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The ultra-long LPDC codes are examined. The errors correction by ultra-long LDPC codes is analyzed. The error-correcting 
capability research method for ultra-long LDPC codes is described in details. The main results in table and graph representa-
tions are shown. The comparison of ultra-long LDPC codes and BCH codes is performed by using Plotkin and Varshamov-
Gilbert limits approximation criterion. 
 

 

Introduction 
 

Low density parity check codes (LDPC) are linear 
block codes. The LDPC codes check matrices have a 
small value of ones in its rows and columns comparably 
to value of zeros in these rows and columns. LDPC 
codes were proposed by R.Gallager in 1960 [1]. 

Ultra-long LDPC codes are used in state-of-the-art 
telecommunication systems standards. For example, 
LDPC codes are utilized in DVB-S2 standard (Digital 
Video Broadcasting Satellite – Second Generation) [2]. 
Together with this, the ultra-long LDPC codes bit errors 
equalizability is not described in DVB-S2 standard ex-
plicitly. Therefore, the significant scientific and practi-
cal task is the error-correcting capability detection for 
ultra-long LDPC codes. Consequently the next task is 
overlong LPDC codes positions definition among 
known block codes by comparison of their characteris-
tics. For instance, one of the best block codes with code 
length more than 1000 bits are named Bose-Chaudhuri-
Hocquenghem (BCH). Their properties are described in 
[3]. 

The correction properties of standardized ultra-long 
LDPC codes are analyzed in current research work. 
This type of overlong LDPC codes is used in up-to-date 
standard DVB-S2 [2]. The ultra-long LDPC codes are 
researched by the instrumentality of model in standard-
ized software MatLab [4]. Overlong LDPC codes have 
code length 64800 bits and have code rates in the fol-
lowing range: 0,25...0,9R = . 

The relevance of work is overlong LDPC codes er-
ror correcting capabilities definition. The examined 
LDPC codes are used in modern telecommunications. 
Moreover, the overlong LDPC codes position assess-
ment in scope of known block codes is actuality as well. 
This can be estimated by comparison of overlong 
LDPC characteristics and other known block codes. 

 
 

 

Statement  
of the problem 

 

The objective of this work is to research the ultra-
long LDPC codes potential error-correcting capability. 
It is assumed that code words are transmitted through 
channel in telecommunication system into decoder of 
receiver. 

The initial conditions are: 
– Code rate of 0,25...0,9R =  according to adopted 

standard DVB-S2; 
– Check matrix H  for each LDPC code rate value; 
– Fixed code word length is 64800n =  bits. 
The following tasks were defined to reach needed 

target:  
– Encode initial information bits by using LDPC 

coding in MatLab software. Manually produce error 
bits in codeword that is imitation of noise influence. 
Then it will be possible to perform numerical analysis 
on distorted code words with definite errors count that 
come into LDPC decoder; 

– Execute the error correction capability analysis 
based on statistical and numerical results. It should be 
performed on basis of LDPC codes with code rates of 

0,25...0,9R =  and various errors densities in code 
words; 

– Detect the conditions conformity degree for 
achievement the Plotkin and Varshamov-Gilbert limits 
by overlong LDPC codes [5]; 

– Perform the characteristics comparison of known 
block codes with long code length ( 1000n > ) and ultra-
long LDPC codes with code length 64800n > . 
 

Fixed code length codes  
error-correcting capability research 

 

The researched parameters for assessment of LDPC 
codes error-correcting capabilities with fixed code 
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length 64800 bits and code rates from scope of 
0,25...0,9R =  are the next: 

- Errors count in received code word at the decod-
er input; 

- Produced errors density in code word; 

- Hard decision method iterations count for de-
coding the LDPC code words [1].  

