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National Technical University of Ukraine “KPI”, Kyiv, Ukraine 
 
An approach to the calculation of longitudinally complicated waveguide structures is developed based on integral equation 
method. A problem of electromagnetic wave diffraction on the complicated structure consisting of a great number of connected 
waveguide sections has been solved in rigorous formulation. The expressions for its generalized scattering matrices which or-
der is limited only by capabilities of computation technology are obtained. A designing technique for calculation of waveguide 
connections symmetrical with respect to the transverse plane passing through the middle of the structure perpendicularly to its 
longitudinal axis has been proposed. This technique is based on the solution of two simultaneous systems of linear algebraic 
equations with complex coefficients. The mathematical model of the symmetrical waveguide structure in the form of two si-
multaneous systems of linear algebraic equations with real coefficients is derived for estimation of single mode scattering ma-
trix. The effectiveness of the proposed approach is illustrated by example of definition of mathematical models for calculation 
of scattering matrices of diaphragm of finite thickness and resonant enlargement between two circular waveguides. Proposed 
and known techniques for calculation of scattering matrices of these structures regarding the cost of computer time are com-
pared. For the correct providing of this comparative analysis, the expressions for obtaining generalized scattering matrix of two 
circular waveguides junction are derived as a special case of scattering matrix of doubled discontinuity. It is shown that the 
proposed design technique based on the solution of simultaneous systems of linear algebraic equations which number is 
equaled to a number of discontinuities in waveguide structure ensures significant cost savings of computer time in comparison 
with the known approach based on the consecutive combining of generalized scattering matrices of separate junctions. 
 
 

Introduction 
 

In telecommunication wireless cellular networks, the 
antenna systems are widely used for transmitting and 
receiving of information in high frequency band. [1]. 
Designing of necessary characteristics of transmitting 
signals as well as processing of received signals are car-
ried out by means of appropriate microwave equipment 
[2]. Mostly, this equipment consists of devices based on 
metallic waveguides which have considerably lower 
losses in comparison with other structures especially in 
the high range of centimeter band. In most cases, these 
devices represent a combination of transverse junctions 
of metallic waveguides [3]. An arrangement of these 
connections in consecutive order is equivalent to physi-
cal model of longitudinally complicated waveguide 
structure. To obtain high-quality characteristics of such 
structure, all its elements must be carefully chosen 
based on a rigorous solution of corresponding electro-
magnetic problems [3, 4]. 

Modern methods of analysis of longitudinally ir-
regular waveguide structures rely on a decomposition 
principle of complicated device onto simple regions. As 
a result, a multistep physical model presenting a cas-
cade combination of waveguide segments is derived. 
The discontinuities which cause scattering of electro-
magnetic waves that propagate along the structure ap-

pear on the connections of waveguide sections. In some 
cases, like for deriving filtering as well as phase shift-
ing properties, such discontinuities are created with the 
express purpose. In any case, geometrical parameters of 
discontinuities are subject to careful selection in order 
to obtain desired characteristics of all microwave device 
performed on the mentioned longitudinally irregular 
waveguide structure. 

To achieve best results, physical parameters of such 
structures are founded using the optimization methods. 
Optimization methods which essentially allow bypass-
ing the problem of local minima are widely used. Such 
optimization methods used for designing of filters, 
phase shifters, etc, are based on different modifications 
of approach called as the evolution strategy [5]. Appli-
cation of the evolution strategy method guarantees find-
ing a global minimum of the objective function. This 
evolution strategy method has been successfully applied 
to designing of a great number of complicated wave-
guide structures [6, 7]. 

As shown in [6─8], the computation of frequency 
characteristic of the parameter under optimization is 
carried out many times. The number of objective func-
tion calculations for complicated broadband devices can 
reach tens and even hundreds of thousands. Therefore, 
application of optimization methods based on the evolu-
tion strategy approach is associated with a lot of com-
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puter time even when high-performance computing fa-
cilities are used. Furthermore, use of efficient optimiza-
tion methods is usually followed by the calculation of 
objective function with high accuracy. Since expending 
of computer time at the expense of optimization itself 
can be considered as fixed, and they actually cannot be 
reduced, choosing the effective method of the objective 
function calculation that mostly reduces to designation 
of device frequency characteristics is of great impor-
tance. 

Thus, when using optimization methods that ensure 
the guaranteed finding a global minimum of the objec-
tive function owing to a large number of iterations, it is 
desirable to have effective algorithms providing high 
calculation accuracy at low computing time expenses. 
These algorithms can be constructed on the basis of 
electromagnetic problems solution by the integral equa-
tions method. 

There are a considerable number of the integral 
equations method modifications. For instance, in [8], 
the simplest case has been considered, where only prin-
cipal mode propagation was taken into account in both 
input and output waveguides. This method has been 
successfully used for designing of band-pass filters on 
thick inductive irises in rectangular waveguide. As a re-
sult, a simple scattering matrix of the filter has been ob-
tained. 

It is shown that solving the problem by using cou-
pled integral equations can significantly reduce the 
computing time expenses as compared to the method 
based on combination of generalized scattering matrices 
of separate waveguide junctions. It is interesting to in-
vestigate the coupled integral equations method for 
general case when a large number of electromagnetic 
waves may exist in input as well as in output 
waveguides. Solving this simultaneous system of inte-
gral equations allows calculating the generalized scat-
tering matrix of overall multistep waveguide structure 
without determining the scattering matrices of separate 
discontinuities. 
 

Statement of the problem 
 

The purpose of this paper is the development of a 
variant of integral equations method initiated in [9] con-
cerning the solution of diffraction problem of electro-
magnetic waves on longitudinally complicated wave-
guide structures, obtaining of appropriate mathematical 
models in the form of scattering matrices, as well as 
their applications to the numerical computation of 
waveguide elements specifically such as a diaphragm of 
finite thickness and a resonant enlargement between 
two circular waveguides. 

Solution of internal boundary problem 
 

To obtain the correct solution for longitudinally 
complicated waveguide structure with closely spaced 
discontinuities, a great number of higher order modes 
should be taken into account in each waveguide section. 
If these calculations are carried out by estimating and 
combining generalized scattering matrices of separate 
junctions, to obtain the correct solution, it is necessary 
to find the scattering matrices of high order. Therefore, 
it is interesting to investigate the approach based on si-
multaneous solution of coupled integral equations to 
find generalized scattering matrix of overall multistep 
waveguide structure without determining scattering ma-
trices of separate discontinuities. 

