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A multiroute cross-layer transport protocol with data delivery capabilities for mobile networks is proposed. Protocol combines 
routing functionality with reliable data delivery. It is shown that finding multiple routes to the destination can be successfully 
combined with a connection establishment for connection-oriented protocols such as TCP. Establishing a connection over mul-
tiple routes can significantly decrease the time of the connection recovery when some routes become unavailable thus increas-
ing total throughput of transport protocol in mobile networks environment. Performance analysis of the proposed protocol in-
dicated that in mobile sensor networks with 5-10% of packet losses its throughput is approximately 60% higher than through-
put of TCP-Reno2 flowing over shortest path. 
 

 

Introduction 
 

The loss of data is unavoidable occasion in any com-
munication system. In mobile sensor networks every 
node serves as a router relaying packets to the other 
nodes and at the same time it is free to move in any di-
rection. Therefore such networks are even more prone 
to data losses than wired ones. According to OSI model 
reliable data delivery and congestion control are carried 
out by transport layer protocols. Standard TCP treats 
every packet drop as congestion in the network and de-
creases the data rate [1, 2]. In mobile sensor networks, 
packet drops are caused not only by congestion but 
primarily by changes in the network topology, which 
leads to unpredicted changes in the performance of 
available routes. This paper discusses various reasons 
of deliver data inability in mobile sensor networks and 
proposes a new transport protocol designed to operate 
in highly mobile environment. 

Mobile sensor networks present many challenges, 
especially when real time application must be supported 
in terms of providing QoS guarantees. One of the big-
gest challenges is routing since all nodes can move. Va-
riety of routing protocols has been developed. Some of 
them such as AODV and DSR are presented in RFC 
documents [3, 4]. All of them are designed as inde-
pendent algorithms which can operate with any trans-
port protocol in accordance with decomposition of OSI 
layers. However, in the case of severe performance deg-
radation or route failure it can take significant time to 
find a new route while transport layer will continue to 
deliver data packets on a network layer. This can lead to 
unacceptable quality of service on application layer. 

Another challenge for mobile sensor networks is 
congestion control on a transport layer. Such classical 

TCP mechanisms as congestion avoidance, fast re-
transmit and recovery mechanisms do not entirely cor-
respond to the wireless environment which this protocol 
operates in, hence proper adaptation is needed. Differ-
ent adjustments to TCP for operating in mobile sensor 
networks have been presented [5]. To overcome the 
problem of connectivity loss, some cross layer tech-
niques are proposed [5]. This way allows collecting the 
information on radio links, delays and available band-
width on each hop which can be used for dynamic ad-
aptation to the network changes. This circumstance is 
important when applications (usually multimedia) have 
strict requirements on delay, bandwidth and jitter. To 
maintain the connectivity between end-users and guar-
antee QoS, the use of multiroute data delivery scheme 
is proposed. It allows redirecting the current traffic to 
bypass unstable relay nodes without spending addi-
tional time on routing. The data delivery scheme pro-
posed can effectively prevent congestions in mobile 
sensor networks. Depending on QoS requirements re-
quested by application process, the transport protocol 
can choose routes with appropriate parameters in terms 
of delay, throughput and reliability. In this case, sharing 
information across layers is required. More generally, 
network and transport layers in mobile sensor networks 
should be combined in one protocol and should have 
access to link and application layers. This way simpli-
fies collecting information on routes and link perform-
ance and adjustment to changes in mobile sensor net-
work. In this paper, we show that the use of cross layer 
design combined with multiroute data delivery can sig-
nificantly increase total throughput and stability of end-
to-end transport connection. The paper contains an 
overview on establishing a connection between TCP 
and its adjustments for mobile sensor networks, a de-
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sign of a new cross-layer transport protocol, as well as a 
simple model for data transmission in mobile sensor 
networks and performance analysis of the presented 
protocol. 

