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The new procedure of sequential noise suppression in transient signals has been developed. The additive, convolutional and 
multiplicative noises are reduced to the additive forms by appropriate homomorphic transformation. In the decomposition of 
the signal by wavelets, the additive noise component is identified with the detailizing parts of this expansion. It is found that 
the Daubechies wavelets would be used as the basis functions. The specific features of the thresholds choice for noise suppres-
sion are discussed. According to the results of numerical simulations, it is ascertained that in certain cases the main role in the 
forming of transients belongs to convolutional noise. 
 

 

Introduction 
 

In passive remote sensing of artifical or natural 
sources of electromagnetic (EM) radiation [1, 2], an 
important task is to estimate the parameters of a current 
pulse  in the origin point  of this source by 
analyzing the emitted electromagnetic transient. At a 
point of observation, the experimental data are limited 
often to registration of the only one of transient compo-
nents of the electromagnetic field. Mostly, it is the ver-
tical component of electric field 

( , )I z t 0z 

( )zE t  which in the lin-
ear model frames can be described as 
 

( ) (0, ) ( )zE t I t h t  ,                        (1) 
 

where the symbol * denotes the operator of convolution 
and  is an impulse response (IR) of some fictitious 
four-terminal network, which converts a current at the 
radiator base ( ) into electric field observed at the 
receiving point. Considering a radiator as a set or some 
array of elementary electric dipoles, we obtain 
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where  is the IR described by the inverse Fourier 
transform F-1 from the frequency transfer function 

el  for one of these dipoles. This function is de-
scribed by expressions in square brackets, where 

; 

( )elh t

)
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  2 f  ; f  denotes the current frequency; 
 defines the light velocity in free space;  is the dis-

tance between the radiation source and observation 
point. 

c r

The function  describes the of an antenna ar-
ray formed by the set of dipoles. For some radiators, 

these dipoles can be identified as several structural in-
homogeneities combined into a certain discrete array. 

( )arrh t

The function  in (2) represents the IR of 
signal propagation path. For example, let us define the 
function trace  with reference to the very low fre-
quency antennas or natural lightning channels. 

( )traceh t

)t(h

High frequencies in received transient spectra of EM 
pulses radiated by these antennas are located right up to 
200─500 kHz. Let the distance  does not exceed a 
few tens of kilometers and the ground is assumed to be 
perfectly conducting. The analysis shows that the func-
tion  for the given case can be considered as a 
constant value close to 2. 

r

( )traceh t

Thus, the form of pulse (1) is mainly determined by 
the result of convolution of the current  with ra-
diation characteristic  of EM source that displays 
main information about geometry and electrophysical 
properties of the radiator structure. In real terms, an 
analyzed signal (1) comprises some additional noise 
components. Their presence complicates the solution of 
the inverse problem, which consists in evaluation of 
temporal form and parameters of the current form in (1) 
and/or convolution members in (2) by the analysis of 
recorded transient pulse. Appearance of these noise 
components can be stimulated by different physical 
causes. We consider additive, convolutional, and multi-
plicative noises. 

(0, )I t
( )arrh t

For additive noise , one can assume that the 
registration of transient pulses (1) in frequency range 
below 1 MHz are contaminated mainly by a certain 
global background of atmospheric interferences. 
Namely, the total flow of pulses with relatively low 
amplitudes exists always at any point of registration due 
to electromagnetic radiation of distant storms [3]. 

( )addn t

A convolutional noise  is generated by small 
inhomogeneities randomly spaced along the radiator. 

( )convn t
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Under the current wave influence, it reduces to a set of 
multiple reflections of small levels. This phenomenon 
can be interpreted as reproduction of waves or co-
current flow. This process may be described as an input 
of a filter with infinite impulse response [4]. Naturally, 
some inhomogeneities, obstacles or reflective surfaces 
along the propagation trace can provide the additional 
influence on reproduction of waves. 

A multiplicative noise  can be caused by a 
variety of reasons, for example, by the modulation of 
antenna current parameters owing to wind or ground 
vibrations. In particular, the running conductivity of the 
lightning channel may change due to random variation 
of electron plasma density along the channel. It is usu-
ally supposed that the process  is non-negative 
and slow with respect to 

( )multn t

multn
( )z

( )t
E t . 

