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The research results of oscillator internal parameters influence the features of dynamic autodyne characteristics formation in 
the case of external oscillator signal influence are presented. The equivalent circuit with a single-circuit oscillating system is 
considered as a model of the autodyne oscillator. Abbreviated equations are obtained by an averaging method and then they are 
linearized for small disturbances in a vicinity of the steady-state mode. The obtained characteristics for the beating mode are 
compared with characteristics of autodynes for short-range radar technology. The essential differences in behavior of the oscil-
lator with acting the external oscillator and the oscillator with acting the own reflected signal have been found. The physical 
sense of the frequency dispersion phenomenon for the autodyne frequency deviation in the vicinity of hypothetical “zero” beat-
ing is discovered. The research results of dynamic autodyne characteristics in the frequency conversion mode of signals modu-
lated on amplitude or frequency are given. It is shown that to suppress the spurious harmonics of the beating frequency, it is 
advisable to take additional measures for generated frequency stabilization in autodyne frequency converters, for instance, us-
ing the external feedback in the oscillator or using the external high-Q resonator. The adequacy of theoretical conclusions is 
confirmed by results of experimental investigations of the hybrid-integrated module of 8 mm-range made on the basis of the 
planar two-meza Gunn diode. Oscillator characteristics obtained by the beating method are compared with results of investiga-
tion fulfilled with the help of modulation characteristics. It is shown that errors in experimental determination of dynamic 
characteristics of autodyne oscillators caused by frequency limitations of a pin-diode typical for the modulation characteristic 
method can be eliminated. Problems of practical application of obtained results in real radar systems using autodyne oscillators 
are discussed. 
 

 

Introduction 
 

Autodynes or autodyne oscillators represent the 
open self-oscillating systems in which the oscillation 
amplitude and frequency as well as the average values 
of current and a voltage of an active element (AE) are 
varied under influence of the proper radiation reflected 
from some object or the radiation received from the ex-
ternal oscillator. These variations are registered by ad-
ditional means as signals of external detection or sig-
nals of auto-detection in the AE bias circuit. Radio en-
gineering systems built on the basis of the autodyne 
principle have the simplest construction of the receiver-
transmitter module contained only of the antenna and 
the autodyne oscillator, which combines simultaneously 
functions of the transmitter and the receiver. Therefore, 
autodynes find the wide applications in the short-range 
radar and communication systems of different purposes, 
in the equipment of inspection and monitoring of tech-
nological parameters and in measuring engineering, 
where above-mentioned advantages of autodynes are 
determining [1─5]. 

Main characteristics of autodynes used in radar ap-
plications are dependences of instantaneous values of 
variations of the output auto-detection signals and oscil-

lation amplitude and frequency variations as functions 
of delay time changes of the reflected signal [6, 7]. 
They have got names of the auto-detection characteris-
tic, amplitude, frequency and amplitude-frequency 
characteristics respectively. These characteristics are 
widely used under analysis of formation peculiarities of 
the autodyne response on variations of oscillation am-
plitude and frequency at its auto-detection and at its ex-
traction as a useful signal. Ratios of amplitude values of 
mentioned autodyne variations to the amplitude of elec-
tromagnetic radiation returned from the reflected object 
are significant parameters of the autodyne, which have 
the sense of coefficients of auto-detection, autodyne 
amplification, and frequency deviation respectively. 
These generalized parameters allow fulfillment of the 
analysis and optimization of autodyne oscillators with a 
purpose of the best variant choice. 

Dynamical properties of the autodyne oscillator are 
determined by dependences of its characteristics and 
parameters versus the autodyne signal frequency and 
the movement velocity of the reflected object. The dy-
namic range of the oscillator is directly determined by 
its inertia properties characterized by the time constant 
of autodyne response [7]. Consideration of dynamic 
characteristics of radar autodynes is necessary in many 
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practical applications, for example, in equipment for 
registration of fast-running processes in experimental 
physics, in practice of ground ballistic tests [1─4]. 

Experimental investigation of autodyne dynamic 
characteristics by the natural modeling conditions 
maximally closed to real ones is associated with signifi-
cant financial expenses, complicity and inconvenience 
of the equipment [3]. At that, real radar objects are 
changed by their electrodynamic analogs called to sim-
plify and essentially accelerate a process of product ad-
justment and to guarantee an achievement of required 
performance by simpler and cheaper means. However, 
application of signal equivalents which can be imple-
mented by different methods is the most productive for 
such investigations in the laboratory conditions. 

Among these research methods, the modulation 
characteristics method is well-known. The experimental 
deriving of these characteristics is significantly simpler 
than the autodyne characteristics obtaining [7, 8]. Ac-
cording to this method, the dependence of oscillator 
modulation ability is determined at fixed value of 
modulation parameter such as the modulus of reflection 
coefficient at high values of modulation frequency. Us-
ing this dependence, one can determine the time con-
stant of the autodyne response. 

