agreements, allowing agents to choose the most appropriate service based on quality preferences exposed by service consum-
er. The proposed approach allows performing dynamic WS composition based on SLA, providing required values of QoS pa-
rameters, improving general QoS and decreasing service development and re-engineering time.

Introduction

Nowadays the way software applications are de-
signed, architected, delivered and consumed has signif-
icantly changed. Service-Oriented Computing [1] is the
computing paradigm that uses services considered to be
fundamental elements to support the development of
rapid, low-cost and easy composition of distributed ap-
plications. Services are introduced as autonomous plat-
form-independent computational elements that can be
described, published, discovered, orchestrated and pro-
grammed for the purpose of developing massively dis-
tributed interoperable applications. Service oriented
computing can be considered the framework for service
publishing, discovery, binding and composition. It re-
lies on the Service-Oriented Architecture (SOA) [2],
which is a way of reorganizing software applications
and infrastructure into a set of interacting services.

Web services [3] are a case in which XML standards
are utilized and there is a technology that goes from mes-
saging up to coordination of loosely coupled elements.

One of the most popular approaches for design and
implementation of web-oriented applications is Business
Process Management (BPM), which “supports business
processes using methods, techniques and software to de-
sign, enact, control and analyze operational processes in-
volving humans, organizations, applications, documents
and other sources of information” [4]. BPM life cycle
consists of four stages: Process design, System configu-
ration, Process enactment and Diagnosis.

One of the most considerable advantages of web ser-
vices (WS) technology utilization is the possibility of con-
necting them together in order to implement high level
business-process [5]. Web Service Composition (WSC) [6]
is a method that allows performing such connections.

Fast changes of requirements demand dynamic
composition and reconfiguration of services, consider-
ing required values of functional [7] and non-
functional [7] parameters (which represent Quality of
Service (QoS) characteristics, i.e. reliability, availabil-
ity, response time, cost, performance, etc.).

Hence, WSC unites stages of Process enactment and
Diagnosis of BPM life cycle.

To consider QoS parameters both on Process enact-
ment and Diagnosis stages is one of WSC tasks to be per-
formed. The most convenient way to contain and monitor
their values is using Service Level Agreement (SLA) [8].

In addition, another WSC issue regarding QoS pa-
rameters is that despite the existence of various dynam-
ic composition approaches, there is no approach com-
bining evaluation of different classes of QoS parameters
during performing composition and none of them is
able to meet all QoS requirements, described further.

This paper presents a novel SLA-aware approach for
WSC, allowing taking into consideration required QoS
parameters.

The paper is structured as follows: Section 2 provides a
background on different stages of BPM life cycle and its
impact on WSC. Section 3 contains state-of-the-art analy-
sis of WSC approaches. Section 4 presents the proposal
for SLA-aware WSC approach. Section 5 summarizes the
work and provides perspectives for future research.

Background

Workflow design and enactment

Graphical standards formalize computational inde-
pendent workflows, their possible flows and transitions
in a diagrammatic way. Computational independent
workflows are designed using graphical notations such
as BPMN 2.0[9], UML AD[10], USDL[11].

TELECOMMUNICATION SCIENCES VOLUME 4 NUMBER 2 JULY ─ DECEMBER 2013 36

The workflow enactment stage consists of several
steps. First step provides an orchestration [12] for web
services when execution standard such as WS-BPEL
[13] is applied. It is used to define the sequence of in-
vocations of existing web services and the kind of the
process interaction with external participants.

WS-BPEL specification singles out two different
types of language abstract and executable. WS-BPEL
Abstract Processes are introduced to hide the infor-
mation project owner wishes to conceal. WS-BPEL Ex-
ecutable Processes are introduced to be fully described.

Next step is WSC itself.

Web Services Composition

WSC is a method to connect different web services
used for creating high level business architecture by
compiling of atomic web services in order to provide
functionalities that are not available during design.
Consequently, there is a possibility to develop a new
functionality by simply reusing of components that are
already available, but unable to complete a task suc-
cessfully on their own.

