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A simple electrical model of the solid-state object under investigation as an initial approximation for the problems of tomo-
graphic reconstruction and design of telecommunication systems components is proposed. The electrical circuit equivalent to 
the composition of uniform triangular finite elements has been obtained. Calculations of the equivalent parameters of the solid-
state structures are carried out. It is shown that the electrical model proposed displays the properties of solid-state object under 
study in solving the direct problem qualitatively correct and allows obtaining an analytical solution of the inverse problem. 
 

 

Introduction 
 

The modern telecommunication systems incorporate 
a number of functional units that provide transmission, 
reception and processing of information such as differ-
ent types of transmission lines, filters, amplifiers, 
phase-shifters, signal converters. For construct of com-
pact and small cost devices, the solid-state (integral) 
structures are exclusively used [1, 2]. An industrial pro-
duction of solid-state components involves the use of 
nondestructive testing facilities for quality evaluation of 
used material, detecting its imperfections and finding 
the discontinuities in it. These measures are carried out 
in order to prevent the failures of solid-state equipment 
under manufacturing and to improve its reliability [3]. 
To investigate the interior structures of materials having 
a certain degree of conductivity, the methods based on 
experimental measurements of impedance distribution 
inside the solid-state object under study are most widely 
used [4─9]. An application of nondestructive testing 
facilities is associated with the solution of reconstruc-
tion problem of internal structures of solid-state objects 
in accordance with the results of multi-position meas-
urements on their outer contours. For this purpose, an 
electric current is energized through the object under 
investigation, and the values of potentials difference 
between various points of its surface are measured [6]. 
An array of experimental values obtained is processed 
in a computer creating an image (tomogram) of the dis-
tribution of impedance, conductance or permittivity of 
material inside the object [7]. 

The existing measurement systems such as the in-
dustrial computer tomography devices differ in types of 
information carriers and in element bases used depend-
ing on the form and size of the objects under investiga-
tion [8─10]. The industrial computer tomography as a 
non-destructive technology for volume data generation 

offers the possibility of complete inspection of complex 
industrial objects. This allows investigating the solid-
state structures taking into account all outer and inner 
geometric features. Thus, the computer impedance to-
mography is well suited for different kinds of industrial 
applications [9─11]. 

In recent years, the requirements to industrially ap-
plicable computer impedance tomography relating to 
image processing have significantly increased. For re-
alization of modern production processes and obtaining 
of high quality products, it is necessary to optimize 
manufacture using accurate models of solid-state mate-
rials. Therefore, the development of existing methods 
and search of new ways of adequate image reconstruc-
tion can be indicate as very important problems of im-
pedance tomography technology. 

An expansion of areas of the practical application of 
the problem of tomographic reconstruction of physical 
field distributions inside the solid-state object became 
possible because of rapid development of computer 
technology. It allows creating and applying new high-
speed methods for processing of information originat-
ing from measuring devices. 

To obtain the required electrical characteristics of 
solid-state components, the methods of their design 
based on appropriate mathematical models must be 
used. The development of adequate mathematical mod-
els and their subsequent implementation in the form of 
algorithms and programs are associated with the use of 
methods of the experimental estimation of the obtained 
results accuracy. 

The theoretical image reconstruction by the method 
of electrical impedance tomography is a difficult 
mathematical problem. The solution of this tomo-
graphic problem allows us to restore the parameters of 
the solid-state objects under investigation by integral 
data coming from the measuring lines. Usually, the 
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number of measuring lines is significantly smaller than 
the number of researched field components. As a result, 
the number of unknowns exceeds the number of equa-
tions that are formed at the problem solution. Therefore, 
the image reconstruction of the distribution of the in-
vestigated parameters according to incomplete integral 
data is related to ill-posed problems of electrical imped-
ance tomography [12]. 

There are a large number of algorithms used for re-
storing information on parameters of the distributed 
physical fields. These algorithms are based on optimi-
zation techniques and require a considerable amount of 
computational resources. When using optimization, the 
design time is highly dependent on the accuracy of the 
initial approximation. 

Reconstruction of the impedance distribution inside 
the solid-state object under study by measured poten-
tials on its surface is an inverse problem of tomography. 
The solution process of the inverse problem is iterative. 
The success of the inverse problem solution depends on 
the decision accuracy of the direct problem at each step 
of iterative process as well as on the initial approxima-
tion of parameters to be optimized [13]. 