Another method named as the method of external 
generator is based on the replace of the reflected signal 
by the signal from additional generator, which fre-
quency is outside the synchronization band of the auto-
dyne. This method has been successfully realized in 
widely used autodyne frequency converters for com-
munication systems and radar technologies [9─11]. 
However, the substantiation of this method according to 
the research of dynamic properties of radar autodynes is 
absent in well-known literature. In many publications, 
these autodyne principles both are unreasonably identi-
fied as applied to radar and communication. 

The purpose of this research is to develop the gen-
eral approach to the theoretical investigation of auto-
dynes and their experimental examination. To achieve 
this purpose, the results concerning the analysis of the 
oscillator inherent parameters influence on the features 
of the autodyne dynamic characteristics formation in 
the case of the external generator signals impact are ob-
tained. The comparison of characteristics obtained by 
proposed approach with characteristics of operating ra-
dar autodynes is carried out. These data are compared 
to research results obtained by the modulation charac-
teristics approach. The results of investigation of dy-
namic autodyne characteristics in the receiving mode of 
signals modulated on amplitude or frequency are given. 
The experimental data of the hybrid-integrated modules 
of 8-mm range fulfilled on the basis of the planar two-

meza Gunn diodes are presented. These data confirm 
the correctness of conclusions of the theoretical investi-
gations performed. 
 

Equivalent circuit and main equations 
of the autodyne oscillator 

 

Consider the main equations describing all known 
factors which define the formation of the autodyne re-
sponse in the single-frequency single-circuit oscillator. 
As the model of such oscillators characterized by the 
main generalized parameters, we chose the UHF oscil-
lator with hysteresis feedback between the active ele-
ment (AE) current and the instantaneous voltage at self-
oscillations. 

As follows from oscillator theory, the volt-ampere 
characteristic of AE in general case has a hysteresis 
caused by finiteness of charges transfer time in the in-
teraction space with the field of the resonator. It means 
that the instantaneous current e  of AE is a function of 
the instantaneous voltage  and the speed of its varia-
tion 

i
u

/u du dt : e e ( ,i i u )u  . To simplify the following 
analysis, we assume that the relaxation time in AE is 
essentially less than characteristic time of generated os-
cillation amplitude variation. 
 

 
 

Fig. 1. Equivalent scheme of the single circuit autodyne. 
 

The equivalent scheme of the single circuit autodyne 
is presented in Fig. 1. In this scheme, the UHF resona-
tor operating near the oscillation frequency is presented 
by the simplest parallel oscillatory circuit including 
passive parameters of AE and consisting of the induc-
tance , the capacitance C  and the total conductance 

 defined as extres

L
G GGG  , where  is the con-
ductance of the resonator inherent loss; extG  is the con-
ductance of the external load. The current source  
representing the influence of the external signal on the 
autodyne is connected in parallel to the resonator. This 
current can be expressed as follows: 

resG

( )sj t

 

( ) cos s sj t J t  .                          (1) 
 

The AE having the nonlinear instantaneous volt-
ampere characteristic of N-type is directly connected to 
the bias voltage source for DC and parallel to the reso-
nator for AC. In a view of assumptions made for the 
circuit shown in Fig. 1, we can write the system of 
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nonlinear differential equations with the retarded argu-
ment relatively to instantaneous voltages on capacitors: 
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where , 2/1)(  LCnat GCQ natL /  are the natural 
frequency and the loaded Q-factor of the resonator, re-
spectively.  

Taking into account that the loaded Q-factor  in 
UHF oscillators has the sufficiently high value, the ap-
proximate solution of equation (2) can be considered as 
the quasi-harmonic signal: 

LQ

 

  cos ( ) cos( )u A t A t     

t

,               (3) 
 

where ,  are slowly changing ampli-
tude and phase of self-oscillations. Then  

( )A А t ( )t  

 

 sin ( )u A   ,                           (4) 
 

As follows from (3) and (4), variables  and А   
must satisfy the equation [15]: 
 

 cos ( )   sin ( ) = 0A t A t     .                (5) 
 

Taking into account the small value of relative offset 
of the current frequency of oscillations  and the fre-
quency  defined by the inequality 

nat , the initial equation (2) can be 
presented in the form:  


nat

/) nat 1( 22 

 

2 2 2/ (d u dt u f u u t   , , ) ;                    (6) 

( , )
( , , ) = [nat e

L

di u udu
f u u t

Q dt Gdu


 

   

2 2 ( )
]nat s

L
nat

dj t
Q u

Gdt

 
 


. 