Consider a section of longitudinally complicated 
waveguide structure containing  segments of regular 
transmission lines of different cross sections which are 
placed between two semi-infinite waveguides and 
formed 

u

1r u   discontinuities at that these segments 
have lengths k , where . We believe that all 
metal surfaces of waveguides are perfectly conducting 
and waveguides are filled with homogeneous isotropic 
mediums without losses. 

1,2,k  ...,u

Assume that 1  transverse-electric modes mTE  and 

2  transverse-magnetic modes mTM  are incident al-
ternately on the structure from the left waveguide, as 
well as 1

M
M

N  transverse-electric modes nTE  and 2N  
transverse-magnetic modes n  are incident alter-
nately on the structure from the right waveguide. The 
modes numbering in waveguides will be produced by 
single index in order of critical wave number increase. 

TM

We can write the transverse components of electric 
fields for first waveguide in the plane of the first junc-
tion as follows: 
 

(1) (1) (1) (1)(1 )pm pmR A  
 

   E Ψ Ψ ;        (1) 

(1) (1 )m p       , 
 

where  is unknown tangential electric field in first 
coupling window; pm

(1)E
R  is reflection coefficient in the 

case when the th transverse-electric (m 1p  ) or trans-
verse-magnetic ( 2p  ) mode is incident on the struc-
ture from the side of the left semi-infinite waveguide; 
A  are the expansion coefficients of tangential electric 
field in first waveguide being at the same time trans-
formation coefficients of th incident mode into m  th 
reflected mode of transverse-electric ( ) and trans-
verse-magnetic (

1 
2  ) types;  are orthonormal-

ized vector eigenfunctions of first waveguide; 

(1)
Ψ

m , 

p  are Kronecker symbols. 
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Analogous relation can be obtained for the case of 
modes incidence on the structure from the side of right 
semi-infinite waveguide 
 

( ) ( ) ( ) ( )(1 ) L
qn qnR B

  
 

   L LE Ψ Ψ ;        (2) 

( ) (1 )L
n q       ; ,  1L  

 

where  is unknown tangential electric field in last 
coupling window; qn

( )E
R  is reflection coefficient if the 

th transverse-electric ( ) or transverse-magnetic 
( 2 ) mode is incident on the structure from the right 
side; 

n
q

1q 


B  are the expansion coefficients of tangential 
electric field in last waveguide being at the same time 
transformation coefficients of th incident mode into 

th reflected mode of transverse-electric ( ) and 
transverse-magnetic (  ) types;  are orthonor-
malized vector eigenfunctions of last waveguide; 

n
 1 

2 ( )L
Ψ

n , 
 are Kronecker symbols. q 

Based on relation (1) and (2), we can construct gen-
eralized scattering matrix in the form of separate 
blocks. Scalar multiplying (1) and (2) on the systems of 
orthonormalized vector eigenfunctions of first and last 
waveguides and integrating the resulting expressions on 
the areas of coupling windows, we obtain the relations 
for calculating electric field scattering matrix elements 
 

1

(1) (1) 1pm pm
s

R ds E Ψ ;  (3)        (4) 
1

(1) (1)

s

A d  E Ψ s

( ) ( ) 1L
qn qn

s

R ds


  E Ψ ;  (5)    ( ) ( )L

s

B ds



   E Ψ , (6) 

 

where 1s , s  are the areas of first and last coupling 
windows. 

Assume that distributions of tangential electric fields 
in first and last coupling windows have been found by 
the solution of appropriate electromagnetic problems 
for all cases of waveguide eigenmodes incidence on the 
inhomogeneous structure. Then, using relations (3)─(6), 
we can find numerical values of generalized scattering 
matrix elements. 

Consider the case when eigenmodes of the first 
waveguide are incident on the structure from the left 
side. Using relations (3) and (4), we find a block sub-
matrix of the reflection coefficients. In this case, the re-
lation (3) defines own reflection coefficients which nu-
merical values are disposed along the main diagonal of 
the block submatrix. 

The equation (4) allows calculating mutual elements 
of the block submatrix disposed symmetrically relative 
to its main diagonal. These elements are transformation 
coefficients of incident modes into reflected modes. 
The relation (6) defines transmission coefficients of 

modes with their transformations on the discontinuities 
of longitudinally inhomogeneous waveguide structure. 
As a result, the rectangular block submatrix is received 
in contrast to the square submatrix of reflection coeffi-
cients. These two submatrices form the left half of the 
generalized scattering matrix of all waveguide structure. 
Considering the case when eigenmodes of the right 
waveguide are alternatively incident on the structure, 
we also obtain two submatrices forming the right half of 
the generalized scattering matrix. 

To find unknown tangential electric fields  and (1)E
( )E , it is necessary to solve the electromagnetic prob-

lem taking into account the interior composition of the 
waveguide structure. The availability of discontinuities 
causes the appearance of scattered electromagnetic 
fields in sections of the waveguide structure under con-
sideration. These scattered fields can be represented as 
the superposition of transmitted and reflected propagat-
ing modes, as well as of the infinite number of higher 
order evanescent modes. Then, the tangential electric 
and magnetic fields in each k th interior waveguide sec-
tion can be written as the sums of the incident and re-
flected modes 

 

( ) ( ) ( )
zk k C e D e  

  
 

 E Ψ
z

;         (7) 

( ) ( ) ( ) ( )
z zk k kY C e D e  

   
 

    z H Ψ , (8) 

 

where ( )k
Ψ

k
 is orthonormalized vector  th eigenfunc-

tion of th waveguide of transverse-electric ( 1  ) or 
transverse-magnetic ( 2  ) types;  are corre-
sponding admittances of eigenmodes; 

( )kY
  are their 

propagation coefficients; C , 


D  are unknown coef-
ficients of field expansions;  is an unit vector in the 
direction of axis  of waveguide structure. 