 

Connection establishment in mobile networks 
 

All connection-oriented protocols require a “hand-
shake” before they can exchange application data. This 
phase is important to track the presence of the respec-
tive service on the remote host. TCP uses three-way 
handshake prior to sending application data. During this 
phase sender and receiver notify each other on buffer 
size and maximum segment size (MSS) which can be 
sent to the network layer. In mobile sensor networks 
when using reactive routing protocols, establishment of 
a connection is possible only after routing phase. For 
instance, in AODV routing protocol when sender de-
sires to send a message to some destination node and 
does not already have a valid route to that destination, it 
initiates a path discovery process to locate the other 
node. It broadcasts a route request (RREQ) packet to its 
neighbors which then forward the request to their 
neighbors, and so on, until either the destination or an 
intermediate node with a “fresh enough” route to the 
destination is located. Once route request reaches the 
destination or an intermediate node with a fresh enough 
route, it responds by unicasting a route reply packet 
(RREP) back to the neighbor from which the route re-
quest was first received. When the route reply packet 
reaches the sender, TCP sends first connection estab-
lishment packet (SYN packet) to the remote host. Actu-
ally, TCP sends packet before routing but it will remain 
in transmit FIFO buffer until route is found. It should be 
noted that the standard TCP has no means of explicit 
route assignment and “knows” nothing on which ex-
actly route is found. 

Another important issue is data delivery over multi-
ple routes. Assume that another routing protocol capa-
ble to discover multiple routes from source node to the 
destination node is used. In this case, a route pool can 
be used to maximize data flow in the network. How-
ever, neither standard TCP nor its adjustments have no 
multihoming features which can benefit from multiple 
routes. The use of SCTP transport protocol having mul-
tihoming capability inbuilt is proposed in [6]. However, 
SCTP refers to a situation where a node can choose be-
tween several paths to reach a destination either by hav-
ing multiple interfaces to choose from or by the net-
work that is connected to the Internet by several routers 
or by routers with several interfaces. In other words, 
SCTP operates with multiple interfaces rather than 
routes. 

According to TCP specification as soon as first SYN 
packet reaches destination node, server side socket tran-
sits to a “half-open” state, allocates respective buffers 
and structures and sends back SYN ACK packet. If 
more SYN packets with the same sequence number are 
already reached, allocated socket connection will reset 
[1]. This is fundamental issue which restricts standard 
TCP from using broadcasting techniques. However, in 
order to decrease the time of establishing a connection, 
route discovery process can be combined with sending 
SYN packets. This process is illustrated in Fig. 1, where 
source node A tries to establish a connection with desti-
nation node H broadcasting SYN packets. Even though 
network layer specifies source and destination ad-
dresses (A and H), broadcasting can be done on a link 
layer.  

Fig. 1. Establishing of a multiroute connection. 
 

In reactive routing protocols, such as AODV, DSR, 
TORA, route discovery process employs broadcasting 
of route request packets. Therefore, if intermediate 
nodes will propagate such packets even though they 
might have a “fresh enough” route, destination node can 
expect several copies of the same packet delivered over 
multiple routes. To provide additional multiplexing ca-
pabilities for the remote host, each packet must also 
contain unique session ID. For example, if IPv6 is used 
as underlying network protocol, it can be 20-bit flow 
label. 

According to example shown in Fig. 1 (bottom), the 
destination node H is able to distinguish a route of each 
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incoming SYN packet and replies it by unicasting and 
marking SYN ACK with session and route IDs. Thus 
destination node H after allocating socket does not dis-
card every incoming SYN packet but simply assigns its 
route an ID, for instance, by incrementing a counter of 
incoming packets and appends it to the session routing 
table. 

As first SYN ACK packet with proper session ID is 
received by source node (usually via shortest path), it 
extracts transport layer information such as receiver 
congestion window size Wr, MSS of the route, route ID, 
initializes session routing table and immediately starts 
sending available data packets over this route. These 
packets also serve as probes to determine reliability, 
throughput and delay of the discovered route. 

Suppose that sending ACK packet according to the 
“three-way handshake” is done over the same route as 
SYN ACK. So, source node as a client and destination 
node as a server have established a connection over 
multiple routes using broadcasted SYN packets to avoid 
routing phase and for saving time. But once it is done, 
other fundamental questions appear immediately: which 
route is better and which route is more reliable and sta-
ble. Cross layer protocol design is an excellent candi-
date to address all those questions. 