Performed numerical experiment is based on code 
words distortions imitation by inserting the certain bit 
errors into received code words. These manually pro-
duced errors are generated with some definite frequency 
ratio. The iterations number for hard decision decoding 
is one of the parameters, that are researched and it is the 
initial parameter in LDPC model simultaneously. The 
real LDPC check matrices dimensions are enough big, 
and in the issue it is required to perform a huge compu-
tations number for direct decoding methods. For exam-
ple, the matrices with sizes 64800 64800R× ⋅  bits are 
used in current work. The iterative decoding methods 
are used due to high complexity of direct methods. The 
iterative hard decision method is one of such decoding 
methods.  

The hard decision method is proposed by Robert 
Gallager [1] as one of iterative methods for decoding. 
The hard decision method is based on iterative inverting 
bits (“0” to “1” or “1” to “0”) in code word. So, firstly, 
the corresponding code word bit positions and rows of 
check matrix are multiplied. Secondly, the XOR opera-
tion is used for multiplied values of bits from code 
word and check matrix rows on the same positions. 
Thirdly, given values of XOR operations are checked 
on satisfying the parity condition. Fourthly, the bits in-
version in code word is performed if parity condition is 
not satisfied. This operation is executed in code word 
only for bits that have maximum sum of “1” on exactly 
defined positions in non-satisfied rows. 

Assume the code rate R  is known. Assume the in-
formation sequence is transmitted and has the length of 

64800k R n R= ⋅ = ⋅  bits. Assume the check matrix H  

is given and has the dimensions of 64800 64800R× ⋅  
bits. Then received code word w  has the length of 

/n k R=  bits. The hard decision decoding algorithm is 
described shortly below: 

1) The result of XOR operation is calculated for 
code word multiplied bit positions and corresponding 
check matrix rows bit positions. The vector of values 
is received. The vector length is equal to number of 
rows in check matrix. Then the parity check is execut-
ed: if the result of XOR operation is equal to “0” for 
values in vector, it is on assumption that parity check 

satisfied, else if value is “1” – parity check is not satis-
fied. 

2) Assume the temporary matrix 'H  is the matrix 
that includes the results of multiplied code word bit po-
sitions and corresponding bit positions in rows of check 
matrixH . The sums of “1” for each column in matrix 

'H  are calculated only for rows that did not pass parity 
check. 

3) The definite positions in code word w are cho-
sen to satisfy the following condition: the sum of “1” on 
this position for rows in matrix 'H  is maximal compa-
rably to other sum values of “1” in matrix 'H  rows that 
did not pass parity check. Thereafter the inversion for 
chosen positions is performed on the opposite bit val-
ues. 

4) Steps 1, 2, 3 are performed for each decoding it-
eration. This is executed until one of two conditions is 
reached: 1) all parity checks are passed; 2) the compul-
sory stoppage condition is achieved. The compulsory 
stoppage condition is brought to prevent the infinite 
looping possibility during decoding procedure. 

The initial parameter for numerical experiment is the 
code rate R . This is due to overlong LDPC codes re-
search is performed based on model in standardized 
software MatLab. The research algorithm is described 
in details below: 

1) The information sequence with length 
64800k R n R= ⋅ = ⋅  is generated. 

2) LDPC encoder formed the code word w with 
the length of / 64800n k R= =  bits based on 
known code rate R  and check matrix H . 

3) Bit errors errN  are inculcated into code word w 

intentionally. Assume code word with errors is 
named 'w . 

4) Code word 'w  with bit errors errN  came into 
LDPC decoder. LDPC decoder has pre-defined 
possible iterations limit to execute decoding 
procedure by hard decision method. If all parity 
checks satisfied before maximum iterations limit 
was reached, then decoder stopped the decoding 
procedure [1]. In this case it is supposed that in-
formation sequence is decoded correctly. In  
other case if iterations limit is reached, it is sup-
posed that information sequence is not decoded 
properly and has bit errors. The errors number 
can be unknown in practice; however, it is pos-
sible to assess corrected bits count in received 
information sequence due to performed numeri-
cal experiments with known manually inculcat-
ed errors in received code word.  

5) The difference between transmitted and decoded 
bit sequences is detected.  
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The numerical experiment algorithm is shown on 
fig. 1. 