Various authors classify WSC approaches. In [6],
WSC approaches are grouped as follows:

− Static and Dynamic Composition;
− Model Driven Service Composition;
− Declarative Service Composition;
− Automated and Manual Composition;
− Context-based Service Discovery and

Composition.
A composite service is a set of individual services ef-

fectively combined and reused to achieve a desired effect.
Automatic WSC consists of four phases: Planning, Dis-
covery, Selection, and Execution [14]. The first phase in-
volves creating a plan, i.e., sequence of services in desired
composition. The second phase embodies service discov-
ery due to the plan. After discovery of suitable services,
the selection phase starts. It embodies a selection of the
optimal composition from available combinations of indi-
vidual web services considering non-functional parameters
like QoS properties. The final phase involves services ex-
ecution due to the plan. If some service is not available,
they substitute one another.

First of all, WSC tools must ensure that functional pa-
rameters have adequate values, this means that consumers
input information lead to consumers required output. Con-
currently, the workflow management system must ensure
that predicates and requisites match in each step of the
workflow lifecycle. Although, the functional Web service
composition has been widely studied in literature, the as-
sessment criteria related to non-functional attributes in
particular, significantly increases the number of composi-

tion requirements. QoS parameters can be used for ranking
the composite service or for further prune of results.

Storing QoS parameters can be done directly in
BPEL-file. This method provides very low ability to
implement reconfiguration of any QoS parameter of a
composed service. Furthermore, it is not trivial to moni-
tor QoS parameters during service execution.

In agent-based solutions, agencies gather QoS data
from agents, store, aggregate, and present it to agents [15].

The approach which solves these problems is intro-
duced in [16]. Distinctive feature of this approach is uti-
lization of SLA via WS-Agreement [17] during both
workflow enactment and workflow analysis stages.

WS-Agreement

To succeed WS providers have to guarantee declared
capabilities related to services they develop. A guarantee
highly depends on resource usage which means that the
service consumer must request situational guarantees from
the service provider. Moreover, in order to avoid losses as-
sociated with guarantees violation service consumer
should be notified during run-time. Associated guarantees
are specified in an agreement between a service consumer
and a service. This agreement can be formally specified
using the WS-Agreement Specification [18].

WS-Agreement is an XML-based document contain-
ing descriptions of functional and non-functional pa-
rameters of a service oriented application. It consists of
two components that are the agreement Context and
Terms and Conditions of the agreement [17].

Workflow analysis

Considering workflow analysis methods and tools,
two types of analysis, both considering computational
workflow, can be specified [19]:

− Design time analysis (simulation and
verification);

− Runtime analysis (i.e., process mining based on
execution logs).

QoS parameters are transforming relatively frequently,
either because of internal changes in web services or be-
cause of changes in their environment (i.e., system load
has changed). During composite service execution, some
component services may change values of their QoS prop-
erties on-the-fly; some of them may become unavailable,
while others may emerge. As a result, approaches where
Web services are statically composed are inappropriate.
Runtime changes should be taken into account.

Dynamic composition, taking into account runtime
QoS transformations, should be applied. In the pro-
posed approach runtime changes of QoS parameters
such as execution time, reliability etc. are taken into ac-
count (presented in next sections).

D. PUKHKAIEV, T. KOT, L. GLOBA: AN APPROACH TO DYNAMIC WEB SERVICE COMPOSITION

37

QoS-Based SLA-Aware
Comparison of WSC Approaches

An overview of several approaches for modeling
web service quality composition, presented in details in
[20] has shown that state-of-the-art QoS WSC models
and solutions are far from required one. None of the
presented approaches can meet all QoS characteristics.
The most crucial characteristic is the ability to support
all types of QoS parameters. Markov chains [21] and
Quality Vector solutions [22, 23] are not applicable in
this regard while Ontology-and agent-based solutions
[15] meet some QoS characteristics although there are
still some types of QoS parameters i.e. non-measurable
parameters [24] that should be taken into account.

Table 1 shows SLA enables a convenient way to
performing WSC and monitoring of composed service.
Applying SLA to methods considered in [20].