Thus, taking into account the influence of factors 
discussed above, the model (1) of transient signal can 
be represented by the expression 
 

ˆ ( ) [ ( ) ( )] ( ) ( )z z mult conv addE t E t n t n t n t    .         (4) 
 

The purpose of this paper is to develop an approach 
for suppressing the noises indicated above by digital 
signal processing methods. The proposed algorithm is 
based on homomorphic mapping of the investigated 
transient into such domain, where a wanted kind of 
noise will be additive with informative part of the sig-
nal. In such a way, this kind of noise can be eliminated 
by linear filtering methods. The wavelet transform 
(WT) [5, 6] will be considered below as one of them. It 
can be applied also in association with other up-to-date 
methods, such as empirical mode decomposition [7, 8]. 

Highly complicated structures are demonstrated by 
atmospherics or unique EM pulses radiated by lightning 
strokes [3]. That is the reason why one of them had 
been selected as an example of processing below. 

To achieve the delivered purpose, the calculation of 
the separate components from the pulse in conformity 
with (3) is performed, the additive noise suppression by 
using the WT is investigated, the demonstration of ho-
momorphic methods capabilities to multiplicative and 
convolutional noises reduction is carried out. 
 

Evaluation of transient separate components 
 

As follows from (3), the most simple expression (di-
rectly proportional) connects a current at the radiator 

with induction component ˆ ( )zE t of the generated field. 
If the distance  from the point of observation to the 
EM source is known, this component can be easily dis-
tinguished from the received transient by using inverse 
filtering. As a result, we obtain 
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 ,                   (5) 

 

where  denote the transient and its induc-
tion component estimations, F and F-1 are operators of 
the direct and inverse Fourier transforms, respectively.  

)(ˆ),(ˆ tEtE indz

In a similar way, we can estimate the radiation con-
stituent component of the transient EM field 
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This component is determined by derivative of cur-
rent  in time. ( , )I z t
 

Elimination of the additive noise 
 

One of the promising methods to reduce the level of 
noise in the signal is based on its expansion in some 
elementary waves named as wavelets. A wavelet is a 
test signal with finite energy given by the compact sup-
ported function, which average value is equal to zero 
[6]. It should be noted that the term “wavelet” has been 
used in literature on signal processing not long ago. The 
experience in geophysical papers is more long standing 
and reflecting the physical nature of the “elementary 
wave” phenomenon as a structural unit of a more com-
plex process.  

It is possible to construct a complete orthonormal 
system of functions for most of the commonly used 
wavelets using an appropriate scaling and shifting. The 
signal decomposition on the elementary waves called a 
wavelet transform is reduced to the convolution of the 
signal with these waves. 

The continuous wavelet transform (CWT) can be 
expressed as follows 
 

0

1
CWT( , ) ( ) ( ) d

| |

t t
s E t t

ss

 
   ,         (7) 

 

where  is some basic wavelet.Thus, (7) is the function 
of two variables: the scale factor s, which value deter-
mines appropriate stretching or contraction of wavelet, 
and wavelet shift   along the time axis t. When the 
variables s and  are determined by rules of a geometric 
progression with ratio of 2, the discrete wavelet trans-
form (DWT) can be used. 

By using these procedures, a waveform ( )E t  can be 
displayed on the plane “time ─ scale”. Because the 
scale s is varied in a certain range of values, the WT can 
detect differences of signal characteristics with various 
scales and assess their discrepancies. In the region of 
low values of s, it is possible to observe some fast (or 
small-scale) variations of the function (7), carrying the 
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information about structural details of the signal ( )E t  
and about noises. Conversely, for large values of s, the 
region of slow, or large-scale, variations in (7) reflects 
the main features of this signal. Finally, by varying the 
shift , it is possible to move the wavelet along all the 
definition domain of the function ( )E t

30r 

. It allows analy-
sis of the local properties of the signal in different tem-
poral regions. 

To realize this transformation, the serious problem 
of a wavelet  choice must be solved. Its formaliza-
tion is difficult since the characteristics of the analyzed 
signal must be taken into account. Some criterion of 
this choice is the variance of noised signal part which 
foregoes to the primary transient. Its minimum value 
has been selected as a measure for wavelet choice. Pre-
liminary computational experiments with real data of 
transient EM field registrations including some anten-
nas and lightning stroke radiation signals allowed com-
ing the conclusion that it is advisable to use Daubechies 
wavelets as basis functions described in [6]. The wave-
let of order 4 is used below everywhere. 

( )t

A certain atmospherics (Fig. 1a) generated by return 
lightning stroke and registered in the frequency band 
0.5─250 kHz on the distance  km from the 
source was selected for further studies.  
 