The purpose of this paper is to propose the simple 
electrical model of the solid-state object under investi-
gation applicable for defining initial approximation for 
the problems of tomographic image reconstruction and 
design of telecommunications systems components. 

 

Electric circuit of the investigated cross section 
of the solid-state structure 

 

In the experimental study of solid-state objects, the 
information taken from electrodes placed on the object 
boundary is usually used. The number of electrodes is 
determined by size and structure composition of the 
object under investigation as well as by the required 
accuracy of results to be obtained, and it is usually 
equal to . The harmonic probing current 
of given value is delivered to one of the electrodes. An-
other one electrode is grounded. The amplitudes of the 
potentials at all remaining electrodes must be deter-
mined. When solving the direct problem, the amplitudes 
of these potentials are calculated, whereas at solution of 
the inverse problem they are measured or are specified. 

8,16, 32M 

An example of the model of an elementary cell of 
the solid-state structure under study, on the outer 
boundary of which  nodes (electrodes) are 
placed, is shown in Fig. 1, where the central node has 
the number . The probing electric current 
with the amplitude  is delivered to electrode with the 

number , whereas the diametrically opposite elec-
trode with the number 

8M 

91M  

mI
1m 

2n m M   is grounded (has 

zero potential). For the short description of problem 
considered, we will call this model as a phantom. 

The internal cross section of the phantom is divided 
into eight ( 8M  ) triangular finite elements of equal 
size. In the general case, each element is characterized 
by the conductivity i  and relative permittivity i  
( 1, ,i M  ), which are assumed as a constant within 
each finite element. 
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Fig. 1. The internal cross section model of the elementary 
cell of solid-state structure under investigation. 

 

Dividing the phantom onto a greater number of fi-
nite elements, we can obtain a better approximation to 
the shape of the real crystal structure. This allows tak-
ing into account a difference in the electrical parameters 
of the finite elements more correctly. Parameters of fi-
nite elements and their combination are defined by em-
ploying the technique described in [14]. 

Phantom, shown in Fig. 1, can be described by an 
equivalent electrical circuit shown in Fig. 2. 
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Fig. 2. The electrical circuit of the phantom. 
 

In the general case, each element of this scheme at 
given frequency is the complex conductivity, which 
active and reactive components are determined by the 
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electrical parameters of the finite elements of the phan-
tom shown in Fig. 1. An investigation of the behavior 
of active and reactive components of the complex con-
ductivity as a function of frequency allows us to define 
more accurately the equivalent circuit for each element 
in Fig. 2, and hence correctly reconstruct the phantom 
(Fig. 1). 

For real objects, the unit cell of solid-state structure 
can be represented by the idealized scheme in the form 
of complex impedance Z R jX 

G jB 
 (Fig. 3a) or com-

plex conductivity Y  (Fig. 3b) [2, 9]. 
The concept of complex impedance is based on the 

idea that each element of the charge should consistently 
go through the resistive element R  and a reactive (ca-
pacitive) element X  of the structure. Determination of 
the complete conductivity of the unit cell is based on 
the assumption that the total moving charge is equal to 
the sum of the charges flowing through both elements 

 and G B . 
In the cases of low and average hardness of the ma-

terials under investigation, the typical schemes of the 
unit cells of solid-state structure can be represented as 
shown in Fig. 4 [6, 9]. In these schemes, the reactive 
element  represents predominantly the polarization 
phenomena, the physical capacity of the unit cell, and 
some active processes. The resistive element  embod-
ies the electrical permittivity caused by the active proc-
esses and represents the energy dissipative components. 
The element  is an additional resistance which can be 
interpreted as the purely physical impedance of the 
solid-state environment. 
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Fig. 3. Idealized schemes of unit cells of solid-state structure. 
 

For adequate representation of the various processes 
and phenomena occurring in solid-state objects, the 
more complex electric schemes are developed. Their 
parameters are determined by analyzing of changes in 
the frequency range of active and reactive components 
of the idealized complex resistance or conductance 
shown in Fig. 3. 
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Fig. 4. Typed circuit unit cells of the solid state structure. 