Table 1. QoS-based SLA-aware comparison of WSC approaches

Require-

ments

WSC Approaches
Mar-
kov

Chains

Quali-
ty

Vector

Agent-
oriented

Ontolo-
gy-

based
Objective

QoS
+ + + +

Subjective
QoS

- - - +

Run-time
support

+ + + +

QoS as-
signment

+ + + +

Require-
ments

considering
level

Low

Aver-
age

High

High

Table 1 shows that Ontology-based WSC approach
combined with SLA-awareness should be able to perform
the most reliable WSC of all approaches presented in [20].

An approach to dynamic web-service composition

General description

The workflow on the enactment stage lacks imple-
mentation. WSC is intended to solve this problem by
finding appropriate services, based on workflow descrip-
tion and composing them into single application – com-
posite web service. The workflow on the enactment stage
is described by a model presented in the section below.

SLA-aware WSC approach partially implements
agent-based architecture and is realized in the Web Ser-
vices Agent Framework (WSAF) [15]. Its description is
provided below.

An approach includes service selection agents that
use the QoS ontology and WS-Agreements allowing
agents to choose the most appropriate service based on
quality preferences exposed by the service consumer.

When consumer application, built with WSAF, re-
quests to use a service, the agent is called for communi-
cation with service. An agent is created for each service
to expose the service interface, enlarged with function-
ality, to capture the consumer’s QoS preferences and
functional requirements and provide agencies or other
agents query for a suitable match. The service agent can
determine values of objective QoS-attributes (reliabil-
ity, availability and execution time, for instance) and
get the user feedback for subjective attributes (which is
an indicator of appropriateness for requested QoS pa-
rameters compared with values of these parameters,
specified by consumer on the stage of workflow de-
sign). Afterwards, values of these QoS are transferred
to the appropriate agencies.

A typical consumer-to-agent interaction and control
flow is described below:

1) upon initialization, WSAF sets up all configured
agencies;

2) providers register service implementations with
WSAF by configuring each service in terms of WSDL
URIs, service domains, and the service’s advertised
QoS requirements. Each configured service interface
has an agent;

3) the consumer application creates a local proxy
object for the service agent; the consumer invokes the
proxy with its WS-Agreement;

4) the agent uses business process file and WS-
Agreement to load and run its script. The script typical-
ly consults the QoS and service ontologies to complete
its configuration;

5) the agent selects the service implementation
based on agency data, and then dynamically creates a
proxy object for each selected service;

6) the consumer invokes the agent’s service opera-
tions. Each invocation is forwarded to the service
proxy, while being monitored by the agent; when the
service responds, the agent inserts appropriate data to
the relevant agencies.

The service agent finds services matching the given
interface, using UDDI. Then, it applies WS-Agreements
on the available quality data, providing service imple-
mentations ranking.

Compared to general WSAF, appliance of SLA pro-
vides:

− substitution of consumer and provider’s policies
by WS-Agreements, providing the composition with a
set of functions that makes the policies usage redundant.

TELECOMMUNICATION SCIENCES VOLUME 4 NUMBER 2 JULY ─ DECEMBER 2013 38

− adding the monitoring stage: to evaluate QoS
parameters during composed WS execution and its re-
configuration in case of QoS parameters violation.

SLA usage in the proposed approach provides gen-
eralized way of storing QoS parameters for service pro-
viders. It helps performing WSC on the stage of work-
flow enactment as well as on the stage of workflow
analysis. Another advantage compared to existing On-
tology-based approach is enabling of run-time monitor-
ing of the composite service.

Workflow and WSC models

Workflow and WSC models, providing proposed
approach realization are presented in this section.

The workflow model on design stage is presented
in [19].

A workflow model on enactment stage is developed
and can be characterized by:

− name;
− executor;
− relative and interactive activities – workflow

components;
− workflow parallel tasks, united into a single

stage of execution;
− set of informational input objects;
− set of informational output objects;
− executor/executors;
− execution time;
− execution resources.
Mathematically, a description of the workflow on

the enactment stage can be represented as:
),,(QIEEP id= (1)

where idE is a set of workflow’s identification ob-

jects, I is a set of informational input objects, Q is a
set of quality parameters specified on the design stage.

idE is a set of four parameters }{ 4,1, =ididE and consists

of:
EPNE =1

 – workflow name; O = E2
 – a set of tasks;

Pl =E 3
– a set of partner links with tasks executors;

Ex = E4
– workflow executor/executors.