 

Based on known energy relations for oscillators, one 
can obtain the relation , where 2/1)8( sins PGJ 

2Гs outP Р

Г s outA A

 denotes the power of external oscillator 
signal influencing the initial generator; out  is the out-
put power of the autodyne oscillator; 

s out  is the coefficient defined as 
the ratio of input signal amplitude 

P

1/2/ ( / )P P 
sA  and the inherent 

amplitude out  of the autodyne oscillator. Taking into 
account the equation (4), we can express the derivative 
of the current of the dependent oscillator as follows:  

A
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Substituting expressions (1), (3), (4) and (7) into (5), 
(6) and solving the resulting system of equations, we 
obtain equations for slowly changing variables  and А

 . According to standard averaging method [12], these 
equations can be written in the following form: 
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Within limits of the quasi-harmonic approximation, 
equations (8) and (9) are equivalent to the initial equa-
tion (2) and have the great generality. Further their 
analysis usually leads to the abbreviated equations for 
amplitude and phase of oscillations. To obtain these ab-
breviated equations, we present the current of AE in the 
form of Fourier series: 
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where 0 ( , )I A  , Re ( , )nI A  , Im  are the DC 
component and amplitudes of in-phase and orthogonal 
components of current harmonics through active ele-
ment respectively. 

( , ) nI A 

Let us approximate the current  for these 
components by the first harmonic. Then, the active 
element can be presented as parallel connection of the 
resistive 

( , )ei u u

A1Re( , ) ( , ) /e eG G A I A   
( , ) ( , ) /

 and the reactive 

1Ime eB В A I A A     conductances averaged 
per oscillation period. Taking into account the expan-
sion (10), from (8) and (9) we obtain the system of ab-
breviated differential equations for amplitude and phase 
of the autodyne oscillator:  
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where n ,  are the efficiency 
and the external Q-factor of the oscillatory system, re-
spectively. 

/L iQ Q  /in nat inQ С G 

Equations (11), (12) have been obtained within the 
limits of usual approximations used in the analysis of 
self-oscillating systems. They quite accurately describe 
the behavior of the autodyne oscillators under arbitrary 
values of influenced radiation amplitude, as well as the 
transient processes of the autodyne response establish-
ment and its steady-state value. 

Considering the processes of amplitude and fre-
quency variations in the autodyne oscillator, one can 
distinguish quasi-static and dynamic operation modes. 
In the quasi-static mode, the transient processes in the 
oscillator occur quite slowly, so that derivatives in the 
left parts of equations (11), (12) can be neglected. In 
dynamic mode, such assumptions can not be made be-
cause all variations occur quite rapidly. Considering the 
first mode and supposing in expressions (11), (12) 

, we obtain the equation which can 
be transformed to the following form using the concept 
of complex conductance: 

/ /dA dt d dt   0

0

 

0e nat inY Y Y   ,                         (13) 
 

where e e e , nat nat nat  are complex 
conductances of AE and the resonator, respectively; 

nat L nat  is the reactive conduc-
tance of the resonator;  de-
notes the component of the load input conductance 
transformed to the oscillator, which is caused by the ex-
ternal signal action on the oscillator. 
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At  equations (11) ─ (13) determine the opera-
tion of the autonomous oscillator. Supposing in expres-
sions (11), (12) , the steady-state 
oscillation parameters of this oscillator can be obtained 
for 
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where 0 0 0 , 0 0 0( , )e eG G A  ( , )e eB B A  ; 0 2cB    

0L  denotes the reactive component of the passive 
part of the oscillating system on frequency 0

GQ 
 ; 

0 0  is the relative offset of the resonator 
frequency nat  with respect to frequency of steady-
state oscillations 0  of the autonomous oscillator; 00  
means the average value of the AE current. The fre-
quency  can be calculated using (13): 
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where 0 0arctan( / )e eB G   is the delay angle in AE. 
Equations (14), (15) of the steady-state mode are 

well known in the self-oscillations theory for determi-

nation of amplitude and frequency of the autonomous 
oscillator. 

To analyze the autodyne effect in the most simple 
manner, we use the small-signal approximation when 
Г 1 . For this, we present amplitude, frequency and 
average value of AE current in the form: 0A A a  ; 

0    ; 0 00 0I I I   , where , a /d dt   
and 0I  are appropriate autodyne variations of the os-
cillator steady-state parameters. At that, the average 
value of the AE current 0 , as well as parameters 0e  
and 0e

I G
B  included in the equation (14) get the appropri-

ate increments. Assuming that external force is small 
enough, so that 0а A , 0 , 0 0 , we can 
write mentioned parameters taking into account the first 
expansion terms in Taylor series in the vicinity of 
steady-state mode: 
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where index “0” near large parenthesis indicates that the 
partial derivatives are taken in the vicinity of steady-
state mode. 

Substituting (16), (17) into (11), (12) and taking into 
consideration (14), (15) and (18), we obtain the system 
of non-autonomous linearized equations for determina-
tion of the relative autodyne variations of amplitude 

1 0/а а А  and phase   of oscillations as well as varia-
tions of the AE current 0 0 /i I I00  : 
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where 0/id id     denotes the relative value of the 
initial difference 0id    of the external signal 
frequency   and the autonomous oscillator frequency 

0 ; 11 0 0( /2 )(A G / )eG A     is the reduced slope of the 
oscillator increment causing the regeneration degree 
and its limit cycle permanence; 11 c e  signifies 
the non-isodromic property parameter taking into ac-
count the influence of frequency variations on the oscil-
lation amplitude through variations of resistive conduc-
tance parameters of the oscillating system 