z
z

Applying the orthogonality conditions to the equa-
tions of type (7), we express unknown coefficients C  
and D  for each section through tangential compo-
nents of electric fields in adjacent coupling windows. 
Substituting these coefficients C  and D  into ex-
pressions for tangential components of magnetic fields 
of type (8) and matching the resulting fields of corre-
sponding subregions, we obtain the following complex 
system of integral equations with respect to tangential 
components of electric fields in the coupling windows: 

 

(1) (1) (2) (2) (2)
101 1 102[coshi i i i i

i i

Y D Y D    Ψ Ψ  

(2) (1) (1)
212 1 1]/sinh 2i w pm pmD Y     Ψ ; 

 
 

( ) ( ) ( ) ( )[cosh ]/sinht t t t
i i i e tet egt i e

i

Y D D      Ψ  



P. STEPANENKO:  SCATTERING MATRICES OF LONGITUDINALLY COMPLICATED WAVEGUIDE STRUCTURES 49

( ) ( ) ( ) ( )[cosh ]/sinh 0f f f f
i i i t tef ftf i t

i

Y D D     Ψ  

u

 

2,3,...,t                              (9) 
 
 

( ) ( ) ( ) ( )[cosh ]/sinhr r r r
i i i u rur udr i u

i

Y D D      Ψ  

( ) ( ) ( ) ( )
22h h h h

i i ruh w qn qn
i

Y D Y   Ψ Ψ , 
 

1w  , p l , 1 2 lm , ,...,M ; 
 

2w  , , q l 1 2 ln , ,...,N ; 

( )

0

( )
e

t
et k i

ks

D ds





  E Ψ ; . 0 0 

 

Here ,  are generalized summation indices indi-
cating the identity of values to transverse-electric or 
transverse-magnetic modes introduced for fields de-
scription simplicity;  is the number of wave-
guide sections in considered complicated structure; 

 is the number of discontinuities; 

i l

1h r 

1r u  1d u  ; 
1g e  ; ; 1 e t 1f t  . 

To solve the system of integral equations (9), we use 
the Galerkin’s method. For this, we expand the un-
known electric fields into series of orthonormalized co-
ordinate functions of the coupling windows 
 

( ) ( ) ( )

1

tJ
t t t

j j
j

C


 E Φ ,                        (10) 

 

where t  is the number of partial regions interfaces;  is 
generalized summation index indicating the identity of 
values to transverse-electric or transverse-magnetic 
modes; t

j

J  is the number of expansion terms which are 
taken into account. 

Substituting (10) into (9) and performing transfor-
mation in accordance with Galerkin’s method we re-
duce the boundary problem to the system of linear alge-
braic equations for the complex expansion coefficients 

( )t
jC  

 

(1) (1) (11) (11) (2) (12) (12) (2)
1

1

[
tJ

j i vi ji i vi ji i
j i i

C Y Y


          coth ]  

(2) (2) (12) (22) (2) (1) (11)
1 1

1

/sinh 2
tJ

j i vi ji i w pm vm
j i

C Y Y


         ; 

( ) ( ) ( ) ( ) ( )

1

/sinh
tJ

e t tt et t
j i vi ji i e

j i

C Y


      

 



 

( ) ( ) ( ) ( ) ( )

1

[ coth
tJ

t t tt tt t
j i vi ji i e

j i

C Y


      

 

( ) ( ) ( ) ( )coth ]f tf tf f
i vi ji i t

i

Y      

( ) ( ) ( ) ( ) ( )
1

1

/sinh 0
tJ

f f tf ff f
j i vi ji i

j i

C Y


        

2,3,...,t  u                        (11) 

( ) ( ) ( ) ( ) ( )

1

/sinh
tJ

u r rr ur r
j i vi ji i u

j i

C Y


        

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

[ c
tJ

r h rh rh r rr rr r
j i vi ji i vi ji i u

j i i

C Y Y


oth ]            

( ) ( )
22 h rh

w qn vnY   ; 
 

1,2,..., tv J , 
 

1w  , p l , ; 1 2 lm , ,...,M
 

2w  , q l , . 1 2 ln , ,...,N
 

As follows from (11), the obtained system has the 
same matrix of coefficients at unknowns and different 
right parts corresponding to electromagnetic problem 
solution under the alternative incidence on the inhomo-
geneous structure of eigenmodes of both the left and 
right waveguides. Such configuration of the system (11) 
simplifies finding its numerical solution. 

The coupling coefficients of windows coordinate 
functions and vector eigenfunctions of waveguides are 
defined by the expression 
 

( ) ( ) ( )

t

tf t f
ji j i

s

ds  Φ Ψ .                      (12) 

 

The system of linear algebraic equations (11) is suit-
able for calculating of modal scattering matrices of lon-
gitudinally complicated waveguide structure of general 
form with a great number of junctions. Depending upon 
the shapes and dimensions of connected waveguide sec-
tions some coupling coefficients can be equaled to unity 
or zero. 

Because the system (11) is modified according to the 
configuration of the structure, the mathematical model 
based on simultaneous solution of the coupled integral 
equations (9) yields in universality to the method which 
is founded on the combination of generalized scattering 
matrices of separate junctions. However, this mathe-
matical model has significant advantages with respect 
to counting rate especially in the case of closely spaced 
discontinuities strongly interacting in the higher order 
modes. 

 

Generalized scattering matrices 
of symmetrical waveguide structures 

 

The advantage of the approach discussed above is 
particularly evident in the case when calculating gener-
alized scattering matrices of longitudinally complicated 
waveguide structures that are symmetrical with respect 
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to a plane going through the middle of the structure 
perpendicularly to its longitudinal axes. Examples of 
symmetrical waveguide structures are band-pass and 
band-stop filters with discontinuities of finite thickness. 

Most often, the scattering matrix of the filter is cal-
culated by successive combining of the generalized 
scattering matrices of elementary basic discontinuities 
[7]. Scattering matrices of these discontinuities are high 
order enough because a large number of eigenmodes in 
diaphragm aperture should be taken into account to ob-
tain accurate results. Therefore, the algorithms based on 
direct combining of generalized scattering matrices are 
uneconomical with respect to computer time expenses. 
The considered approach based on simultaneous solu-
tion of the coupled integral equations (9) allows creat-
ing more effective algorithms. 