Workflow executor is software. Human interaction
is minimized on this stage. The executor model can be
represented as:

),(ONEx EPij = (2)

where ijEx is a performer j of the task i ;

}{ ijEPEP NN = , ijEPN is a name of performerj of the task

i ; }{ ijOO = , ijO is a task i , executed by a performer j .

Informational objects have the same representation
as on the stage of the workflow design [19].

Q is a set of seven parameters }{ 7,1, =iiQ and consists

of quality components specified for resulting applica-
tion: 1Q is performance, 2Q is reliability,

3Q is robustness, 4Q is accessibility, 5Q is availability,

6Q is cost, 7Q is additional QoS parame-

ters (scalability, capacity, accuracy).
Considering of quality parameters allows to:
− control quality of an application – workflow re-

alization;
− substitute tasks executors onto more appropriate

ones during the application execution;
− increase the application quality.
In order to create the workflow implementation, ap-

plication for web services dynamic composition is re-
quired. It can be characterised by:

− name;
− set of informational input objects;
− set of informational output objects;
− indicator for appropriateness of composite web

service to the requested functionality;
− integral indicator of web service quality com-

pliance.
Mathematically, the process of WSC can be repre-

sented as:
),,,(NfFOIС = (3)

where I is a set of informational input objects;
O is a set of informational output objects;
F is an indicator for appropriateness of composite

web service to the requested functionality. F has a Bool-
ean type, it either has a state of appropriateness to the re-
quested functionality or a state of inappropriateness;

Nf is an integral indicator of web service quality
compliance. It can be represented mathematically as:

),,,,,,(ACAvAcRbRlPNf = (4)

where P is performance. It represents how fast a
service request can be completed. It can be measured in
terms of throughput, response time, latency, execution
time, and transaction time. It is assumed that perfor-
mance is measured in terms of execution time.

Rl is reliability. It represents the ability of a web
service to perform its required functions under stated
conditions for a specified time interval.

Rb is robustness. It represents the web service abil-
ity to function correctly even in the presence of invalid,
incomplete or conflicting inputs. Web services should
still work even if incomplete parameters are provided to
the service request invocation.

Ac is accessibility. It represents whether the web
service is capable of serving the client's requests.

D. PUKHKAIEV, T. KOT, L. GLOBA: AN APPROACH TO DYNAMIC WEB SERVICE COMPOSITION

39

Av is availability. It is the probability that the sys-
tem is up.

C is cost of a web service.
A represents additional QoS parameters. They have

less influence on the composite web service than previ-
ously mentioned ones, however they should be taken in-
to account if possible, and include:

− scalability, representing the capability of increas-
ing the computing capacity of service provider's computer
system and system ability to process more users' requests,
operations or transactions in a given time interval;

− capacity is the limit of simultaneous requests num-
ber which should be provided with guaranteed performance;

− accuracy is an error rate generated by the web
service.

SLA-aware approach for WSC takes into account all
previously mentioned parameters, both functional and
non-functional.

Unlike other approaches, the latter covers a wider
range of QoS parameters. In order to compose the best
web service, satisfying required parameters, the latter from
every web service, being evaluated for composition com-
pliance, must be integrated into a single parameter called
integral indicator of web service quality compliance.

The idea of composite WS development is based on
ranking the influence of QoS parameters on WS quality and
integration of each WS QoS parameters of the same type.

Table 2 presents how various QoS Parameter are in-
tegrated into a single one, depending on which WS
composition pattern is applied, and ranking (R) of the
influence of QoS parameters on WS quality.

