19

UDC 621.39

ASYMPTOTIC PROPERTIESOF SELF-SMILAR TRAFFIC MODEL S
BASED ON DISCRETE-TIME AND CONTINUOUSTIME MARTINGALES

A. Pilipenko, Leonid O. Uryvskyi, B. Trach

NTUU “KPI”, Institute of telecommunication systelyiv, Ukraine

Asymptotic properties of self-similar traffic modddased on discrete-time and continuous-time nuais are considered.
We discovered that their performance indicatorsaagenptotically equal al — o to indicators for model based on Brown-
ian motion.

Introduction Problem statement

Massive implementation of computer networks and
increases in their productivity turned attentionsoien-
tists studying network traffic to the properties tbe
Internet traffic. In 1993, Willinger et al. [1] dievered
that_ computer network traffic exhibits sta_hstwsﬂlf- traffic models. The subject of the study is appiaa of
similarity. This phenomenon can be described bgehr . : .

. ) : martingales for network traffic modeling.
features — non-integer fractal dimension (hence, th
object is fractal), scale invariance — statistigpatame- Resear ch of asymptotic properties
o e anionos Aaany o desrbe our spproach e a rst consd

. e . ) MMILim system with arrival intensity and processing
lation function of process with long-range deperoden . .
decays slower than exponential function. This priype Intensityu. . .
is not present in telephone network traffic — ispess- . The waiting requests for processing get into a queu
es only scale invariance. Therefore, new approathe with the buffer capacity ah requests and get lost at the

network parameter estimation should be developed. Sbuflf_ert(;;/erfltovxg b ¢ s | ¢ ¢
The numerical parameter of self-similarity is the et X, ,(t) be a number of requests in a system a

Hurst exponent [2], which lies between 0 and 1. Whdimet; Ny(t) be a number of requests that arrived be-
the Hurst exponent is between 0 and 0.5, the sstichaforet; N,(t) be a number of requests that could be pro-
process is antipersistent. In this case, stochpsticess cessed up to time if there are no idle time. It is well-
exhibits no trends. When the Hurst exponent istgreaknown [3] thatN, (t) and N, (t) are independent Pois-
than 0.5, it exhibits persistence, which means lttva son processes with intensitigsndy, respectively.

trends are formed in the process. It was estimgtat If there were neither losses during perjogt], nor
the Hurst exponent for network traffic approximsgtelidle times, then

equals 0.8. It is possible to accurately describfit

s‘?ructure using th!os parameter. ’ X () = X1 (0) + Na () = N (0 (1)

Numerous stochastic processes are utilized for re- A number of requests in the system cannot be less
search and development of network traffic modelghan 0 physicallyX; ,(t) = 0. During the period, when
Martingales are one of the examples of such Process (0)+ N(t)- Ny () <0 the system is non-bus§alcu-
Martingale is a discrete or continuous process Whigated below of the threshold “0” requests shoulc:tie-
satisfies the following condition sidered as virtually processed, i.e. actually roted.

M X (t)[{X(z),z< s} |= X(s),Os<t. Therefore, in general case we have the following

One can derive the following property from thidepresentation:
equation: the expectation of process is constant Xp,u(®) = X1 (0) + N (0) —
throughqut the realization_ qf the_process. Wideyeaof —N, (O + L%’“(t) _ Li‘;{l(t),
stochastic processes exhibits this property; fangxe, _
Brownian motion is a martingale. Martingales ar#hereL,,(t) is the number of lost requests (above the

commonly used for analysis of time series. thresholdm), L, (t) is the number of virtually processed
requests (below the threshold 0).
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The purpose of the research is the study of asympto
ic properties of discrete and continuous modelaetf
work traffic with discrete and continuous time. Tolg-
ject of the research is asymptotic properties tfvaek



20 TELECOMMUNICATION SCIENCES VOLUME 4 NUMBER 2 JULY- DECEMBER 2013

Observe that process&sL,, L,, can be considered

Note that it is very easy to find a rejection proiba

as a solution of two-sided Skorokhod'’s problem. uet ity for X; ,(¢) [3]:

recall the corresponding definition.

Definition [4]. Let f be a functionf(0) € [0, m].
We say that functionsg, Ly, L,, satisfy two-sided
Skorokhod’s reflection problem with reflections @t
and m if

1) g = f©) + Lo(t) — L (t),t > 0;

2) Ly(0)=L,(t)=0L, and L, are non-
decreasing;

3) Ly andL,, may increase only whem equals 0

or m, respectively, i.e.
t

t
f 1g(s)>0dL0(S) +f g(s)<mdL (s)=0,t=>0,

4) g() €[0,m],t =0.