Assume that the distributions of tangential electric 
fields in coupling windows equidistant from the sym-
metry plane of longitudinally complicated waveguide 
structure are identical and vector eigenfunctions in cor-
responding regions are the same. Adding and subtract-
ing  and  ( ; ) equations 
of the system (9) at 

k 1r k  1,2,...,k b 2b r /
p l  for every , we 

obtain two independent systems of integral equations 
with respect to sums and differences of tangential elec-
tric fields in coupling windows placed equidistant from 
the symmetry plane of the waveguide structure 

1,2 ,..., ln N

 

(1) (1) (2) (2) (2)
101 1 102[coshi i i i i

i i

Y F Y F   Ψ Ψ 

pn

 

u

 

(2) (1) (1)
212 1]/sinh 2i pnF Y    Ψ ; 

 
 

( ) ( ) ( ) ( )[cosh ]/sinht t t t
i i i e tet egt i e

i

Y F F      Ψ  

( ) ( ) ( ) ( )[cosh ]/sinh 0f f f f
i i i t tef ftf i t

i

Y F F     Ψ ; 

2,3,...,t                             (13) 
 

 

( ) ( ) ( ) ( )[cosh ]/sinhb b b b
i i i u bub udb i u

i

Y F F      Ψ  

( ) ( ) 0h h
i i a buh

i

Y T F  Ψ ; 

( )

0

( )
e

t
et a k i

ks

F ds





  E Ψ ; 

1

1
0 0

( )+ (
t r t

k k
k k

 

 
   E E E )

1

2
0 0

( ) (
t r t

k
k k

 

 
; )k    E E E ; 

 

( 1)
1 tanh[ / 2]b

i bT    ; , ( 1)
1 coth[ / 2]b

i bT   
 

where ; ; 1u b  1h b  1a   if a magnetic wall is 
placed in symmetry plane; 2a   if the case of electric 
wall is considered. 

Approximating unknown electric fields a  by series 
of orthonormalized coordinate functions of coupling 
windows for 

E

p l  and every , we obtain 
two independent systems of linear algebraic equations 
with respect to expansion coefficients 

1,2,...,n 

( )t

lN

jC  
 

(1) (1) (11) (11) (2) (12) (12) (2)
1

1

[ c
tJ

j i vi ji i vi ji i
j i i

C Y Y


oth ]           

(2) (2) (12) (22) (2) (1) (11)
1

1

/sinh 2
tJ

j i vi ji i pn vn
j i

C Y Y


         

( ) ( ) ( ) ( ) ( )

1

/sinh
tJ

e t tt et t
j i vi ji i e

j i

C Y


        

( ) ( ) ( ) ( ) ( )

1

[ /coth
tJ

t t tt tt t
j i vi ji i e

j i

C Y


        

( ) ( ) ( ) ( )coth ]f tf tf f
i vi ji i t

i

Y       

( ) ( ) ( ) ( ) ( )

1

/sinh 0
tJ

f f tf ff f
j i vi ji i t

j i

C Y


       ; 

2,3,...,t u ;                           (14) 

( ) ( ) ( ) ( ) ( )

1

/sinh
tJ

u b bb ub b
j i vi ji i u

j i

C Y


        

( ) ( ) ( ) ( ) ( )

1

[ coth
tJ

b b bb bb b
j i vi ji i u

j i

C Y


        

 

( ) ( ) ( ) ] 0h bh bh
i vi ji a

i

Y T     
 

1,2,..., tv J , 
 

where all designations are the same as in (11). 
 

Single mode scattering matrices 
of symmetrical waveguide structures 

 

To increase the design efficiency of filters on the 
stage of synthesis, it is reasonably to use the single 
mode approximation and to carry out final calculation 
by means of generalized scattering matrices. In these 
cases, it is advisable to employ single mode matrices 
equally with generalized scattering matrices. Assuming 
single mode excitation of the waveguide structure, one 
can obtain the mathematical model in the form of two 
systems of integral equations with real coefficients. 
This allows us to considerably decrease the computer 
time expenses. 

When analyzing the system (13), we can observe 
that all equations except for the first one have pure 
imaginary coefficients. The presence of real parts in 
complex coefficients of the first equation for both 

1,2a   is specified only by propagating modes. There-
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fore, by transforming the first equation for , one 
can reduce the boundary problem to two systems of lin-
ear algebraic equations with real coefficients. The solu-
tion of these systems allows determining single mode 
matrices of symmetrical waveguide structure. 

1,2a 

Two corresponding independent systems of integral 
equations with real coefficients can be obtained by sup-
posing in (13) 101 1 exp( 2 )aF j    ,  and 
making the following replacement 1a . 
As a result, the first equations of the system (13) take 
the following form: 

1 2( 1) / 
p( )a aj  E



2)
i



E

j
ex E

ds

ds 

 

1

(1) (1) (1)
1 1 0(1 ) ( )i i i a i

i s

Y   Ψ E Ψ  

1

(2) (2) (2) (
1 1 0[cosh ( )i i i a

i s

Y   Ψ E Ψ  

2

(2) (2)
1 1 1( ) ]/sinha i i

s

ds    E Ψ  

(1) (1)2 sin( )a i ij Y  Ψ ;                      (15) 
 

1

(1)
1 1arctan[2 / ]a a

s

ds  E Φ . 

 

The remaining equations of these systems can be de-
rived from (13) when designation  is being replaced 

by . 
aE

1aE

Let us expand the unknown electric fields 1a  into 
series of orthonormalized vector coordinate functions of 
the coupling windows  ζ
 

1a aC  


 E ζ ,                          (16) 

 

where a  are unknown coefficients;  is the general-
ized summation index indicating the identity of values 
to transverse-electric or transverse-magnetic modes. 

C  

Substituting (16) into (15), using the Galerkin’s 
method and denoting a , we obtain 
two systems ( ) of linear algebraic equations with 
real coefficients 

sin( )a aB C /  
1,2a 

aB   which first equations are reduced 
to 

 

(1) (1) (11) (11)
1[ (1 )a i i vi

i

B Y 


     i 



(1) (11)
1 1i vjY

 

(2) (12) (12) (2)
1cot ]i vi i i

i

Y       

(2) (2) (12) (22) (2)sin 2a i vi i i
i

B Y / 


       . (17) 

 

Remaining equations of these systems immediately 
follow from (14) at the replacement of ( )t

jC  by ( )t
aB  . 