To determine the values of all complex conductivi-
ties required for the representation of the phantom (Fig. 
1) by the equivalent circuit shown in Fig. 2, we take 
into account the principle of minimum potential energy 
in a transmission line corresponding to the minimum of 
stored energy [14]. As a result, we obtain the following 
expressions:  
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for finding the conductivities in the outer branches, and 
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         (2) 

for determining the conductivities in the internal bran-
ches, where G j 0i i i      ( ). 1,2, ,i M 

 

The solution of direct problem 
 

The solution of direct problem involves the calcula-
tion of the potentials amplitudes in the external nodes 
under influence on the phantom of the harmonic prob-
ing current of given amplitude by using the known dis-
tribution of specific conductivity on the square of the 
solid-state object under investigation. The potentials 
amplitudes in the nodes are defined by the method of 
nodal potentials. As a result, we obtain a complete ma-
trix of conductivities for the scheme shown in Fig. 2 
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11 1 1MY g y y      ; 1ii i i iY g y y      , ( ). 2,3, ,i M 
 

According to the method of nodal potentials, we 
form the system of equations relative to the unknown 
amplitudes of the nodal voltages iU . Let the harmonic 
probing current with the amplitude m  is supplied on 
the electrode with the number  whereas the electrode 
with the number  is grounded, i.e. . In accor-
dance with the method of nodal potentials, a value  
must be assigned to first element with the number  
located in the column of the currents, and the item with 
the number  must be deleted. Further, the column and 
row with the number  should be deleted from the ma-


I

nU
m

n 0
mI
m

n
n
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trix [ YM ], and the item with the number n  should be 
deleted from column of the nodal potentials. As a result, 
we obtain the matrix system of equations 

 

 Y i mM U I       
   , 

 

which solution determines the unknown amplitudes of 
the nodal potentials  ( , i ). iU 1,2, ,i   M  n
 

The solution of the inverse problem 
 

The inverse problem consists in the reconstruction of 
conductivity distribution over the area of the solid-state 
object under investigation by using the measurement 
results of the amplitude of external nodal potentials of 
the phantom shown in Fig. 1. Using the known ampli-
tude of the probing current, we can restore the values of 
the conductivities in the circuit shown in Fig. 2. 

The measurements of the amplitudes of the external 
nodal potentials are carried out 2M  times. Firstly, the 
probing current is supplied to the node m  while the 
node 

1
2n m M   is grounded (the opposite excita-

tion). The amplitudes of the potentials of external nodes 
are measured and stored. Then, the numbers of current 
nodes are increased by one, and measurements of the 
amplitudes of the nodal potentials are repeated. This 
procedure is performed as long as  value becomes 
equal to 

m
2M . 

Further displacement of current nodes corresponds 
to anti-phase excitation. Therefore, the anti-phase am-
plitudes of nodal potentials are acquired relative to the 
measured values. These additional measurements allow 
us to precise the values of the amplitudes of the nodal 
potentials. In any case, the results of the 2M  meas-
urements are sufficient for the image reconstruction of 
the solid-state object under investigation. 

Assuming that the geometry of the phantom has a 
form shown in Fig. 1, we can reduce the number of un-
knowns. For this end, we transform the formula (2) tak-
ing into account the relation (1). As a result, we obtain: 
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2,3,...,i M . 
 

Let us introduce the coefficient coK t(2 ) /M   
/ tan( )M . Then we get 
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Thus, it is possible to use as the unknowns the rela-
tionships of conductivities 1My g   and 1i i , where y g 

M2,3,...,i  , instead of their absolute values. As far as 
the number of unknowns is equal M , and the number 
of measurements is equal 2M , it is necessary to form 
two equations for each measurement. According to the 
scheme shown in Fig. 2, we can write the equations 
coupling the two adjacent nodes with numbers 1m   
and 2m   as well as two diametrically opposite nodes 
with numbers 1m   and , respectively 1n 
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The amplitudes of the currents in equation (5) are 
determined by the amplitudes of the potentials of exter-
nal nodes and by the conductivities of the external 
branches: 
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Substituting the expressions for the amplitudes of 
the currents in relation (5) and using formulas (3) and 
(4), we obtain: 
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Substituting the values of the amplitudes of the 
nodal potentials measured at current nodes with num-
bers 1,2, , 2m M   and 2n m M   in equations 
(6) and (7) we obtain a system of linear algebraic equa-
tions. Solving this system, we find the values of un-
known relationships 1My g   and 1i i , where y g 

M2,3,...,i  . Then, using the formula (4), we calculate 
the ratios i iy g   ( 1,2,...,i M ). 
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To determine the values of conductivities i  
( ), we apply the Kirchhoff’s first law to the 
nodes with numbers  and . As a result, we obtain 
the following expressions: 

g
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m n
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Using the expressions (8) and (9), we find the values 
of  ( ). Then, we determine all the values 
of i  and i  ( ) according to the previously 
found relations 

ig
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1My g  , 1i iy g   ( ) and 2,3,...,i M
i i  ( ). Finally, using the formula (3), 

we calculate the values of conductivity and relative di-
electric constant of each finite element (Fig. 1): 
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The results of numerical investigations 
 