 

 

Fig. 1. The numerical experiment algorithm 
 

The dependency of corrected errors count errC  

from inculcated errors errN  in code word with code 

rate 1/ 2R =  and iterations number for decoding 10, 30 
and 50 is presented on fig. 2 according to algorithm fig. 
1. It is important to highlight that fig. 2-5 are plotted 
only for overlong LDPC code with code rate 1/ 2R = . 
The 1000, 2000, …, 6000 error bits are inculcated into 
received code word on the first experiment phase. 
These errors are evenly scattered through code word. 
Then the corrected errors numbers are detected based 
on comparison of transmitted information sequence and 
decoded information sequence. As shown on fig. 2, if 

err errC N=  then information is decoded correctly. In 

case 0err errN C> >  the information is partially re-

stored. If 0errC <  then information sequence is not de-

coded correctly. In addition, if 0errC < , then the addi-
tional errors are brought up into information sequence 
during decoding process. On fig. 2: dashed-dot line –
decoding iterations count is 10; solid and dashed lines –
iterations counts are 30 and 50 respectively. As shown 
on fig. 2, the lines for 30 and 50 iterations are almost 
coincidental.  
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Fig. 2. The dependency of corrected errors count errC  from 

inculcated errors count errN   
 
 

Numerical experiments shown that LDPC decoder 
significantly better decoded scatter bit errors compara-
bly to block errors in the same code with the same itera-
tions number for decoding. 

The iterations count analysis shown that increasing 
the iterations number from 50 up to 100 practically 
didn’t improve the decoding results. With a view to ra-
tional computing resources consuming it is reasonable 
to use 10…50 iterations for decoding. Therefore in 
computational experiments of current work the itera-
tions count 30, 40 and 50 are used. These iterations are 
chosen by the optimum computational resources usage 
and received information bit integrity criteria [3]. 

As shown on fig. 2, LDPC decoder corrected bit er-
rors in the range of 4000…5000 bits. Code word length 
is 64800 bits and code rate is 1/ 2R = . The overlong 
LDPC code error correcting capability results are pre-
sented on fig. 3 for the case 4000, 4100, … , 5000 bits 
are manually inculcated into received code word. 
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Fig. 3. The dependency of corrected errors count errC  from 

inculcated errors count errN  for 4000,4100,...,5000errN =  
 

 As shown on fig. 3, LDPC decoder corrected bit er-
rors in the range of 4800…4900 bits. The overlong 
LDPC code error correcting capability results are pre-
sented on fig. 4 for the case of 4800, 4810, … , 4900 
bits are manually inculcated into received code word. 
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Fig. 4. The dependency of corrected errors count errC  from 

inculcated errors count errN  for 4800,4810,...,4900errN =  
 

Thereby, on the fig. 4 is shown, that LDPC code 
corrected between 4800…4810 bit errors in received 
code words. The error correcting capability analysis in 
the range of 4800 … 4810 bit errors is shown on fig. 5. 

As shown on fig. 5, the number of corrected errors 
grew very insignificantly in parallel with iterations 
number. Overlong LDPC corrected 4800 errors by 30 
iterations, 4803 errors by 40 iterations, 4804 by 50 it-
erations. Computer time for decoding grew linearly 
with the iterations number. Therefore, 30 iterations are 
enough for decoding procedure and saving computa-
tional time with similar error correction capability. It is 

significantly to note, that errors scattering through bits 
in code word positively affected the corrected errors 
number for the same other LDPC parameters. The best 
error correcting capability at level 5180 errors 
achieved in parallel of scattering errors through code 
word with 1/ 2R = .  
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      Fig. 5. The dependency of corrected errors count errC  

from inculcated errors count errN  

for 4800,4801,...,4810errN =  
 
 

The ultra-long LDPC codes error correcting capabil-
ity results with different code rates and 50 iterations for 
decoding are shown in table 1. 