After solving the systems (17), the elements of sin-
gle mode scattering matrix (reflection R  and transmis-

sion  coefficients) can be calculated by the following 
relations:  

T

 

(1) (1) (11)
1 1 2 2 1[ ]R B F B F  


1   



; 

(1) (1) (11)
1 1 2 2 1[ ]T B F B F 


   ; 

sin exp( )/2a a aF j    . 
 

During derivation of relations for calculating gener-
alized and single-mode scattering matrices, the views of 
jointed waveguides were not specified. Thus, the ob-
tained formulas are without respect to the forms of con-
nected waveguides cross-sections. The association of 
obtained mathematical relations with objective wave-
guide structures is performed by substituting into ex-
pressions (12) the ratios for coordinate functions of 
coupling windows and eigenfunctions of waveguides. 
 

Results 
 

Let us illustrate the effectiveness of the proposed 
approach on calculation examples of finite thickness 
diaphragm and resonant enlargement between two cir-
cular waveguides operating in the fundamental mode 

. The waveguide elements considered are shown in 
Fig. 1. We consider the case when two circular 
waveguides have different cross-sections, as well as the 
scenarios of symmetrical diaphragm and resonant 
enlargement. 

11TE

 

31
2 z

 
 

(a) 
 

31

2 z

 
 

(b) 
 

Fig. 1. The diaphragm of finite thickness (a) and resonant 
enlargement (b) between two circular waveguides. 
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We will define scattering matrices of these wave-
guide elements by simultaneous solving of two coupled 
integral equations, as well as by conventional technique 
and then compare the computing time for these consid-
ered cases. The system of two coupled integral equa-
tions on the number of single discontinuities based on 
(9) can be written as 
 

(1) (1) (11) (12) (22)[k k k k k
k k

Y P U VP P    
 

  Ψ ] 



(2) (2)

 

(1) (1)
12 w pm pmY  Ψ ; 

(18) 
(12) (22) (3) (2) (23)[ ]k k k k k

k k

U VP P Y P    
 

   Ψ  

(3) (3)
22 w qn qnY  Ψ ; 

 

( ) ( ) ( )

i

il i l
k k

s

P d  E Ψ s / sinh kk kU Y t;   Ψ

cosh kV t

; 

  , 
 

where ; ; 1,2,..., pm M 1,2,..., qn N ( )1,2,..., lk K

2

; 
;  is unknown tangential electric field in ith 

( 1i ) coupling window;  is orthonormalized 
vector eigenfunction of th mode in th partial region 
of transverse-electric ( ) or transverse-magnetic 
( 2  ) types;  is corresponding to its admittance; 

k  is propagation coefficient of th mode of trans-
verse-electric ( ) or transverse-magnetic (

1,2,l 




3 ( )iE
,2

( )l
kY

1 

( )l
kΨ

k l
1 

k
  ) 

types in coupling waveguide; 1w , 2w  are Kronecker 
symbols; , if the diffraction problem is considered 
for case of the incidence 



p

1w 
M  transverse-electric ( 1p  ) 

or transverse-magnetic ( ) electromagnetic waves 
from the left side; , if q

2p 
2w  N  electromagnetic waves 

of transverse-electric ( ) or transverse-magnetic 
( 2 ) types are incident from the right side; 

1q 
q  ( )lK  is 

the number of modes of transverse-electric ( 1  ) or 
transverse-magnetic ( ) types which are taken into 
account in l th waveguide; i

2 
s  is the area of th cou-

pling window;  is the diaphragm thickness or the reso-
nant enlargement length. 

i
t

To solve (18), we apply Galerkin’s method as it has 
been done previously. To this end, we approximate the 

unknown tangential electric fields  by a series of 
orthonormalized vector eigenfunctions of coupling wa-
veguide 

( )iE

 

( ) ( ) ( )i i
h

h

C i
h 


 E Φ ,                       (19) 

 

where ;  are orthonormalized vector 
coordinate functions of transverse-electric (

( )1,2,..., ih H ( )i
hΦ

1  ) or 

transverse-magnetic ( 2  ) types in th coupling win-
dow; 

i
( )i
hC  are unknown expansion coefficients; ( )iH  is 

the number of approximating functions of transverse-
electric ( 1 





) or transverse-magnetic ( ) types in 
th coupling window. 

2 

)
hk

 

]kY t

i
Substituting (19) into (18) and performing transfor-

mations in accordance with Galerkin’s method we ob-
tain the system of linear algebraic equations for the 
complex expansion coefficients  ( )i

hC
 

(1) (1) (11 )u
h k v (11

k
 

h

[
h k

C Y 
 


2) (12u
k vk

 

 

( ) (12 )cothk
k

 
  

(2)
h kC Y 

 

/sinh k




  
 

(2) (12 ) (22u
vk

h k

 

 

)
hk t  

(1) (11 )up
m vm

 

1

12 w pY  ; 
 

u

1

, ; , ; (1)
1v H1,2,..., 2u (1)

21 ,2,...,v H
 

w , 1p , 11,2,...,m M ; , ; 2p  2.,m M

t

1,2,

/sinh k

..
 (20) 

(1) 12 ) (22u
vk

h k

 

 

(2) (
h kC Y 

)
hk

   

)[ chk




o t

  

 

(2) (22 ) (2u
kvk

(2)
h k

h k

C Y 2  th  
 

    
(3) (2
k vY

 

 

3 ) (23u
k hk

k

 



) ]     

(3) (23 )uq
n vn22 w qY  ; 

 

1u

2

, ; , ; (2)
1v H1,2,..., 2u (2)

21 ,2,...,v H
 

w  , 1q  , 11,2,...,n N ; , ; 2q  2,n N1,2, ...
 

( )

is

  

k

( ) ( )il i l
hk h k ds Φ Ψ .                     (21) 

 

The expression (21) represents the coupling coeffi-
cient of th coordinate function of th type in i th 
coupling window and th vector eigenfunction of 

h 
 th 

type in l th waveguide. The indexes  and 1  1   
designate the identity of values to transverse-electric 
modes. The indexes 2   and    characterize the 
values relating to the fields of transverse-magnetic type. 