    
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 and the AE electronic conduc-
tance 0 0 ; 11 0 0  
is the parameter defining non-isochronous properties of 
the oscillator; 11 c e  is the coefficient of the os-
cillator frequency stabilization considering the fre-
quency slope of reactive parts of the oscillating system 
admittance  and of the AE 

0 0 ; 01 0 0 0 0  is the 
parameter considering the auto-detection phenomenon 
of the oscillation amplitude variations; 

01 0 0 0 0  is the frequency detection coef-
ficient defining the contribution of oscillation frequency 
variations into variations of the AE supply current. The 
values c , e  can be interpreted as the loaded Q-factor 
of the single-circuit oscillating system c  and the 
Q-factor of the AE electronic conductance e , re-
spectively. Due to fulfillment of the inequality c e
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in real UHF oscillators, we assume for further analysis 
that . 11 L

The equations (19)─(21) have sufficiently wide gen-
erality since they provide possibility to analyze phe-
nomena both inside and outside of the lock-in range as 
well as the autodyne effect in UHF oscillators with any 
type of AE (tunnel diodes, Gunn diodes, field-effect 
and bipolar transistors). At that, such inherent parame-
ters of the oscillator as non-isochronous and non-
isodromous properties, amplitude and frequency detec-
tion factors can be taken into account. In the case of 
UHF oscillators performed on IMPATT diodes having 
the S-type volt-ampere characteristic, the obtained re-
sults are also valid under condition of the dual replace-
ment of the main concepts: current ↔ voltage, conduc-
tance ↔ resistance, etc. 
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Dynamic characteristics of autodyne oscillators 
in the beating mode and in the mode 

of frequency conversion of an input signal  
 

Considering the steady-state mode, derivatives in the 
left sides of equations (19)─(21) can be equaled to zero. 
As a result, we obtain  
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where a , a , 0  are coefficients of autodyne ampli-
fication, oscillation frequency deviation and auto-
detection, which can be defined as 
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angles of phase offset of autodyne amplitude variations, 
oscillations frequency variations and variations of auto-
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 is the parameter of frequency de-
tection of autodyne frequency variations into variations 
of the average value of the AE current; 

0 0 0a c c/ (          denotes the relative 
maximal deviation of the frequency  of dis-
turbed oscillator versus autonomous oscillation fre-
quency 

/d dt 

0  under influence of the external signal. 
As it is known [13], the behavior of the phase   in-

cluding in equations (22)─(24) depends on the ratio of 
initial offset values id  and c . According to this ref-
erence, two variants of these equation solutions can ex-
ist. If the inequality id c



    is fulfilled, there is the 
beating mode in the system. In this case, the phase   
continuously changes and the value c  determines the 
maximal deviations of frequency  from 0


  . When 

the opposite inequality id c    is fulfilled, we obtain 
the oscillation locking mode. At that, the maximal fre-
quency deviation c  is equaled to the half of the syn-
chronization band. 

In the beating mode, when the strong inequality 

id c    is fulfilled, the phase  in (22)─(24) in-
creases practically in the linear manner with the growth 
of beating frequency p



  as it follows from the equality 
( ) pt t      [13]. Then, excluding cases of multiple 

ratio of frequencies p  and 0 , the solutions of the 
equations (19)─(21) system for dynamic relative varia-
tions of amplitude 1  and frequency  as well as 
the auto-detection signal  can be essentially simpli-
fied. 



( )a t ( )t
0 ( )i t

After transformation, these simplified solutions take 
the form: 
 

1 1( ) ( ) cos [ ( )]a a p p pa t K K t      ;      (28) 
 

( ) ( )sin[ ( )]a a p p pt L L t        ;          (29) 
 

0 0 0 0( ) ( )cos[ ( )p pi t K K t ]p      ,       (30) 
 

where ( )a pK  , ( )a pL  , 0  are normalized pa-
rameters of the frequency dependences of autodyne 
amplification coefficient, oscillation frequency devia-
tions and the auto-detection signal defined by relations: 

( pK  )
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2 2

2 2 2

(1  ) ( )
( ) 

(1 )[1 ]
pn pn

a p
pn

K
    

 
  

;       (31) 

2

2 2

1  (1 ) 
( )

(1 )(1 ) cos ( )

pn pn
a p

pn p

L
      

 
    

;      (32) 

0 2 2
0

(1  )
( )

1 (1 ) cos (

pn
p

ad p p

K
 

 
     )

)

;      (33) 

 

1 , , 0  are angles of relative phase 
offsets of autodyne amplitude variations, beating fre-
quency and the auto-detection signal which can be ex-
pressed as follows: 

( )p  ( )p  ( p 

 

1( ) arctan
1  

pn
p

pn

 
  

 
;                (34) 

2

(1  )
( ) arctan

1  (1 ) 
pn

p
pn pn

   
  

      
;     (35) 

 

0 ( ) arctan ( )p    0 p ;                (36) 
 

2

0

(1 ) (1 ) 
( )