 

Table 1. LDPC code error correcting capability results. 
Code word length is 64800n = , 50 decoding iterations, 

scattered error bits through code word 
 

Code rate, 
/R k n=  

Corrected errors 
in codeword, t  

Code  
distance, 

2 1d t= ⋅ +  
2

d

n
 

1/4 11270 22541 0.174 
1/3 8760 17521 0.135 
2/5 6200 12401 0.096 
1/2 5180 10361 0.08 
3/5 2945 5891 0.045 
2/3 2810 5621 0.043 
3/4 2060 4121 0.032 
4/5 1430 2861 0.022 
5/6 990 1981 0.015 
8/9 610 1221 0.0094 
9/10 540 1081 0.0083 

 
Ultra-long LDPC codes and other known block 

codes characteristics comparison 
 
 

The Plotkin and Varshamov-Gilbert limits define the 
conditions for existence the code with some specified 
error correction capabilities [5]. The Plotkin limit is 
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defined by conditions: if code word length is 2 1n d≥ −  
bits, then check bits number r n k= −  for minimal code 
distance d  is equal at least 22 2 logd d− − . Corollary, 

22 log
1

d d d
R

n

− −≤ −  

The 2nd form of Plotkin limit is:  

2(2 2 log )k n d n≤ − − −  

The Plotkin limit is used for codes with large code 
word length n : 1n >> . 

The Varshamov-Gilbert limit determines the suffi-
cient conditions for existence the code with specified 
error correcting capabilities. It states that ( , )n k -code 

exists with code distance value at least d  and the next 
expression will be satisfied: 

2

1
0

2
d

i n k
n

i

C
−

−
−

=
≥∑  
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Fig. 6. LDPC and BCH codes in coordinates R=f(d/2n) 
 
Thereby, Plotkin and Varshamov-Gilbert criteria al-

low bring into comparison different block codes in the 
same coordinates ( / 2 )R f d n=  for assessment the er-
ror correction capabilities of compared codes. 

One of the best block codes by criterion of Var-
shamov-Gilbert are ВCH codes with big code length  
( 1000n > ) [3]. The parameters of some BCH codes 
with code length 1023n =  are presented in table 2. 

 

Table 2. Some known parameters of BCH codes with 
code length 1023n =  

k  t  d  /R k n=  / 2d n  
1013 1 3 0.990225 0.001466 
973 5 11 0.951124 0.005376 
923 10 21 0.902248 0.010264 

873 15 31 0.853372 0.015152 
818 21 43 0.799609 0.021017 
768 26 53 0.750733 0.025904 
718 31 63 0.701857 0.030792 
668 38 77 0.652981 0.037634 
618 44 89 0.604106 0.0435 
563 51 103 0.550342 0.050342 
513 57 115 0.501466 0.056207 
463 62 125 0.45259 0.061095 
413 77 155 0.403715 0.075758 
358 86 173 0.349951 0.084555 
308 93 187 0.301075 0.091398 
258 106 213 0.252199 0.104106 
208 115 231 0.203324 0.112903 
153 125 251 0.14956 0.122678 
101 175 351 0.098729 0.171554 
56 191 383 0.054741 0.187195 
11 255 511 0.010753 0.249756 

 
The Plotkin and Varshamov-Gilbert limits are plot-

ted in coordinates ( / 2 )R f d n=  for large code length 

values ( 1000n > ) on fig. 6. The overlong LDPC codes 
and BCH codes points are plotted in fig. 6 from table 
1, 2 as well. As opposed to Plotkin limit, the Var-
shamov-Gilbert limit means, that code with some code 
rate, standing on this limit or above it, always exists. 
As shown on fig. 6, ultra-long LDPC with code length 
64800 bits satisfies to this statement and stays above 
Varshamov-Gilbert limit. This fact characterizes the 
overlong LDPC code with code length 64800 bits as 
the best realizable code so far as overlong LDPC lies 
above Varshamov-Gilbert limit and below Plotkin lim-
it. On Fig. 6 it is shown, that ultra-long LDPC codes 
have significantly better error correction capability 
comparably BCH codes. First of all, it happens because 
LDPC has much longer code length than BCH. 