2

)

The relations (20) and (21) represent the problem so-
lution regarding doubled discontinuity of general form. 
As applied to structures shown in Fig. 1, the system of 
linear algebraic equations (20) is simplified because 
certain coefficients (21) are equaled to unity. Because 
for diaphragm of finite thickness hk , vk

(12 1  (1 12 )u  , 
(22
hk

) 1  , (2
vk

2 )u 1  , these coefficients are replaced 
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by Kronecker symbols , , and the system (20) is 
reduced to the form: 

u

h k

C Y 

vh

(1) (1
h k

 

(1) 1 ) (11 )[ u
vk hk

 

 
   

u v

/su vh

(1)
1

 

(2) ]hhY t   cothh

inh 

2

  
 

(2) (2)
hh h

h

C Y t 


    (1) (11 )
12 up

w pm vmY  ; 

1u , ; 1,2,...,v H u

1 p

u v

[ u v

) ]

2

, ; (1)
21,2,...,v H

 

1w , , ; , ; 1p 1,2 ,...,m M

(2)
h h  

(2)
h hC Y  

) (2
hk

 

(2)
1

2 21,2,...,m M
 (22) 

(1) /sinhh h
h

C Y t 


  

 

 

 

(2) cothh h
h

t 


  

 

(3) (23 3u
k vk

k

Y


   (3) (23 )
22 uq

w qn vnY  ; 

1u , ; 1,2,...,v H u

1 q

( ) (i
h

)]

 

( )l
k

, ; (2)
21,2,...,v H

 

2w  , , ; , . 1q  1,n  2,...,

( ) ( )l
h kV V 

2) (J 

l
k k 

( ) V

N 2 21,2,...,n N
 

The relation between the system (22) and objective 
waveguide structures are performed by the coefficients 
(21). Substituting the expressions for vector eigenfunc-
tions of circular waveguide into (21) and estimating the 
integrals, we obtain the following relations for coupling 
coefficients: 
 

( ) ) 2 2/ 2 / ( )il i l
h khk k


        

)]

 
 

 

1 0 1 0 2( )[ ( ( )[ ( ) (J J J J J          ; 
 

i
h h    ;   ; ; , ( )

2
i
ha 2

l
k a  

 

where ; ,  are the normalizing coef-
ficients; ,  are the Bessel functions of 

( 1)  
( )J  J

i
hV

( )  -th 
order; 2  is the radius of the diaphragm window. The 
normalizing coefficients are defined by the following 
relations: 

r

 

( ) ( ) ( )[ ]
i

i i
h h

s

V d  Φ Φ 1/2i
h


 s ( )



; . ( ) ( ) 1/2[
i

l l l
k k k

s

V 
   Ψ Ψ ]ds

 

Consider the case of the resonant enlargement be-
tween two circular waveguides shown in Fig. 1b. In this 
case, the coupling coefficients , , (11 )u

vk
 (11 )

hk
 (23 )u

vk


1 )up
vm

u

, 
, as well as the coupling coefficients   and 
 are equaled to unity. As a result, these coeffi-

cients are replaced by Kronecker symbols 

(23 )
hk


(23 )uq
vn

(1

 , vh , 

up , vm , , , and the system (20) is simplified to 
the form: 
  uq vn

 

(1) (1)[ u vhh h
h

C Y  


    

(2) (12 ) (12 )coth ]u
kk vk hk

k

Y t 



    

t

 

(2) (2) (12 ) (22 ) /sinhu
kh k vk hk

h k

C Y  
 

 
    

(1)
12 w pm up vmY



    ; 
 

1u , ; , ; (1)
11,2,...,v H 2u (1)

21,2,...,v H
 

1w , 1p , 11,2,...,m M ; , ; 2p  21,2,...,m M
 (23) 

(1) (2) (12 ) (22 ) /sinhu
kh k vk hk

h k

C Y  
 

 
t     

oth t

 

(2) (2) (22 ) (22 )[ cu
kh k vk hk

h k

C Y  
 

 
      

3 (
2] 2( )

u vh w qn uq vnhY Y
3)       ; 

 

1u , ; , ; (2)
11,2,...,v H 2u (2)

21,2,...,v H
 

2w  , 1q  , 11,2,...,n N ; , . 2q  21,2,...,n N
 

Consider now the symmetrical structures, where the 
radii of input and output waveguides are equal: 1 3r r . 
In this case, the tangential electric and magnetic fields 
on both sides of doubled discontinuity are identical. As 
a result, the system of integral equations (18) takes the 
form 
 

(1) (1) (11) (12) (22) (1) (1)[ ] 2 pm pmk k k k k
k k

Y P U VP P Y    
 

   Ψ Ψ ; 

(24) 
(12) (22) (3) (2) (23)[ ]k k k k k

k k

U VP P Y P    
 

0    Ψ . 

 

Take into account the mirror symmetry of doubled 
discontinuity with respect to a plane going through the 
middle of the structure perpendicularly to its longitudi-
nal axes. Then, the expressions (24) one can reduce to 
two independent systems of integral equations relative 
to sums and differences of tangential electric fields in 
coupling windows. Form the sum and difference of first 
and second integral equations in (24) for every mode 
incident on doubled discontinuity from the left side. 
This corresponds to the placement of magnetic ( 1  ) 
and electric ( 2  ) walls in the symmetry plane of 
doubled discontinuity. Carrying out the transformation, 
we find 
 

(1) (1) (11) (2) (2) (12) (1) (1)2 pm pmk k k k k k
k k

Y P Q Y P Y     
 

  Ψ Ψ Ψ

k s

; 
 

1

(11) (1)
1k k

s

P d  FΨ s
1

(12) (2)
2k

s

P d   F Ψ; ;       (25) 
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1 1 F E E2 2 1; 2 F E E ; 
 

1 tanh( / 2)kQ t  ; 2 coth( / 2)kQ t  ; 
 