 

Cross-layer protocol design 
 

In this section we discuss the implementation of the 
transport protocol in order to benefit from multiple 
routes in mobile sensor networks. As it was noted be-
fore, as soon as first SYN ACK reaches source, the 
node initializes session routing table. This table con-
tains statistical information on available routes col-
lected in real time. This information includes data about 
number of hops, MSS, number of sent and dropped 
packets as well as RTT in milliseconds. If new SYN 
ACK packet arrives, its routing information will be ap-
pended to this table. Remote host, i.e. destination node 
or server, has the same session routing table, except for 
sent packets in the case if no packets are lost. Table 1 
shows session routing table on client side after process-
ing 4 SYN ACK packets and 1 data ACK packet for the 
case when MSS is equal to 1460. In this table, the sign 
RTT refers to data stated as an example. 
 

Table 1. Session routing table on client side. 
 

N 
Route 
record 

Hops 
Route 

ID 
Sent Lost RTT 

1 ACFH 3 1 2 0 4 

2 ABDGH 4 2 1 0 6 

3 ABDFH 4 3 1 0 10 

4 ACEFH 4 4 1 0 12 

Both client and server can assess stability of each 
route by calculation loss percent   per route taking into 
account total number of sent packets: 
 

/i iLOST SENTi                           (1) 


Retransmission timeout 
 

Packets lost in the network should be recovered 
through its retransmission. Transport protocols use dif-
ferent mechanisms to notify the source about lost 
packet, so that it can retransmit them. These could be 
either positive acknowledgement (ACK) packets which 
notify sender on successful data packet delivery with 
particular sequence number or negative acknowledge-
ment (NACK) packets which explicitly notify on data 
packet losses. In both cases, sender detects and re-
transmits the lost data packets. To ensure reliability of 
connection, sender also sets a retransmission timeout 
for every data packet. Its value is based on simple sta-
tistical information such as round-trip time (RTT). Ac-
cording to fast retransmission mechanism employed in 
latest versions of TCP reception of 3 duplicate, ACK 
packets trigger immediate retransmission of lost seg-
ment. However if sender did not send enough packets to 
generate 3 duplicate ACK ones, then unacknowledged 
data are retransmitted on timeout. To calculate appro-
priate retransmission timeout following formulas are 
used [2]: 

(1 ) ( )OLD LASTSRTT SRTT RTT      ,      (2) 
 

where SRTT is “smoothed” round-trip time; 0 1   . 
Usually 1 / 8  , then (2) can be expressed as: 
 

7 1

8 8OLD LASTSRTT SRTT RTT    .           (3) 
 

In RFC 1122 [11], the following retransmission 
timeout (RTO) calculation is recommended: 
 

2RTO SRTT SDEV   ,                    (4) 
 

where SDEV is “smoothed” deviation, to calculate 
which the absolute deviation DEV is found: 
 

| |LAST OLDDEV RTT SRTT  .                 (5) 
 

Then SDEV can be calculated as: 
 

3 1

4 4OLDSDEV SDEV DEV                  (6) 

 

Formulas (2)─(6) do not support multiroute capa-
bilities since they imply the calculation of one timeout 
value regardless of routes number available. Accord-
ingly, since session routing table contains several RTT, 
it is reasonable to calculate its own RTO for every dis-
covered route using formulas (2)─(6). 



IU. VOITENKO:  MULTIROUTE CROSS-LAYER TRANSPORT PROTOCOL WITH RELIABLE DATA DELIVERY 25

Yet another important issue of transport layer is effi-
cient congestion control and connection maintenance. 
In mobile sensor networks, resolving this issue is much 
more complicated due to inability to define a real cause 
of packet loss: congestion, topology change, wrong 
checksum or other reason. 

Using cross layer information, the exchange may 
help to define some reasons such as low signal-to-noise 
ratio on the radio link or wrong checksum on network 
layer but not all of them. Moreover, in mobile sensor 
network there is a multihop environment where the 
packet can be discarded at any intermediate node with 
no ability to predict it. Some protocols propose to use 
link layer ACK in order to notify about topology 
change. However, this may lead to unacceptable QoS at 
application layer. 