Table 2. QoS-based SLA-aware comparison of WSC approaches

QoS
Parameter

R WS Composition Patterns

Sequence Parallel Switch Loop
Perfor-
mance

2
∑ =

m

i iP
1

)max(iP
∑ =

m

i ij Pp
1

k
iP

Reliability 1 ∏ =

m

i iRl
1

 ∏ =

m

i iRl
1

∏ =

m

i ij Rlp
1

k
iRl

Robustness 5 ∏ =

m

i iRb
1

∏ =

m

i iRb
1

∏ =

m

i ij Rbp
1

k
iRb

Accessibil-
ity

4 ∏ =

m

i iAc
1

∏ =

m

i iAc
1

∏ =

m

i ij Acp
1

k
iAc

Availabil-
ity

3 ∏ =

m

i iAv
1

∏ =

m

i iAv
1

∏ =

m

i ij Avp
1

k
iAv

Cost *
∑ =

m

i ic
1

 ∑ =

m

i ic
1

∑ =

m

i ijcp
1

kCi

Scalability 7)max(iSc ∑ =

m

i iSc
1

∑ =

m

i ij Scp
1

iSc

Capacity 7)max(iCa

∑ =

m

i iCa
1

∑ =

m

i ijCap
1

iCa

Accuracy 6 ∏ =

m

i iAcr
1

∏ =

m

i iAcr
1

∏ =

m

i ij Acrp
1

k
iAcr

Practical implementation

The concept of web-service composition module was
presented in [20]. This section describes main functions
of the software environment for SLA-aware WSC, based
on its architecture (Fig.1.), presented in previous work.

Fig. 1 Architecture of software environment for SLA-
aware WSC

Software environment for SLA-aware WSC consists
of Service locator, SLA extractor, Decision maker, On-
tology module and Service Combiner.

Service locator is a module that extracts the infor-
mation on functional parameters from abstract BPEL-
file. It also searches the appropriate services in UDDI or
service brokers (considering functional parameters). Af-
ter that all found services are listed in potential services.

SLA extractor is a module, extracting SLA infor-
mation from every service meeting functional parame-
ters through WS-Agreement. It provides Decision mak-
er module with extracted information.

Decision maker uses data received from SLA extractor
and calculates rankings for services in accordance with
rules, located in Ontology module. Then this module de-
cides which service better suits the composite service.

Services chosen for composition are listed in QoS-
aware services (if they meet QoS requirements). Oth-
erwise they are excluded from the list.

TELECOMMUNICATION SCIENCES VOLUME 4 NUMBER 2 JULY ─ DECEMBER 2013 40

Service Combiner performs WSC by importing cho-
sen services into workflow file thereby enriching ab-
stract BPEL-file with concrete services and making it
executable.

On the workflow analysis stage the software envi-
ronment for SLA-aware WSC performs the following
functions:

− compares current QoS parameters with required
values and values of QoS parameters in the list of QoS-
aware services;

− monitors the indicator value for the appropri-
ateness of composite web service to the requested func-
tionality;

− in case of QoS violation, identifies a defective
web service and changes it with the best-chosen web
service from the list of QoS-aware services;

− in case of functional parameter violation, re-
composes the web service;

− in case of determining that a WS from the list is
better in terms of QoS parameters than one in previous
WSC, puts “better” WS in the waiting list and recalcu-
lates the composition at the end of WS billing period. If
the recalculated WS composition is “better” than the
previous one, the previous WS is replaced by “better”
one, thus WS re-composition is done.

Real world scenario

The concept of web-service composition module
was presented in [20].
This section provides an example of a possible scenario
for using the presented approach and clarification of
software tool based on this example.

Let us assume a person who uses the tool for dynamic
WSC (provider) aims to develop and provide service which
helps its consumers to book a fully customizable vacation
having a hotel, flight, taxi and cultural events pre-booked.
He is not able to program such service or there is no much
time for the development. Thus, using existing web services
which can partially provide necessary functionality is a
convenient option for fast application development.

The provider has various constraints regarding his
tool, e.g. response time, cost etc. After successful regis-
tration in WSC System, the provider can either create a
new Project or edit an existing one. After choosing an
appropriate option, the provider can upload BPMN or
BPEL file into the system for analysis. At this stage QoS
constraints should be specified. Otherwise Service Loca-
tor will search for any services, satisfying functional pa-
rameters, extracted from uploaded BPEL (BPMN) file.
WS-Agreement for the composite service is generated if
QoS restrictions have been specified by the provider.
On fig. 2 BPMN diagram for Vacation Service is pre-
sented. Concrete workflows are omitted for simplicity.

Service locator extracts the information about func-
tional parameters from BPEL-file which was either up-
loaded or generated from BPMN, and searches the ap-
propriate services in UDDI or service brokers.