It is possible to compare LDCP and BCH by rela-
tive number of corrected errors per code word criteri-
on. So long as overlong LDPC and BCH codes have 
different code words length, 64800 and 1023 accord-
ingly, then it make sense, in the first place, to choose 
two codes with the same code rate. For example, let’s 
consider code rate 1/ 2R = . Regarding tables 1 and 2, 
the corrected errors number for LDPC is equal to 5180, 
for BCH code it is 57 errors. If consider the corrected 
errors relation through code words of LDPC and BCH 
with the same code rate, then it is possible to talk about 
relative corrected errors number. For BCH code this 
relative corrected errors value is  

_
57

0.0557
1023err BCH

t
m

n
= = = , for LDPC it is 

_
5180

0.0799
64800err LDPC

t
m

n
= = = . The relative ultra-
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long LDPC codes efficiency gain comparably to BCH 

is _

_

0.0557
1.43

0.0779
err LDPC

err BCH

m

m
= =  on the code rate of 

1/ 2R = . The relative values of corrected bits per code 
word with pre-defined code rates scope for LDPC and 
BCH are shown in table 3.  

 
 

Table 3. The relative efficiency gain of LDPC codes 
comparably to BCH codes by relative bit errors correction 

through code word criterion 
 

 
 LDPC  BCH   

( / )

( / )
LDPC

BCH

t n

t n
 

 64800  1023  

R  t  /t n  t  /t n  
0.25 11270 0.173919753 106 0.103616813 1.68 

0.33 8760 0.135185185 86 0.084066471 1.61 

0.40 6200 0.095679012 77 0.075268817 1.27 

0.50 5180 0.079938272 57 0.055718475 1.43 

0.60 2945 0.045447531 44 0.043010753 1.06 

0.67 2810 0.043364198 38 0.03714565 1.17 

0.75 2060 0.031790123 26 0.025415445 1.25 

0.80 1430 0.022067901 21 0.020527859 1.08 

0.83 990 0.015277778 15 0.014662757 1.04 

0.89 610 0.00941358 11 0.010752688 0.88 

0.90 540 0.008333333 10 0.009775171 0.85 

 
 
The plot representation of dependency 

( / )
( )

( / )
LDPC

BCH

t n
f R

t n
=  is shown on fig. 7. 

 

 
 

Fig. 7. The relative performance of LDPC and BCH 

codes: ( / )
( )

( / )
LDPC

BCH

t n
f R

t n
=  

 
 

Conclusion 
 

The possibility analysis to correct bit errors by ultra-
long LDPC codes with the code rates of 0,25...0,9R =  
and different errors density is performed based on sta-
tistical and numerical experiments. 

Based on numerical experiments it is shown, that 
overlong LDPC codes are better than the longest BCH 
codes. This conclusion is based on the criterion of 
achievement the potential error correcting capability 
bounds for block codes (Plotkin limit), and especially 
for code rates 1/ 2R ≤ . At once it should be highlighted 
that the LDPC codes systemic deficiency is even num-
ber of code distance d . So LDPC codes can be classi-
fied as imperfect.  

LDPC decodes error blocks considerably worse 
comparably to scattered bit errors through code word in 
case when other code parameters are constant. 

The iterations number research for LDPC decoding 
to 100 shown, that iterations count rising practically 
doesn’t make sense above 50 iterations so far as it 
doesn’t improve decoding results significantly. In terms 
of rational computational resources using it is reasona-
ble to use 10…50 iterations for decoding. 

The errors density scattering through code word pos-
itively affects the corrected errors number during de-
coding. This is observed that the inculcated errors num-
ber in code word is the same and communication chan-
nel energy parameters are unchanged. This result indi-
cates the practicability of interleaving schemes using in 
communication devices as a step that complements 
LDPC coding. 
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