It is known [5] that there is a unique solutiontioé
Skorokhod’s problem (functiong, Ly, L,, are un-
known) for a given functioff.

o a/wm _ /A= 2/w
T+ W/t Q™ 1= A/ ™
It follows from (2) that

ae % 1 a 1 (5)

Tm ™~ 1 _e-ap V1 edB —1\/I'A_>OO

If we consider more complicate model than
M/M/1/m, then it could be very difficult to find thece
plicit formula for rejection probability. Howevethe
invariance principle holds true under very insigrant
assumptions. For example, there is no need to @&ssum
the exponential distribution between arrivals (o0-p
cessing) as it is for a Poisson process. It is@eafft to
suppose that these times are i.i.d. with finite e=ta-
tion. We may also assume that each arrival timeoa
of requests arrive (the second moment of a group

This solution in some sense depends continuousiiould be finite). The collective processing ismigied

onf.

In our model:
f(@®) = X;,,(0) + Np(t) — N, (D),

g(t) = X,,(0)

too. In any case a limit will be of the form
Y(t) = x+ bw(t) —at + Lo(t) — Ly (®) (6)

Remark. For theM/M/1/m model a constanb
equalsv2, but for a general model, (say for a group

Let us assume thas u, m are large enough in such aarrivals) a constarit can be arbitrary.

way that
p= A+avl+o(a),
m= BVA+o(2), (2)
X5,u(0) = xVA+0(W1), A = +oo
By invariance principle [6] a proceévé% con-
verges weakly to Brownian motid(t) asid — 4. So
Xy () = X5,,(0) + (At + B()V2) —

- ((/1 +ava)t + B’(t)ﬁ) + (3)
+e,,(6) + Lg(8) — L (D),

It is much easier to investigate a simple contirsuou
model (6), then a very general discrete model. fEhe
jection probability for a discrete model equals

L (t) This approximately equalim,._,,, \‘;E?

So, let's calculate this limit for a general mog@). It
can be proved [7] that
lg(t) l ELB(t) b2

lim;_,, P 771'(,3),
wheren(y),y e [0, B) is a stationary density for a
processY (t). It can be found from the Fokker-Planck-
Kolmogorov equation [8] fok (t):
%bzn”(y) + an'(y) = 0.

lim,_,, &

So,
where B(t) is a Brownian motion independent on e 20
(®) 20,737
B(t), g“ — 0 asl - . n(y) = B2 —az ¥ € [0,8]; (7)
Xl,u(t) 1—e b2
It follows from (3) that a procesy, ,(t) = N 4
. . n
converges ast - « to a solution of the following
Skorokhod’s problem ofD, £]: N N 5o bz%e 29p i
Y(©) = x+V2w(t) —at + Lo (t) — (D), lime,,——=2—z=—5—(8)
1-e b? e b? -1

wherew(t) is a Brownian motion.

Remark. A procesB(t) — B(t) has the same distri-

bution asv2w(t). Thus,
X (8) = VAY(L); L' () = VAL, (£)  (4)

This completely agrees with (5), (4), whies= /2.

It can be seen that that rejection probabilitiessic
treme case of discrete Markov process (5) and monti
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ous Markov process (7) are the same. Similar resulty A - « and values of service intensity, which are of

can be obtained for other characteristics of tloegss-
es.

the same order of magnitude, the output paramefers
the model (service, rejection probabilities, etrg de-

It can be inferred that in extreme case of discretgcribed by the same equations.
and continuous processes all output parameterBeof t  The practical result of this work is the fact thalot
model are described by the same equations. Asili,res less complicated continuous queuing system model
simpler continuous model can be used to calculate pbased on the Brownian motion can be used to caécula
rameters of network traffic in queuing systems withparameters of network traffic of complex queuing-sy
complex structure or traffic with priorities. tems. For example, in order to find state probtidi

Dependence between rejection probability and ther queuing system featuring traffic with priorgiesing
main parameters has been investigated. The main paisson model, a large system of linear equatiomst m
rameters area — coupling coefficient betweed and be solved. Brownian model gives us ability to fthése
M, andb — buffer scaling factor. As it is assumed thaprobabilities by solving one equation.
A o, changingA won’t have any noticeable effect We have conducted the research for rejection proba-
on the process. bility. But other output parameters of performaece
o latency can be obtained in similar fashion. Als@mren
complex queuing systems can be considered (for exam
ple, with multiple servers). In addition to thatirther
research must be conducted with the use of fraaiion
Brownian motion, which would give us ability to diu
properties of processes with long-range dependdike.
of this will give us practical models of communicat
networks [9].

0.15¢
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Fig. 1. Graphical dependence of rejection probghin the
value of A for different values ofa: a=1 anda =2, with
parameterd =1, m=1.

Conclusions

Our study of discrete and continuous Markov pro-
cesses has shown that in extreme case of arrivealsia