Now provider has a list with sets of web services capa-
ble to reach the provider’s goal (in the given example dif-
ferent combinations of services, providing flight, hotel,
taxi and cultural events booking, are presented). They are
sorted by the integral indicator of web service quality
compliance by default. The sorting is done transparently
by Decision Maker module. The provider can define
whether this stage needs human interaction (i.e. choosing a
web service) or it should be done automatically. The last
case means that the best service regarding the integral in-
dicator of web service quality compliance would be ap-
plied as default. Then chosen services are purchased. And
the provider has a functioning composite web service.

Fig. 2 Simplified BPMN diagram of provider's application

The suggested WSC Tool contains built-in monitor-
ing and dynamic reconfiguration module, providing
faster and more reliable service reconfiguration due to
already composed a list of possible services.

QoS parameters of composite web service are under
constant observation by WSC System. Let us assume
that one of these parameters, for instance response time,
is not appropriate for some period of time. QoS parame-
ters of all services within the composite are re-
evaluated. The inappropriate one is identified. After that
the provider receives a notification with options to re-
configure struggling web service i.e. to choose a web
service which satisfies non-functional parameters better
than the previous one. Reconfiguration is performed on
flight automatically if the provider has chosen the op-
tion of automatic reconfiguration in system settings. In
case of violating functional parameters, composite web
service is recomposed from scratch – violating func-
tional parameters cannot be allowed, this means that
application is not running properly.

In the case when web service for booking a hotel has
less availability than specified by the provider, the over-
all composite service does not satisfy QoS constraints.

D. PUKHKAIEV, T. KOT, L. GLOBA: AN APPROACH TO DYNAMIC WEB SERVICE COMPOSITION

41

WSC System checks availability parameters of all four
individual web services and identifies that hotel service
is struggling. WSC System still contains a list of poten-
tial services for provider’s task. These services can be
compared to a failed web service in terms of QoS param-
eters. Manually or automatically unsatisfying hotel web
service is replaced by the most appropriate one from the
list. Then WSC System re-assembles composite web ser-
vice. The provider again has a service which is fully
functional and satisfies all requirements.

End user is provided with the web interface which
gathers information from various web services thus be-
ing able to compose a customized vacation.

Conclusion and future work

QoS parameters are extremely important to evaluate.
These parameters violation can cause substantial losses
in financial or time expenses. The workflow manage-
ment system must ensure that the predicates and requi-
sites match in each workflow step.

Current state-of-the-art web service composition ap-
proaches have been analyzed. It has showed that none of
them can meet all required QoS characteristics. This paper
presents a novel SLA-aware approach for Web Service
Composition which satisfies required QoS characteristics
is. The proposed approach allows performing dynamic
WS composition based on SLA, providing required values
of QoS parameters, improving general QoS and decreas-
ing service development and re-engineering time.

The future research will focus on implementation
software WSC tool using Java technology, its testing
and verification when WS development and reconfigu-
ration. Availability and efficiency of the developed
models, analysis methods and composition tool will be
experimentally tested in the real world scenarios. Quan-
titative results on QoS and service development and re-
engineering time will be measured to prove the pro-
posed approach efficiency.

References

1. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services.
Concepts, Architectures and Applications. – Springer, 2004. – 354 p.

2. M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann: "Service-
Oriented Computing: State of the Art and Research Challenges"; IEEE
Computer, 40 (November 2007 (2007), 11; P. 38 – 45.

3. M. Papazoglou and D. Georgakopoulos. “Service-Oriented
Computing,” Communications of the ACM, vol. 46, 2003. – P. 25-28.

4. W.M.P. van der Aalst, Benatallah B., Casati F. , Curbera F. ,
and Verbeek H.M.W.. Business Process Management: Where Busi-
ness Processes and Web Services Meet. // Data and Knowledge En-
gineering. -2007. – 61(1). – P. 1-5.

5. Y. Jadeja, K. Modi, and A. Goswami. Context Based Dynam-
ic Web Services Composition Approaches: a Comparative Study //
International Journal of Information and Education Technology, vol.
2, Apr. 2012. – P.164-166.