Ignoring the initial slow-start period when a connec-
tion begins and assuming that losses are indicated by 
triple duplicate ACK or timeouts, TCP congestion con-
trol consists of linear (additive) increase in congestion 
window (cwnd) of 1 MSS per RTT and then a halving 
(multiplicative decrease) of cwnd on triple duplicate 
ACK event or timeout. Whenever new ACK arrives 
data sender increases congestion window (cwnd) by 
(MSS/cwnd) bytes. 

Assume that aforementioned logic but with multiple 
routes available within established transport connection 
is used. After first SYN ACK reception, client sends 
first data packet. By the time it receives ACK for data 
packet it has already 2 routes. An ACK server also noti-
fies client about its congestion window size Wr and cli-
ent increases its congestion window Ws by 1 MSS seg-
ment thus sending 2 data packets. Both client and server 
sides update their session routing tables and calculate 
loss percent  for each available route either when new 
packet arrives or on timeout. Routes with lower 


  are 

statistically more stable in terms of packet drops. As 
soon as client has 2 routes in its table, it sends 1 packet 
over this new route and the remaining packets over pre-
viously discovered route. 

Thus, in our example, each available route bears a 
data packet. Since in mobile sensor networks the prob-
ability of out-of-order packets delivery is much higher 
than in fixed networks due to dynamically changing 
route performance, one can assume that no duplicate 
ACK are generated and server always replies with cu-
mulative ACK, i.e. one ACK packet per group of data 
packets is sent over route with lowest  . 

To benefit from cumulative ACK, server must also 
maintain timeout interval t at which it accumulates data 
packets. This interval can be defined as: 
 

s AVGt W RTT                              (7) 
 

where Ws is the number of packets “in-flight”; AVG  
denotes average RTT for all routes. As soon as at least 
1 data packet arrives, server determines Ws. 

RTT

Consider flow scenario where 4 data packets over 
different routes and 4 ACK packets have been success-
fully delivered. By the time of last ACK arrival, the 
client has already 4 routes available. It increases con-
gestion window Ws to 4 MSS and send 1 packet per 
route. 

Consider another scenario with 5 data packets. Sup-
pose that packets 3 and 5 are lost, which is more realis-
tic scenario to happen in mobile sensor networks. Let as 
analyze it step by step. Since sW , where R is a 
number of available routes, client send data packets one 
per route and expects a cumulative ACK over the most 
reliable (stable) route with lowest λ. Server upon receiv-
ing first data packet determines total amount of packets 
“in-flight” 

R

sW  and calculates waiting period for other 
missing segments using (7). 

After data accumulation period elapsed, server sends 
back ACK which indicates that packets 3 and 6 are 
missing. Server expects arrival of retransmitted packets 
within another awaiting period using formula (7). ACK 
packets are much smaller in size than data packets 
therefore the loss probability is also smaller and they 
reach destination faster. 

If no data packets are received within another wait-
ing period, server retransmits ACK over most “distant” 
route to the route used previously. To determine such 
route, consider session routing tables on server and cli-
ent sides, represented in Tables 2 and 3, where RTT are 
stated as an example. Table 2 shows the server side sta-
tistic which occurs before sending second ACK pack-
ets. 
 

Table 2. Session routing table on server side. 
 

N 
Route 
record 

Hops MSS 
Route 

ID 
Sent Lost RTT 

1 ACFH 3 1460 1 3 1 10 

2 ABDGH 4 1460 2 1 0 15 

3 ABDFH 4 1460 3 1 0 30 

4 ACEFH 4 1460 4 1 0 40 

 

Table 3 shows client side statistics after arrival of 
second ACK (counter 2 ). 

The term “distance” means the modulo 2 sum be-
tween routes presented as vectors: 
 

, ,ij i j i jD R R R R R                      (8) 
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Table 3. Session routing table on client side. 
 

N 
Route  
record 

Hops MSS 
Route 

ID 
Sent Lost RTT 

1 ACFH 3 1460 1 3 1 10 

2 ABDGH 4 1460 2 3 0 15 

3 ABDFH 4 1460 3 2 0 30 

4 ACEFH 4 1460 4 2 1 40 

 

Two routes are called as independent if the first 
route contains such nodes which are not present in the 
second route, otherwise routes are dependent. Table 4 
shows distances between all available routes. 
 

Table 4. Distance table. 
 