 

Fig. 1. The transient (a); its induction (b) and radiation (c) 
components; (d), (e) CWT from b and c, respectively. 
 

Its induction (5) and radiation (6) components are il-
lustrated in Fig. 1b and in Fig. 1c, respectively. Calcu-
lated results of CWT moduli according to (7) are dem-
onstrated in Fig. 1d and Fig. 1e. They were obtained by 
the Matlab program code cwt.m [7], which allows car-
rying out the necessary calculations and visualizing the 

results. Increasing these moduli is reflected by incre-
ment of brightness. Thus, the dark lines can be inter-
preted as the locus of the points with values of CWT, 
which are close to zero. 

Fig. 1d and Fig. 1e show, how nature of information 
containing in the signal changes with scale increase. At 
small scales ( 40s  ), rapid variations with small ampli-
tudes are detected. They contain the information about 
the fine details of the signal. These variations can be 
identified as mapping the additive noise in the model 
(4) on the plane “time ─ scale”. CWT for the signal (6) 
is more noised as it has been expected. 

Weakening the additive noise is based on the appro-
priate filtering the function (7) and applying the inverse 
WT. It allows restoring some analogue of the signal by 
using the new values of its CWT. For example, after 
processing the signal (7) with limiting s  [ 1s , 2s ] and 
considering that CWT  beyond the bounds of 
this interval, we obtain 

( , ) 0s  
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where the normalizing factor is defined as 
 

2| ( ) | | |C x dx





  x .                       (9) 

 

To increase the computation rate in (7)─(9) and their 
accuracy, it is advisable to use the discrete wavelet 
transform (DWT) instead of CWT as the basis of the 
additive noise suppression algorithm. The DWT finds 
the coefficient vector 
 

ˆw WE ,                                (10) 
 

where  denotes N N orthonormal matrix, and N is 
the signal length. The value of N is chosen more often 
so that 

W

2 jN   for integer j. Structure of matrix and 
values of its elements are determined by the type of se-
lected wavelet. 

Procedure (10) allows the signal decomposition 
based on assumption that the vector w contains the 
coefficients of two kinds. First of them are approxi-
mating ones that describe the signal roughly, and the 
second are detailing coefficients, which reflect subtle 
features of signal structure. Thus, an additive noise is 
transmitted in detailing components, and its suppression 
is, in essence, a threshold filtering of the vector (10) to 
weaken influence of the coefficients with low values. 

The algorithm (8) described above is based on signal 
weighing by using some window. It is a kind of cut-off 
filters with so-called hard threshold. For the treatment 
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of atmospherics, one of the many options for soft-
threshold filtering [7] was used, where nth sample of 
detailing component in (10) is set as 
 

sign( )(| | δ), | | δ;
ˆ

0, | | δ,
n n n

n
n

 
  

w w w
w

w
   (11) 

 

and if the noise is assumed as Gaussian with variance 
equal to 2, the threshold δ  in (11) can be presented as 
 

)log(σ2δ 2 N .                       (12) 
 

By applying the median med[d(n)] for a set d(n) 
contained detailing coefficients, one can modify the 
threshold (12) to the form [7] 
 

med[ ( )] 0.6745c d n   .                 (13) 
 

Equations (10)─(13) allow restoring the modified 
signal 

T ˆ .E W w                               (14) 
 

This signal has to demonstrate a lower noise level 
compared with the original transient. 

Successive application of the DWT (10) allows per-
forming the multilevel decomposition by using ap-
proximate components after every stage of the de-
scribed procedure as an input data for subsequent one. 
Curve 1 in Fig. 2 shows the effect of DWT levels num-
ber of the signal (5) on the Euclidian norm of recovered 
signal (14).  
 

 

Fig. 2. Influence of the number of levels on the norm of the 
recovered signal. 
 

The reduction of this norm can be considered as a 
measure of noise suppression. 
 

Suppression of convolution and multiplicative 
noises using homomorphic transformations 

 

Homomorphic transformation introduces a sequence 
of operations which should be imposed to the signal in 
order to map the latter onto such domain, where its 
components are additive and can be separated by means 
of linear filtering [9]. Results of separation can be re-

turned to the original domain by using the inverse trans-
form. A certain procedures of homomorphic filtering 
may be proposed to solve the problem of noise reduc-
tion for such signals that contain convolutional and/or 
multiplicative noises. 