(1 )(1  )
fd fd pn fd

p
fd pn

            
  

     
pn , 

 

where  is the normalized beating fre-
quency; a  denotes the characteristic time constant (re-
laxation time) of the autodyne response defined by ex-
pression: 

pn p a  


 

11 0 (1 )
L

a
Q

 
   

.                       (37) 

 

Comparing the obtained equations (28)─(37) for the 
autodyne in the mode of frequency conversion with the 
appropriate equations (1)─(13) obtained for the case of 
the radar autodyne [14], one can see their complete 
formal coincidence. Nevertheless, physical phenomena 
lying in the basis of its operation are substantially dif-
ferent. In the first case, the autodyne output signal fre-
quency determining in accordance with the Doppler ef-
fect by the relative velocity of radar and object move-
ment can change from zero (the object is fixed) up to 
the maximal limiting frequency  [14, 15]). In con-
trast to considered phenomenon, in the case of the auto-
dyne frequency conversion, the beating frequency is 
limited from below by the value of lock-in band 

lim

c  
determined, as it follows from (29), by the value of 
autodyne frequency deviation which can be represented 
in the form . The simultaneous 

presence of amplitude (28) and frequency (29) modula-
tions of autodyne oscillations inevitably complicates the 

output signal waveform. However, the character of 
these distortions is principally different and it does not 
link with the delay phenomenon of the reflected signal 
as it occurs in the case of radar autodynes [7, 15, 16]. 

0)p (c a aL L   

It should be noted that obtained equations (31)─(36) 
at the assumption 0pn   fully correspond to the simi-
lar ones of the paper [8] derived at quasi-static descrip-
tion of autodyne operation. 

For further analysis, it is important to consider con-
ditions of asynchronous reception of АМ and FМ sig-
nals. Examining the case of АМ signals, we must as-
sume in initial equations 0( ) (1 + cos )s s am mJ t J m t  . 
Then, the system of equations (19), (20) takes the form: 
 

1
11 1 11

0 0

1LQ da d
a

dt dt


   

 
  

0 (1+ cos )cosam mm t     ;               (38) 

11 1
0

L
L id

Q d
Q a

dt


   


 

0 (1+ cos )sinam mm t     ,              (39) 
 

where 0 0 /cA A0  ;  is the amplitude of the radia-
tion acting on the oscillator. 

0cA

When the inequalities ,  are 
fulfilled, solutions of the system (38), (39) and also (21) 
have the form: 

id c   p m 

 

1 0( ) ( )(1+a a pa t K K    

1+ cos ) cos [ ( )]am m p p pm t t    ;        (40) 
 

0( ) ( )(1+a a pt L L     

+ cos )sin[ ( )]am m p p pm t t     ;          (41) 
 

0 0 0 0( ) ( )(1+pi t K K    

0+ cos )cos[ ( )]am m p pm t t    .           (42) 
 

In the case of FM signal reception with the single-
tone modulation, the equation (1) takes the form: 
 

s0( ) cos[ sin ]s fm mj t J t m t    ,             (43) 
 

where /fm fmm m    is the FM index; fm  is the 
frequency deviation. Taking into consideration (43) in 
(20) 0 0fm m( ) [id id sin ]/t t         , the solu-
tion of the formed equation under accepted assumptions 
can be derived as follows: 
 

1 0 0( ) ( )cos [a a p pa t K K t      

1sin ( )]fm m p pm t    ;                 (44) 
 

0 0( ) ( )sin[a a p pt L L t       

sin ( )]fm m p pm t     ;                   (45) 
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0 0 0 0 0( ) ( )cos[p pi t K K t      

0sin ( )]fm m pm t    ,                   (46) 
 

where    is the average beating frequency. 0 0p
As follows from equations (40), (41) and (44), (45), 

in the autodyne frequency converter operating in the 
beating mode, the amplitude and frequency modulations 
of oscillations occur with the beating frequency p



 . At 
that, there is practically the linear transfer of the re-
ceived spectrum to the beating frequency. However, the 
presence of mixed modulation and dependence of the 
beating frequency p  itself upon the oscillation fre-
quency  defined by the expression 

0 0  in accordance with 
(41) and (45) causes distortions of beating signals ex-
tracted according to variations of oscillation amplitude 
in the AE auto-detection circuit. These distortions cause 
the appearance of additional harmonics on frequencies 
multiple to the main beating frequency p , the in-
crease of combination components level and narrowing 
the dynamic range of the radio receiving set [17]. 

0( )t 
( ) [   + ( ) ]p p   t  t



These peculiarities of output signals distinguish the 
autodyne frequency converters from the usual fre-
quency converters, in which functions of the local oscil-
lator and the mixer are functionally separated. To 
eliminate mentioned disadvantages of autodyne fre-
quency converters, it is necessary to make additional 
measures to stabilize the oscillation frequency, for in-
stance, using the external feedback in the oscillator cir-
cuit [18] or the external high-Q resonator [19]. 
 