N Route record 1 2 3 4 

1 ACFH - 5 3 1 

2 ABDGH 5 - 2 6 

3 ABDFH 3 2 - 4 

4 ACEFH 1 6 4 - 
 

Formula (8) in relation to both communicating sides 
can be generalized as follows: 
 

1

1

max
k

sent i
i

D R



  R ,                    (9) 

 

where sentR  is a set of routes (vector union) used in the 
last transmission round. 

Thus, server chooses route ABDGH for the second 
ACK. Client waits for cumulative ACK within RTO 
period. Using formulas (2)─(7), it is easy to see that t < 
RTO, so client has enough time to wait for ACK before 
retransmission. If no ACK arrives, client halves its con-
gestion window and chooses alternative routes accord-
ing to (9), but in our example it receives second ACK. 
This ACK packet carries information about loss of 2 
data packets (3 and 6) and previous ACK via incre-
mented ACK counter. It also serves as implicit indica-
tion that shortest route ACFH (route ID=1) is currently 
unable to deliver packets (both data and ACK packets 
have been lost), therefore, a topology may change.  

To determine failure nodes failN  by client, the fol-
lowing matrix expression for routes can be obtained: 
 

A B C D E F G H

1. 1 0 1 0 0 1 0 1

2. 1 1 0 1 0 0 1 1

3. 1 1 0 1 0 1 0 1

4. 1 0 1 0 1 1 0 1

            (10) 

( ) (ACK NACK
fail i i

i i

N inv R R    ) ,          (11) 

 

where  defines a set of routes successfully deliv-
ering packets;  denotes a set of routes where 
packets were lost; inv  specifies an inversion function 
(bitwise NOT). 

ACKR
NACKR

Using formulas (9)─(11), we can obtain that failure 
nodes are C and E. Since node C is included only in 
failed routes 1 and 4, client should bypass this node. 
Then, client chooses routes 2 and 3 which do not con-
tain node C. For the next transmission round, client 
sorts session routing table by  and chooses most sta-
ble routes. 



 

Performance analysis 
 

In this section, we will evaluate a performance of the 
designed multiroute cross-layer transport protocol and 
compare it with the performance of standard TCP with 
congestion avoidance, fast retransmit and fast recovery 
mechanisms (version Reno-2) flowing over shortest 
path. Assume that application layer generates data for 
15 transmission rounds in accordance with a network 
scheme presented in Fig. 1. Let each round contains 
MSS packets. We will denote rounds contained 1 data 
packet loss by mark *, as well as rounds with a data 
packet and ACK packet losses by mark **. At round 4 
packet is dropped in node C, at round 8 in node F, at 
round 13 in nodes F and E. To calculate RTT parame-
ters, initial values for each route were taken from Table 
3. To solve the considered TCP problem, we use a fast 
retransmit algorithm at round 13. Table 5 shows timer 
parameters of TCP. All parameters are calculated by 
formulas (2)─(7) using initial value SDEV 1500  ms. 
 

Table 5. Timer parameters of TCP Reno-2. 
 

Round MSS 
SRRT 

old, ms 
RTT 

last, ms 
SRTT 

new, ms 
SDEV, 

ms 
DEV, 

ms 
RTO, 

ms 

1 1 0.0 10.0 0.0 1500.0 10.0 3000.0 

2 2 0.0 20.0 2.5 1127.5 20.0 2257.5 

3 4 2.5 40.0 7.2 850.6 37.5 1708.4 

4* 2 7.2 1708.0 219.8 647.3 1700.8 1514.5 

5 3 219.8 30.0 196.1 910.7 189.8 2017.5 

6 4 196.1 40.0 176.6 730.5 156.1 1637.5 

7 5 176.6 50.0 160.7 586.9 126.6 1334.5 

8* 6 160.7 1334.0 307.4 471.8 1173.3 1251.0 

9 3 307.4 30.0 272.7 647.2 277.4 1567.0 

10 4 272.7 40.0 243.6 554.7 232.7 1353.1 

11 5 243.6 50.0 219.4 474.2 193.6 1167.9 

12 6 219.4 60.0 199.5 404.1 159.4 1007.6 

13* 7 199.5 30.0 178.3 342.9 169.5 864.1 

14 4 178.3 40.0 161.0 299.6 138.3 760.1 

15 5 161.0 50.0 147.1 259.2 111.0 665.6 
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Table 6 shows timer parameters of proposed mul-
tiroute cross layer transport protocol (MCTP). As can 
be seen, at round 4 TCP detects packet loss via timeout 
because there were not enough duplicate ACK packets 
to generate fast retransmit, so TCP had to retransmit 
missing segment on timeout. Another strategy has been 
used in the same situation by MCTP when cumulative 
ACK reached client immediately retransmitted missing 
segment over most “distant” route. 
 