6. S. Dustdar, and W. Schreiner, “A survey on web services compo-
sition,” in Int. J. Web and Grid Services, vol. 1, No. 1, 2005. – P.1–30.

7. S.Bansal, A. Bansal, and M.B. Blake, “Trust based Dynamic
Web Service Composition using Social Network Analysis,” IEEE
International Workshop on Business Applications for Social Net-
work Analysis (BASNA 2010), August 2010. – P. 1-8.

8. C. Molina-Jimenez, J. Pruyne, and A. van Moorsel. The Role of
Agreements in IT Management Software. Architecting Dependable Sys-
tems III, LNCS 3549. Springer Verlag, Volume 3549, 2005. – P. 36-58.

9. OMG Business Process Model and Notation (BPMN) [Online]. –
2011. – Available: http://www.omg.org/spec/BPMN/2.0/PDF

10. N. Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede, P.
Wohed “On the suitability of UML 2.0 activity diagrams for business
process modeling,” Proceedings of the 3rd Asia-Pacific conference on
Conceptual modeling APCCM '06, vol. 53, 2006. – P. 95-104.

11. Oberle, D., Bhatti, N., Brockmans, S., Niemann, M.,
Janiesch, C., “Countering Service Information Challenges in the In-
ternet of Services,” Journal of Business & Information System En-
gineering, vol.1, 2009. – P. 370-390.

12. H. Foster, S. Uchitel, J. Magee, J. Kramer, M. Hu “Using a
rigorous approach for engineering Web service compositions: a case
study,” in Proceedings of the 2005 IEEE International Conference
on Services Computing (SCC '05), 2005. – P.217-224.

13. OASIS (2007) Web Services Business Process Execution
Language (WSBPEL) [Online]. Available: http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

14. J. Cardoso, and A. Sheth, Semantic Web Services, Processes
and Applications, Springer, 2006.

15. E.M. Maximilien and M.P. Singh., “A framework and ontol-
ogy for dynamic web services selection,” IEEE Internet Computing,
vol. 8, Sep./Oct. 2004. – P. 84-93.

16. M. B. Blake, and D. J. Cummings, “Workflow Composition
of Service-Level Agreements,” in Proceedings of IEEE International
Conference on Services Computing (SCC), July 2007,. – P.138-145.

17. A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Lud-
wig, T. Nakata, J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu. (2007)
Web Ser-vices Agreement Specification (WS-Agreement) Online].
Available: http://www.ogf.org/documents/GFD.107.pdf.

18. H. Ludwig. “Web services QoS: External SLAs and Internal
Policies Or How do we deliver what we promise?,” In Proceedings of
the First Web Services QualityWorkshop at WISE, 2003. – P. 115-120.

19. Kot T., Reverchuk A., Globa L., Schill A. A novel approach
to increase efficiency of OSS/BSS workflow planning and design. –
Springer: Lecture Notes in Business Information Processing. – 2012.
– Vol. 117. – P. 142-152.

20. Tetiana M. Kot, Andrey V. Reverchuk, Larysa S. Globa, Al-
exander Schill. Complex approach to service development // ISSN
2219-9454, Telecommunication Sciences, 2012, Volume 3, Number
2. – P.19-29.

21. J. Klingemann and K. Wasch J., Aberer. “Deriving service models
in cross-organizational workflows,” in Proceedings of the Ninth Interna-
tional Workshop on Research Issues on Data Engineering: Information
Technology for Virtual Enterprises, March 1999. – P. 100-107.

22. L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q.Z.
Sheng. “Quality driven web services composition,” in Proceedings
of the 12th International conference on World Wide Web, May
2003. – P. 411-421.

23. R. Aggarwal, K. Verma, J. Miller, and W. Milnor. “Con-
straint driven web service composition in METEOR-S,” in Proceed-
ings of the 2004 IEEE International Conference on Services Compu-
ting, September 2004. – P. 23-30.

24. M. Lin, J. Xie, H. Guo, H. Wang “Solving Qos-driven Web
Service Dynamic Composition as Fuzzy Constraint Satisfaction”, in
Proceedings of the 2005 IEEE International Conference on e-
Technology, e-Commerce and e-Service, 2005. – P. 9-14.

Received in final form October 9, 2013