Computer studies of equivalent parameters of solid-
state objects were performed in a mathematical envi-
ronment Matlab 7.0. Investigations were performed for 
cases of direct and inverse problems. For all calcula-
tions, the amplitude of the probing current was assumed 
to be  mA. The results of calculations for the ba-
sic values of specific conductivity mS/m and rela-
tive dielectric constant  at five frequencies (10, 
50, 100, 200, 300 kHz) are presented below. 

1mI 
6 

80 

By the direct problem solving, the distributions of 
the amplitudes ( )U   and phases  of the poten-
tials on the outer boundary of the phantom shown in 
Fig. 1 (  is an azimuth coordinate) were calculated. 
The distributions of specific conductivity 

( )U 


( )   and 

relative dielectric constant  on the finite elements 
of the phantom were considered. 

( ) 

The calculation results showed that for the given 
values of  and , the distributions ( )  ( )  ( )U   are 
almost independent of frequency. In the distributions of 

, the lower value is changed. It is completely 
determined by the phase relation between the values 

( )U 
  

and  at the given frequency. The general behav-

ior of 

0j 

( )U   is almost independent of frequency. So, it 
is advisable to display the distributions ( )U   and 

(U ) 

(

 only at the frequency 300 kHz. 
When solving the inverse problem of the phantom 

reconstruction, the restored values of conductivity 

c )   and relative permittivity  of the material of 
the solid-state crystal are determined. The results of the 
inverse problem solution using the distributions 

( )c 

( )U 

( )c

 
obtained on the stage of the direct problem resolution 
show that the recovered values of conductivity    
and relative permittivity ( )c   are in good agreement 
with the given values. 

Whereas measuring devices operate with some error, 
it is advisable to restore the parameters of the finite 
elements using the roughening of the calculation results 
of the amplitude ( )U   and phase  characteris-
tics. The following results are obtained for the relative 
errors of reconstructed values of the conductivity 

( )U 

[ (c ) ( )] / ( ) 
[ (с

 
) ( )

 
] / ( )

 and relative dielectric constant 
          with roughening of values ( )U   

and ( )U   calculated at the direct problem solution to 
relative errors 0.1 and 0.5 percent. 

Fig. 5 ─ Fig. 12 show the calculated characteristics 
for the four phantoms that contain  finite ele-
ments. The characteristics of the homogeneous phantom 
1 with the basic values of  and  are presented in 
Fig. 5 and Fig. 6. Fig. 7 and Fig. 8 illustrate the charac-
teristics of the phantom 2, that differs from the phantom 
1 by the presence of the sector of angles 

32M 



  79─110 
degrees with the conductivity of 10 mS/m. Characteris-
tics of the phantom 3, that differs from the phantom 1 
because its conductivity is distributed according to the 
law 2cos [( 1) } / 2i M  {1   ]i , are shown in Fig. 
9 and Fig. 10. Fig. 11 and Fig. 12 display the character-
istics of the phantom 4, that differs from the phantom 1 
because its relative permittivity is distributed according 
to the law 240{1 cos [( 1 )  ]}i

Fig. 5, Fig. 7, Fig. 9 and Fig. 11 illustrate the distri-
butions 

i M  . 

( )U   and ( )U   calculated at the rotation of 
the current electrodes onto 360 degree with the step 
2 M . Fig. 6, Fig. 8, Fig. 10 and Fig 12 show the rela-
tive errors of the reconstructed values  and ( )c  ( )c   
for the homogeneous phantom. 

The amplitude characteristics of the phantoms 1 and 
4, in which the conductivity does not change over the 
phantom area are practically identical. At the same 
time, the amplitude characteristics of the phantoms 2 
and 3 have unequal distribution and change the lines 
curvature. 

It should be also noted that the homogeneous phan-
tom has almost linear phase characteristic ( )U  . At 
the appearance of any discontinuity in the plane of the 
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phantom, the phase characteristic becomes nonlinear. 
For the phantom 2 having a lumped discontinuity, the 
azimuth of the node on the phase characteristic corre-
sponds to the azimuthal position of the discontinuity. 

The error of the reconstruction depends on the fre-
quency and the parameters of the discontinuity. For the 
phantom 2, the azimuth of maximum errors  and 

 and the azimuthal position of the discontinuity 
are almost identical. 