Influence of oscillator inherent parameters 
on the dynamic autodyne features 

 

The product of coefficients  and  including in 
obtained equations (22)─(30), (40)─(42), (44)─(46) has 
the physical sense of “loop amplification” in the oscilla-
tor as the system with feedback. The influence of this 
feedback loop parameters and other inherent properties 
of the oscillator such as a parameter of frequency detec-
tion 

 

fd  on quasi-static and dynamic characteristics of 

radar autodynes has been considered in publications 
[5─7]. Here, we analyze the influence of inherent pa-
rameters on the dynamic characteristics autodynes-
receivers of signals from the external oscillator. In this 
case, as follows from equations (31)─(46), the value of 
time constant  of the autodyne response (37) influ-
ences the formation of UHF oscillators autodyne re-
sponse. This time constant, in turn, also depends from 
inherent parameters of the oscillator. 

a

Define the value a  in (37) as a ai ao , where 
 is the time constant of the autodyne re-

sponse of the usual isodromous oscillator [7] and 

    
11 0/ai LQ   

/ 1/(1ao a ai )        is the time constant normalized 
with respect to ai . The bulk diagram showing depend-
ence of the normalized time constant ao  upon coeffi-
cients of non-isochronous  and non-isodromous 


   

properties is presented in Fig. 2. As follows from this 
diagram, both non-isochronous and non-isodromous 
properties cause essential amendments in the value of 

ao  compared to the case of autodyne oscillator in 
which . These amendments are especially per-
ceptible in the case of identical signs of coefficients  
and 

0   


 . In this case, when the value of loop amplifica-
tion  tends to unity, the essential growth of the time 
constant a


  can observe that is unwanted in a number 

of applications since it limits the speed performance of 
autodyne systems. 

ρ
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Fig. 2. The bulk diagram of the normalized value of the auto-
dyne response time constant . ao
 

Equations (31)─(36) obtaining autodyne parameters 
have sufficiently complicate form. Therefore, we per-
form their analysis with attraction of numerical methods 
for variation of parameters. Frequency dependences of 
autodyne parameters and their phase shift angles calcu-
lated in accordance with (31)─(36) for different values 
of coefficients ,   and fd  are presented in Fig. 3 ─ 
Fig. 5. 

Ωpn
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0
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-1 0 1
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Fig. 3. Diagrams of frequency dependences of the autodyne 
amplification coefficient  and the phase shift angle 

1

( )a pK 
( )p   calculated for 1.2   and different values of non-

isodromous coefficient  :  (curves 1); 0.5  0   
(curves 2); 0.5   (curves 3). 
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The region of frequency dependences of autodyne 
parameters and their phase shift angles calculated in ac-
cordance with (31)─(36) for different values of coeffi-
cients ,  and   fd  in the vicinity of value  in 
diagrams is presented hypothetically. 

 0p 
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Fig. 4. Diagrams of frequency dependences of the normalized 
coefficient of the frequency deviation  and the phase 
shift angle 

(a pL  )
)( p   calculated for 1.2   (а) and 1.2    (b) 

for different values of the non-isodromous coefficient  : 
 (curves 1);  (curves 2);  (curves 3); 

(diagrams 4 are received for 
0.5   0  0.  5

0  ). 
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Fig. 5. Diagrams of frequency dependences of normalized 
coefficient of auto-detection 0 ( )pK   and the phase shift 
angle 0 ( )p   calculated for different values of coefficients 
 , fd : (a) 1.2  , fd 0.5   ; (b) 1.2  , 0.5fd  ; (c) 

1.2   , 0.5fd   ; (d) 1.2   , fd  and the non-
isodromous coefficient 

0.  5
 :  (curves 1); 0.5   0   

(curves 2); 0.5   (curves 3). 
 

As follows from Fig. 3, the frequency dependence of 
the normalized coefficient of autodyne amplification  

(a pK )  caused by inertia property of oscillation am-
plitude is the symmetrical function with respect to 

0p  . This dependence reminds the amplitude-
frequency characteristic of oscillating circuit and it does 
not depend on values of coefficients  and   . At that, 
the phase shift angle of the characteristic 1 p  is de-
termined by non-isodromic property of the oscillator 

(  )

( 0)   causing its offset along the ordinate axis. The 
dependence ( )a pK   as a function of coefficients  
and 


  is tracked in absolute values of the frequency of 

the autodyne response p . 
As follows from expression (31), if the inequality 

2 / p а     is fulfilled, the amplitude value of the 
autodyne signal 1  is strongly decreased since the 
autodyne has no time to react on the fast variation of the 
phase 

( )a t

 . 
From (31) under condition , we can 

obtain the limiting value of the autodyne signal fre-
quency  

1/2( )  1/2a pK  

 

2
011 0

lim

1(1 )1

a L а exQ K Q

     
   


,       (47) 
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which is fully coincides with expression for the limiting 
frequency of the Doppler signal of the radar autodyne 
(see formula (14) from [14]). 