Table 6. Timer parameters of MCTP. 
 

 

As follows from Table 6, at round 4 MSS value 
dropped to 2, so both protocols retransmitted 1 lost 
segment and 1 new data packet. The same arguments 
can be applied to the other loss events. Table 7 shows 
performance comparison for both protocols.  
 

Table 7. Performance comparison. 
 

Protocol 
Data, 
bytes 

ACK  
packets  

Total  
delivery 
time, ms 

Through-
put, 
Kbps 

TCP 
Reno-2 

91500 64 3532 25.9 

MCTP 91500 18 2192 41.7 
 

Conclusion 
 

In this paper, a cross-layer transport protocol with 
multiroute reliable data delivery capabilities is pre-
sented. The protocol proposed combines routing with 
transport layer features at connection establishing phase 
in order to decrease the connection time. It requires sig-
nificant changes on server side behavior. This protocol 
should expect several copies of the same synchroniza-
tion request and therefore should not reset connection. 

It should detect a route of every SYN packet arrived 
and reply by unicasting SYN ACK over detected route. 
This mechanism allows source node (client) to discover 
multiple routes to the destination node (server) within 
one transport connection. 

After synchronization phase, both client and server 
sides collect connection statistics and put it in a session 
routing table. This table is updated every packet send-
ing or timeout event. Having a set of routes simplifies 
maintenance of the connectivity between client and 
server and allows to shorten time to discover alternative 
path if loss is detected. In this paper, a method to define 
best alternative path for lost segments is presented. This 
method implies calculation of the most “distant” route 
among all available to the one used previously where 
“distance” is a number of nodes not included in previ-
ous transmission round. 

A simple analytical model based on retransmission 
timeout and predefined loss events is presented. It al-
lows easily compare the behavior of transport protocols 
and draw some conclusions on their performance in 
terms of number of data and ACK packets sent, total 
delivery time and throughput. Comparison between 
proposed multiroute cross-layer transport protocol and 
standard TCP Reno-2 run over shortest path has shown 
that in mobile sensor networks with 5─10% of packet 
losses total data delivery time in MCTP is approxi-
mately 60% higher due to significant changes in proto-
col retransmission logic and the use of multiple routes. 
One of the possible future works can be performance 
evaluation of proposed protocol to the other mobile 
sensor network transport protocols as well as its logic 
improvements. 

Round MSS 
SRTT 
old, ms 

RTT 
last, ms 

SRTT 
new, ms 

SDEV, 
ms 

DEV, 
ms 

RTO, ms 

1 1 0.0 10.0 0.0 1500.0 10.0 3010.0 

2 2 0.0 25.0 3.1 1127.5 25.0 2280.0 

3 4 3.1 95.0 14.6 851.9 91.9 1798.8 

4* 2 14.6 45.0 18.4 661.9 30.4 1368.8 

5 3 18.4 55.0 23.0 504.0 36.6 1063.0 

6 4 23.0 95.0 32.0 387.2 72.0 869.3 

7 5 32.0 110.0 41.7 308.4 78.0 726.7 

8** 6 41.7 726.7 127.4 250.8 685.0 1228.3 

9 3 127.4 45.0 117.1 359.3 82.4 763.7 

10 4 117.1 95.0 114.3 290.1 22.1 675.2 

11 5 114.3 110.0 113.8 223.1 4.3 556.2 

12 6 113.8 125.0 115.2 168.4 11.2 461.8 

13** 7 115.2 461.8 158.4 129.1 345.8 719.2 

14 4 158.4 90.0 149.8 183.3 68.4 456.6 

15 5 149.8 105.0 144.2 154.6 44.8 414.1 
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