As follows from (4), the homomorphic transforma-
tion with reference to the processing of convolutional 
noise is gradual transition from the original signal to the 
complex spectrum by applying the direct Fourier trans-
form, and then to calculating the logarithmic spectrum 
 

ˆ ˆ( ) Ln[F{ ( )}] ( ) ( )

[arg ( ) ( )],

L L

L

S i E t S i n

i S i n

L    

   

 


 

      (15) 

 

where symbol Ln denotes the operation of complex 
logarithm calculation. According to the procedure of 
finding the complex spectrum [9], calculation of the 
imaginary part in (15) has to include unwrapping of 
phase curve . It is necessary in order to eliminate 
the discontinuities in phase spectrum and to remove the 
linear component from the latter. 

arg LS

As follows from (15), the above transformation al-
lows filtering noises ( )Ln   and  separately with 
respect to the real and imaginary parts of the logarith-
mic spectrum, respectively. 

( )n 

Fig. 3a and Fig. 3c show real and imaginary parts of 
the logarithmic spectrum. Frequency f measures in kHz.  
 

 

Fig. 3. The real (a) and imaginary (c) parts of the logarithmic 
spectrum of the transient (5); (b), (d) their CWT. 

 

Figures 3b, 3d display results of application to these 
parts of the CWT (7). It should be noted that the struc-
tures of amplitude noise L  (Fig. 3b) and phase 
noise 

( )n 
( )n   (Fig. 3d) are not only likely close, but also 

show some features of fractal processes. Additive prop-
erties of the corresponding components in logarithmic 
spectrum may be used to perform the filtering opera-
tions (10)─(14) with the amplitude and phase noises 
separately. Suppression grades of L  and ( )n  ( )n   
noises as proper Euclidian norms are illustrated by 
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curves 2 and 3 in Fig. 2. Sequence of actions to ade-
quate convert the multiplicative noise modeled by (4) 
into additive one is suggested below. This conversion 
ought to be homomorphic with respect to multiplica-
tion. Corresponding algorithm can be constructed by 
the transition to the analytical signal [10, 11] with sub-
sequent calculation of its complex logarithm: 
 

ˆ ˆ ˆ( ) Ln[ ( ) Hb{ ( )}]

Ln[ ( ) ( )exp{ ( )}]

( ) ( ) [arg ( ) ( )]

L

mult

L mA L m

A t E t i E t

n t A t i t

A t n t i A t n t

  
 

   



 
        (16) 

 

where Hb denotes a symbol of Hilbert transform; , 
 are an envelope and an argument of the analytical 

signal, respectively; the term mA  presents an ampli-
tude component of multiplicative noise mapped into the 
complex logarithm domain; m  is a phase noise. It 
should be taken into account in (16) that it is permissi-
ble to carry out the slow multiplier from the Hilbert 
transform. 

( )A t
( )t

( )n t

( )n t

As in the previous analysis, finding the imaginary 
part in (16) has to include unwrapping of the curve that 
describes the instantaneous phase and removing the lin-
ear component from it. Suppressions of amplitude 

mA  and phase m  noises are illustrated as proper 
Euclidian norms by curves 4 and 5 in Fig. 2. 

( )n t ( )n t

As an instance, Fig. 4 represents the effect caused by 
successive noise suppression on shape of the radiation 
component (6) of the atmospherics displayed in Fig. 1c 
and repeated in Fig. 4a. Figures 4b ─ 4d show the re-
sults of applying the procedures (10)─(16) to suppress 
additive, multiplicative and convolutional noises, re-
spectively. The output signal of the previous proceeding 
stage is used as the input signal in the next stage. 

By applying the described approach to the induction 
component (5) of transient signal, solutions concerned 
the evaluation [2] of current pulse form I(0, t) at the ra-
diator input can be noticeably simplified. 
 

Conclusion 
 

The method of suppression of noises with different 
physical nature has been proposed. It is based on ap-
propriate homomorphic mapping of noises described by 
the model (4) into additive ones. By displayed examples 
of some signal proceeding, it was shown that convolu-
tional and multiplicative noise components may play in 
certain cases more prominent role than additive noise. 
In turn, convolutional noise may manifest itself more 
than multiplicative one. 

In comparison with amplitude and phase noises, the 
latter may show the more influence on the inherent 

structure of certain transients, in particular, atmospher-
ics. The performed analysis decisively shows that the 
reduction of noises has to produce substantial signal 
compression. 
 

 

Fig. 4. Influence of noise suppression on the shape of the 
transient (a) after successive elimination: additive (b), multi-
plicative (c) and convolutional (d) noise components. 
 

Obtained results can be applied to increase the signal 
to noise ratio in telecommunication channels.  
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