In contrast to behavior of , the frequency 
dependence  under condition  is not the 
symmetrical function with respect to , but it has 
near zero dispersion form, as illustrated in Fig 4. The 
view of this hypothetical function in a great extent is 
determined by the value and the sign of non-
isochronous  and non-isodromious   coefficients. 
When the sign of the coefficient  is changed, curves 

 in diagrams in vicinity of p   change also 
the sign of derivatives, as follows from comparison of 
appropriate curves in Fig. 4а and Fig. 4b. At that, 
curves  are rotated on the angle, which is ap-
proximately equals to  with respect to origin of coor-
dinates as the point of central symmetry. The slope 

( )a pK 

p



( )a pL 



)p

0 
0 

0(a pL  )

( 


S  
of dispersion dependence ( )a pL   in vicinity of zero 
frequency  0p 
 

0 2

0

( ) (1 )

1
a p

pn

dL
S

d



    
      

           (48) 

 

has the greatest value under , as it has been 
shown in [14] for the case of the radar autodyne. At 
that, the oscillator non-isodromous property increases 
the slope  under condition when signs of coeffi-
cients  and  are different. For other values of the co-
efficient  the effect of frequency dispersion appears in 
the lesser extent. In the case of the isochronous oscilla-
tor , it is completely absent and the phase shift 

, as illustrated by curves shown in Fig. 4. 

1  

0S




0)
0



( 
( ) p

Thus, two main factors influence the value of auto-
dyne frequency deviation. The first factor as determina-
tive one relates to variations of the oscillation fre-
quency. The second one is specified by conversion of 
autodyne amplitude variations 1  into variations of 
oscillation frequency due to non-isochronous property. 
In the case of in-phase combining of these factors at 
frequency pn  growth of the same sign, the autodyne 
deviation increases. Otherwise, in the case of anti-phase 
combination under frequency pn

 

( )a t



  growth of another 
sign, it decreases. These regulations designate the 
physical sense of the phenomenon of frequency disper-
sion of autodyne frequency deviation, as has been 
shown for the radar autodynes in [14]. In the considered 
case of non-isodromous oscillator , the compo-
nent caused by its non-isochronous property is defined 
by another additional factor associated with the pres-
ence of the inherent feedback discussed above. 

( 0) 

Characteristics 0  and 0  shown in Fig. 
5 illustrate the result of amplitude-phase combining the 

response (22) on amplitude variations 1  extracted in 
the bias circuit of AE and detection of the response (23) 
on frequency variations 

( pK  ) )( p 

( )a t

( )t , that can be ensued from 
equation (21). Therefore, in the general case, the fre-
quency dependence of 0  also has some asymme-
try of characteristic caused by phenomenon of fre-
quency detection fd

( p

0)

)K

(  . The phase shift 0 ( p )   of 
the autodyne response also has the complicated depend-
ence upon frequency pn . At that, for different signs of 
coefficients  and  fd , dependences 0  shown 
in Fig. 5а and Fig. 5d are similar to characteristics 

1

( )p 

( p )   depicted in Fig. 3. Their differences consist of 
the presence of additional phase shifts along the ordi-
nate axis due to frequency detection. In the case of dif-
ferent signs of coefficients  and  fd , these character-
istics have more complicated view determined in a 
great extent by the value of the coefficient 



  as can be 
seen in Fig. 5b and Fig. 5c. Naturally, at the absence of 
the phenomenon of oscillator frequency detection 
( fd 0) 

K

 the characteristics p ,  coin-
cide with characteristics  and   . 

0
)

L

( ) 0



K

p

)K

5

 ( )p 
( )p

K

1 1
Peculiarities of beating signal formation revealed 

here restrict the application of the external generator 
method to its usage for investigations of sensitivity and 
noise properties of the autodyne as the radio receiver, 
for measurements of coefficients of autodyne amplifica-
tion a , frequency deviation a , auto-detection 0 . 
The considered method can be also applied to derive the 
time constant of the autodyne response starting from the 
definition of the limiting frequency lim  at measure-
ment of characteristic p . It should be noted that 
the beating waveform definition does not associate with 
peculiarities of signal formation in the autodyne short-
range radar. 

(K 

(a 

 

Results of experimental investigations 
 

The functional scheme of experimental installation 
for inspection of dynamic characteristics of UHF oscil-
lators is presented in Fig. 6. The autodyne oscillator АО 
under investigation was connected to the modulator 
Mod on the pin-diode through the double-arm direc-
tional coupler DC, the variable attenuator Att with the 
damping factor of 1  dB and the circulator C. The 
length of the waveguide path from the autodyne oscilla-
tor to pin-diode-modulator Mod was equal to 0.22 m. 
The third arm of the circulator was loaded by the 
waveguide short-circuiter SC. The sinusoidal signal 
with constant bias was supplied to the control input of 
the modulator Mod from the radio-frequency oscillator 
RO. The side arms of the directional coupler DC were 
connected to the spectrum analyzer SA and the output of 
the microwave oscillator MO through isolating gates. 
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The autodyne oscillator AO under investigation was 
supplied from the stabilized voltage source PS. The os-
cillator module “Tigel-08” performed by the hybrid-
integrated technology on the planar two-meza Gunn di-
ode of 8mm wave range was used as an object under 
investigation [20]. 