1,2,..., pm M ; ; ; . 1,2,...,k K 1,2p  1,2 
 

To solve (25) at , we apply the Galerkin’s 
method. Represent the summary ( ) and differential 
( 2  ) tangential electric fields for every mode inci-
dent on the discontinuity by the expansion into series of 
orthonormalized vector eigenfunctions of the coupling 
waveguide. Then, these approximating fields for sym-
metrical diaphragm of finite thickness in circular 
waveguide (Fig. 1a) and symmetrical enlargement of 
circular waveguide (Fig. 1b) can be written as 

1,2 
1 

 

(1) (2)
h h

h

C  


F Φ ; .       (26) (1) (1)
h

h

C  


F Φ h

 

Substituting (26) into (25), taking into account the 
orthogonality of eigenfunctions in connected wave-
guides and performing transformation in accordance 
with Galerkin’s method, we obtain two systems of lin-
ear algebraic equations corresponding to even ( 1  ) 
and odd ( ) interpretations of each doubled discon-
tinuity excitation. In this way, the desired two systems 
of linear algebraic equations for determination of gen-
eralized scattering matrix of the symmetrical diaphragm 
of finite thickness in circular waveguide can be present 
in the form: 

2 

 

(1) (1) (11 ) (11 )[ u
h k vk hk

h k

C Y  
 

 
     

 

(2) (1) (11 )]=2 up
u vh pm vmhY Q Y     ,               (27) 

 

where all designations are the same as in (22). 
Performing similar transformation for the symmetri-

cal enlargement of circular waveguide, we obtain two 
( 1 ) following systems of linear algebraic equa-
tions: 

,  2



(1) (2)[ u vhh h
h

C Y Q  


    

 

(2) (12 ) (12 ) (1)]=2u
pm up vmk vk hk

k

Y Y 



    ,       (28) 

 

where all designations are the same as in (23). 
One can see that for every incident mode, the sys-

tems of linear algebraic equations (27) and (28) have 
the same matrices of coefficients at unknowns. They 
differ only in the matrices of right parts which number 
equals a half of order of generalized scattering matrix of 
considered waveguide structure. Therefore, to solve 
(27) and (28), it is advisable to use the subprogram of 
solution of linear algebraic equations with multiple 

right parts. Solving each of the systems (27), (28) at 
1,2  , we find the sums 1  and differences 2  of tan-

gential electric fields in first and second coupling win-
dows of corresponding discontinuity. Using complex 
coefficients 

F F

(1)
hC  found by solving systems (27), (28) 

and expressions for 1 , 2 , we define the distributions 
of tangential components of electric fields in coupling 
windows. Then, the elements of generalized scattering 
matrix can be obtained according to relations (3)─(6). 

F F

Therefore, taking into account the mirror symmetry 
of doubled discontinuity allows us to solve two systems 
of linear algebraic equations of order 2  with (1) (1)

1H H
M  right parts instead of one system of order 

. As will be shown below, this provides a 
significant gain in computing time with the same calcu-
lation accuracy. 

(1) (1)
1 2 ]H H2[

At the synthesis of several microwave devices such 
as filters in the operating frequency range of circular 
waveguide, it is expedient to use the single mode matri-
ces. In this case, the computing time can be further sig-
nificantly reduced due to transition from the solution 
(27), (28) with complex coefficients to the solution of 
corresponding systems of linear algebraic equations 
with real coefficients. 

Supposing in (24) (11) 1 exp( 2 )kP jb     and 

1 1M  , we obtain two ( 1,2  ) integral equations with 
real coefficients 
 

(1) (1) (11) (2) (2) (12)
1 1(1 )k k k k k k k

k k

Y G Q Y G      
 

     Ψ Ψ  

(1) (1)
1 12 jY Ψ                             (29) 

 
 

1

(11) (1)
k k

s

G d  E Ψ s
1

(12) (2)
k k

s

G d  E Ψ;  s

exp( ) / sinjb b   E F ; . 
1

(1)
11arctan(2 / )

s

b d  E Ψ s

 

To solve (29) for each of discontinuities shown in 
Fig. 1, we use the representation analogous to (26) 
 

(1) (2)
h h

h

D  


E Φ ; ,      (30) (1) (1)
h

h

D  


E Φ h

 

where (1)
hD  are real coefficients, and (1)

hΦ , (2)
hΦ  are 

vector eigenfunctions the same as in (26). 
Substituting (30) into (29) and performing transfor-

mation in accordance with Galerkin’s method, we ob-
tain the following systems of linear algebraic equations 
for diaphragm of finite thickness and resonant enlarge-
ment between two circular waveguides, respectively 
 

(1) (1) (11 ) (11 )
1 1[ (1 ) u

kh k vk
h k

D Y  
 

 
hk        

(2) (1) (1111)
11 1]=2u vh vhY Q jY     ;              (31) 
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1u , ; (1)
11,2,...,v H 2u , . (1)

21,2,...,v H
 

(1) (1)[ u vhh h
h

D Y  


    

(2) (12 ) (12 ) (1)
11 1 1]=2u

u vk vk hk
k

Y Q jY 



     ;      (32) 

1u , ; (2)
11,2,...,v H 2u , . (2)

21,2,...,v H
 

Let us compare expenses for the computing time 
spent on computation of generalized scattering matrices 
and single mode scattering matrices of considered dou-
bled discontinuities using the proposed approach based 
on simultaneous solution of the system of two coupled 
integral equations and by means of known technique. 
For correct comparison, it is necessary to obtain the ex-
pressions for generalized scattering matrix of separate 
junction between two circular waveguides. The required 
solution of electromagnetic problem for single junction 
can be obtained as a special case of doubled discontinu-
ity considering only its half. Carrying out the corre-
sponding transformations, we obtain the following sys-
tem of linear algebraic equations for the unknown com-
plex expansion coefficients of tangential electric field in 
coupling window by orthonormalized vector eigenfunc-
tions of circular waveguide of smaller cross-section: 
 

(1) (1)[ u vhh h
h

C Y  


    

(2) (12 ) (12 ) ]u
k vk hk

k

Y  



                    (33) 

(1) (2) (12 )
1 22 2 uq

w pm up vm w qn vnY Y       ; 
 

1u , ; (1)
11,2,...,v H 2u , ; (1)

21,2,...,v H
 

1w , , ; , ; 1p 11,2,...,m M 2p  21,2,...,m  M

N

5

 

2w  , , ; , , 1q  11,2,...,n  N 2q  21,2,...,n 
 

where all designations are the same as in (27). 
The presence of frequency-independent coupling co-

efficients in the systems of linear algebraic equations is 
the specificity of the obtained solution. For invariable 
dimension of structure, these coefficients may be de-
termined one time and be stored in the computer mem-
ory. This largely accelerates the computation of fre-
quency characteristics of longitudinally inhomogeneous 
waveguide structure. 