( )c 
( )c 
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Fig. 5. Phantom 1: The distributions of amplitudes and 
phases of the nodal potentials on the outer boundary at the 
frequency 300 kHz. 
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Fig. 6. Phantom 1: The relative error of roughening of the 
potentials is 0.1 %. 

 

In respect of phantoms 3 and 4, it should be noted 
that the character of the variation of reconstruction er-
rors corresponds to the character of the changes   or 

 . The reconstruction error of the relative dielectric 
constant changes a sign in the vicinity of the azimuth 
correspond to the azimuth of maximum or minimum of 
the function that describes a behavior of the dielectric 
constant. 

 

  

0   45 90 135  180   225  270  

1   

2   

3   

4   
|U( )|, V     

  deg 

– 15   

– 10   

– 5   

0   
  (  U  ) , deg      

0 45 90 135  180  225  270  deg 
 

Fig. 7. Phantom 2: The distribution of amplitudes and phases 
of the nodal potentials on the outer boundary at the frequency 
300 kHz. 
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Fig. 8. Phantom 2: The relative error of roughening of the 
potentials is 0.1 %. 

 

It can be seen that the errors shown in Fig. 6 and 
Fig. 8 are minimal in the vicinity of the frequency 100 
kHz. At low frequencies, the roughening of the phase 
characteristic of potentials makes the main contribution 
to the reconstruction error. 

At these frequencies, this contribution is small and 
does not exceed the units of degrees. The average value 
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of the reconstruction error of the phantom parameters 
approaches zero. 
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Fig. 9. Phantom 3: The distribution of amplitudes and phases 
of the nodal potentials on the outer boundary at the frequency 
300 kHz. 
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Рис. 10. Phantom 3: (a) the relative error of roughening of 
the potentials is 0.1 %; (b) the relative error of roughening of 
the potentials is 0.5 %. 
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Fig. 11. Phantom 4: The distribution of amplitudes and 
phases of the nodal potentials on the outer boundary at the 
frequency 300 kHz. 
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Fig. 12. Phantom 4: The relative error of roughening of the 
potentials is 0.1%. 

 

Discussion 
 

A simple model, shown in Fig. 2, can be success-
fully applied to describe the processes that are concen-
trated outside the central region. It allows obtaining 
fairly correct results only for the opposite method of 
excitation. 

To describe the processes of general form a more 
complex two-row model shown in Fig. 13 can be ap-
plied. The presence of a central region essentially dis-
tinguishes it from simple model shown in Fig. 2. It can 
be practically used under all types of multi-position ex-
citation. This two-row model allows us to obtain a di-
rect analytical solution of the inverse problem under 
certain assumptions. It is assumed here that all external 
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u m

conductivities shown in Fig. 13 by mesh shading are 
identical and known. All the conductivities of the cen-
tral region indicated by the striped and dotted shadings 
are also identical and known. The conductivities of the 
first series (they are not shaded) adjacent to the outer 
boundary are only unknown. A small complication of 
the inverse problem solving algorithm for this model 
allows determining the values of the conductivities of 
the branches located between the first and the second 
rows (they are shown by dotted shading). In this case, 
all these cond ctivities ust have the same values.  . 

Im 

 
 

Fig. 13. Two-row model. 
 

To obtain accurate results, the model shown in Fig. 
13 needs some revision as it is confirmed by the ex-
perimental data. An adequate initial approximation 
when solving the complicated problems of image re-
construction of solid-state component can be derived 
using the model shown in Fig. 2. 

The calculated distributions of the amplitudes and 
phases of the nodal potentials obtained by computer 
simulation are rounded to four significant decimal dig-
its. In reality, the error of image reconstruction depends 
on the value of the measured parameter and increases 
with decreasing of amplitude and phase of the poten-
tials. 

Distributions of nodal potentials obtained by solving 
the direct problem for the case of direct current have 
been compared with the same ones derived in the solu-
tion of the direct electrostatic problem by finite element 
method [15]. The compared characteristic parameters 
calculated by these two methods were in good agree-
ment. 

Conclusion 
 

The approximate model of inhomogeneous solid-
state elements which allows unique analytic solution of 
the tomographic synthesis problem has been proposed 
and investigated. This solution can be used as an initial 
approximation when investigating the complicated ob-
jects. It can accelerate the actual process of image re-

construction, especially in cases when the object struc-
ture is not known beforehand. 
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