To compare methods of experimental estimation of 
the autodyne response time constant, the modulation 
characteristic of the UHF oscillator was studied [8]. For 
this purpose, the operating point on the characteristic of 
the pin-diode was chosen in the middle of the linear 
sector of the direct bias. It permits to ensure the 
reflection coefficient variation according to the law 

0 , where , if the sinusoidal 
signal of small amplitude with frequency m

Г( ) (1 sin )mt m    t 1m 
  is 

supplied on the pin-diode. The choice of the appropriate 
phase of the reflection coefficient by the waveguide 
short-circuiter SC ensures the maximal deep of the 
amplitude modulation of AO. The chosen value of the 
modulation deep of the reflection coefficient was 

 0.1m 
 

 
 

Fig. 6. Functional scheme of experimental installation 
 

The deep of amplitude modulation was checked by 
the spectrum analyzer SA. The form of modulation 
characteristic for this oscillator in the normalized view 
measured in the frequency  range from 10 to 
300 MHz is presented by the curve 1 in Fig. 7.  

/ 2m 
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Fig. 7. Diagrams of frequency dependences of the normalized 
coefficient of autodyne amplification of the oscillator on the 
Gunn diode of 8mm range. 

After that, the attenuator Att was switched to posi-
tion of maximal attenuation, and the signal of the con-
stant level 40  dBm was supplied to the input of the 
autodyne oscillator AO from the output of the micro-
wave oscillator MO through the directional coupler DC 
with transfer attenuation –10 dB in the same range of 
frequency offset with respect to the oscillation fre-
quency. The structure of frequency dependence of the 
beating signal checked by the spectrum analyzer SA is 
presented by the curve 2 in Fig. 7. 

The limiting frequency lim  of these character-
istics by the level 0.707 is 126 MHz in the first case and 
164 MHz in the second case. As follows from these 
data, the relaxation time constant values of amplitude of 
the autodyne oscillator under investigation respectively 
constitute  in the first case and 

а

/ 2

926 10



lim1 / 1.а   
9

lim 1 101/       in the second case. The discrep-
ancy of obtained values can be explained by the inher-
ent cut of the frequency response by the pin-modulator 
having switching time about 1 ns. 

Inherent parameters values ; –0.187  55LQ  ; 
; 00.92  / 2  37.5 

аK

 GHz have been obtained in [8] 
for this oscillator. In accordance with (25) and (47) 
these data were used to calculate the autodyne amplifi-
cation coefficient 5.4  and the parameter 

11 0.15   characterizing the limit cycle permanence in 
the chosen operation mode. 

The results of performed investigations indicate that 
the external generator method is more accurate when 
determining the time constant  of the autodyne re-
sponse. 

Conclusion 
 

Results of fulfilled investigations confirm that fre-
quency dependence of the normalized coefficient of 
autodyne amplification of the oscillator situated under 
influence of the external oscillator signal is the symmet-
rical function with respect to zero beating frequency. At 
that, in the general case of non-isochronous and non-
isodromous oscillator, frequency characteristics of coef-
ficients of autodyne frequency deviation and auto-
detection have more complicate form caused by phase 
relations of autodyne variations of amplitude and fre-
quency oscillations. 

It is shown that the external oscillator method pro-
vides the measurement of not only such autodyne oscil-
lator parameters as coefficients of autodyne amplifica-
tion, the autodyne frequency deviation and auto-
detection but also the time constant of the autodyne re-
sponse and other inherent parameters of the oscillator 
starting from definition of limiting frequency at meas-
urement of the amplitude characteristic. It is evident 
that this method can be used for measurement of the 
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sensitivity and noise characteristics of the autodyne as a 
radio receiving set. 

The results of fulfilled analysis can be useful under 
determination of the response time of the UHF auto-
dyne to influence of the external asynchronous signal 
and also at the solution of optimal signal reception tasks 
and processing in the beating mode in different systems. 
As compared with the modulation characteristic 
method, the developed method has no error caused by 
frequency limitations of the used modulator. Additional 
advantage of the external oscillator method is its sim-
plicity and availability of equipment which is especially 
important at fulfillment of laboratory researchers of 
large number of different oscillators with the purpose of 
type choice and optimization of the oscillation mode of 
autodyne oscillators. 

The developed method can be successfully used in 
the solution of the problem of autodyne operating speed 
estimation used as a transceiver on-board of the sound-
ing balloon for the interrogator in the promising system 
of atmosphere radio-sounding. In these systems the 
autodyne oscillator should have the necessary operating 
speed at reception of radio-pulses of the interrogator to 
provide required accuracy of distance measurement to 
the sounding balloon. 

This research is fulfilled under financial support of 
the Ministry of Education and Science of Russian Fed-
eration in accordance with Government decree No. 218 
dated April 09, 2010. 
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