All systems of linear algebraic equations obtained 
have the same matrices of coefficients under unknowns 
and differ only in right parts. Therefore, the subprogram 
of solution of the systems of linear algebraic equations 
with several right parts is used to numerically realize 
the obtained mathematical models. When calculating 
the coefficients of these systems for propagating modes, 

the hyperbolic functions are replaced by trigonometric 
ones. 

The mathematical models obtained are realized as a 
complex of FORTRAN programs. Calculations of a 
great number of longitudinally inhomogeneous 
waveguide structures were performed by using this pro-
gram. The results of these calculations show the advan-
tage of developed approach as compared with the 
widely used method based on combination of the gen-
eralized scattering matrices of discontinuities and wave-
guide sections between them. To compare the devel-
oped and known algorithms against the computing time, 
the calculations of doubled discontinuities shown in 
Fig. 1 have been performed at the following dimensions 
ratio of the structures: 1  mm; 2 110r  / 0.r r  ; 

3 1/ 1.2r r 5  for diaphragm of finite thickness and 

1 10r   mm; 2 1/ 1.r r 5 ; 3 1  for resonant 
enlargement. The length of coupling region 2 between 
waveguides 1 and 3 was taken equal to 

/r r 1.2

t

5

2  mm. The 
calculations were performed at the frequency 11 GHz. 
Twenty transverse-electric and twenty transverse-
magnetic modes were taken into account in input 
waveguide. The numbers of considered modes in 
waveguides 2 and 3 were determined in accordance 
with chosen dimensions ratios. 

To obtain the correct comparative results against 
computing time for two considered approaches relying 
on high productivity computer, the hundred thousand 
iterations were used at computation. The critical mode 
numbers of waveguides and coupling coefficients of ei-
genmodes were computed separately and stored in the 
computer memory. Therefore, the main computer time 
expenses were connected with computation of scatter-
ing matrices. The obtained results allow estimating the 
efficiency of proposed approach in comparison with the 
known technique. 

By using known algorithms, the results of general-
ized scattering matrices computation were obtained 
within 10 min 15 sec for diaphragm of finite thickness 
(Fig. 1a) and 18 min 40 sec for resonant enlargement 
(Fig. 1b). Using the proposed approach, the complete 
computing time of the diaphragm of finite thickness 
(Fig. 1a) according to (20) constitutes 4 min 10 sec. 
Further significant reduction of computing time is ob-
served for the resonant enlargement between two circu-
lar waveguides (Fig. 1b) because in this case there is no 
need to compute generalized scattering matrices of 
separate discontinuities and their combination. There-
fore, the computer performed hundred thousand itera-
tions within 5 min 25 sec. By using the proposed ap-
proach, the gain in computing time under calculation of 
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1

structures shown in Fig. 1 is 2.5 and 3.5 times, respec-
tively. 

Even more significant gain in computing time is ob-
tained for the case of symmetrical doubled discontinui-
ties when . When using the relation (27), the ex-
penses of computing time for this case were 1 min 50 
sec. At computation of the resonant enlargement be-
tween two circular waveguides (Fig. 1b) according to 
relation (28), the corresponding execution time of one 
hundred thousand iterations was 2 min 35 sec. 

3r r

A distinctive feature of the calculation algorithm of 
single mode scattering matrices of considered doubled 
discontinuities in accordance with relations (31), (32) is 
negligible small computing time. One hundred thousand 
iterations is performed only for 20─30 sec at computa-
tion of the single mode scattering matrices for the con-
sidered cases of the diaphragm of finite thickness (Fig. 
1a) and resonant enlargement between two circular 
waveguides (Fig. 1b). 

The results of performed comparison illustrate the 
efficiency of proposed approach to calculate and opti-
mize longitudinally complicated waveguide structures 
and various devices on their basis. This approach can be 
successfully applied to calculation of more complicated 
waveguide structures when numerical methods should 
be involved to find eigenmodes of connected wave-
guides. 

 

Conclusion 
 

In the rigorous formulation, the diffraction problems 
of transverse-electric and transverse-magnetic modes on 
the longitudinally complicated waveguide structures are 
solved. Based on the integral equation method, An ap-
proach to calculation of the longitudinally complicated 
waveguide structures is developed. The expressions for 
calculating generalized scattering matrices of compli-
cated structures consisting of many connected wave-
guide sections are derived. A technique for calculating 
waveguide longitudinally complicated connections that 
are symmetrical with respect to a plane going through 
the middle of the structure perpendicularly to its longi-
tudinal axes is proposed. This problem is reduced to 
two independent systems of integral equations relative 
to sums and differences of tangential electric fields in 
coupling windows. The formulas for description of 
symmetrical waveguide structure by single mode scat-
tering matrix in the form of two independent systems of 
linear algebraic equations with real coefficients are de-
rived. 

The efficiency of developed approach was illustrated 
by the example of establishing the mathematical models 
of diaphragm of finite thickness and resonant enlarge-
ment between two circular waveguides. The proposed 

and known calculation techniques in respect to comput-
ing time expenses are compared. To perform compara-
tive calculations, the mathematical model of separate 
junction between two circular waveguides is derived as 
a special case of generalized scattering matrices of dou-
bled discontinuities in circular waveguide. 

It is shown that proposed technique based on simul-
taneous solution of the systems of coupled integral 
equations ensures significant saving of computing time 
compared to the known approach based on sequential 
combining of generalized scattering matrices of sepa-
rate junctions. 

The technique proposed can be applied for the opti-
mization of devices on the basis of longitudinally com-
plicated waveguide structures, where the multiple cal-
culations of frequency characteristics at finding of ob-
jective functions are required. 
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