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Research results on autodyne oscillator stabilized by an external high-Q cavity are presented for the case of the large reflected 
signal, when amplitude of the reflected wave is commensurable with amplitude of natural oscillations. Expressions describing 
an autodyne response of the oscillator on the influence of the proper radiation reflected from a target are obtained. Calculations 
of amplitude, frequency and spectral characteristics of the autodyne system are performed. Conditions of exact tuning of the 
stabilized cavity are determined. Investigations of stabilized autodyne parameters at small distance to the reflected object are 
provided. It is shown that to expand the dynamic range of the autodyne system it is expedient to use the large coupling between 
cavities. Recommendations concerning practical application of the obtained results in the short-range radar are given.  
 

 

Introduction 
 

One of the most important problems for develop-
ment of short-range radar (SRR) is a provision of their 
maximal dynamic range with respect to the input signal 
level. The solution of this problem is in the direct de-
pendence upon operation effectiveness of the SRR au-
todyne system included in the SRR structure. The prob-
lem is complicated due to the variations in wide range 
of the effective scattering areas of targets as well as dis-
tances to reflected objects. In the real SRR operating 
conditions, these distances can be changed from the 
maximally possible distance to the target determined by 
the system’s energy potential to direct contiguity of the 
tracking object and SRR [1─6]. In the first case, the 
level of reflected radiation is quite small and often com-
mensurable with the intrinsic noise level of the receiver, 
while in the second case it is large and commensurable 
with the probing radiation level of the transmitter. In 
many applications, the duration of target presence in the 
SRR monitoring zone and time of receiving signal 
processing for command working-out are limited. In 
these cases, application of various automatic control 
devices to expand the system dynamic range becomes 
ineffective due to large response time. 

Solution of the dynamic range expansion problem of 
the autodyne SRR of millimeter wavelength range, 
which have clearly observed signal distortions [7, 8] at 
reflected radiation level growth, have the special sig-
nificance. The origin of these distortions has the princi-
pal character and is connected with the phase shift ir-
regularity for the reflected wave due to autodyne varia-
tions of oscillation frequency under influence of re-
flected radiation [8─10]. These distortions are peculiar 

to both usual autodynes with non-modulated radiation 
and autodyne oscillators with different types of modula-
tion [11─14]. In most cases, they disturb the normal 
operation of signal processing devices of SRR. The in-
fluence of these signal distortions is especially strong 
manifested in the case of the autodyne oscillator inter-
action with radiation reflected from the distributed ob-
ject [15]. 

A large number of publications are devoted to study-
ing of distortion problem of autodyne signals in various 
self-oscillating systems and to searching of struggle me-
thods against them. Among proposed methods, the ap-
proaches based on using of bi-harmonic oscillator with 
frequency stabilization on the second harmonic [16] and 
autodyne oscillators with external and mutual synchro-
nization [17] are especially effective. However, the 
most effective solution of this problem can be achieved 
at application in autodyne oscillators of the external 
high-Q cavity [18]. Frequency stabilization with the 
help of this cavity essentially decreases the signal dis-
tortion level and improves the radiation spectrum of 
UHF oscillator, which significantly increases perform-
ance and operating characteristics of autodyne SRR. 

However, when the level of reflected radiation ex-
ceeds the definite quantity, the signal distortions appear 
in the stabilized autodyne as well, and they are caused 
by autodyne frequency variations. The appearance of 
these distortions is connected not only with the phase 
shift irregularity, although in the most cases they can be 
very small. As it is shown in [19], the key reason of 
mentioned distortion appearance is caused by internal 
properties of the oscillator itself. In this case at auto-
dyne variations of oscillation frequency, the additional 
amplitude modulation on the non-linearity of the fre-
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quency-dependent active conductance of the oscillation 
system occurs. This modulation superimposed to natu-
ral autodyne variation of the oscillation amplitude 
caused by the phase variations of the reflected radiation, 
stimulates additional signal distortions. 

The purpose of this paper is the development of the 
most important results of further investigations of the 
stabilized self-oscillation system (described in [19]) for 
the practically interesting case of the large signal, when 
the reflected radiation amplitude is commensurable 
with the natural oscillation amplitude. In this case, at 
distortion analysis in the stabilized oscillator, it is nec-
essary to take into consideration a non-linearity of the 
reactive part of conductance of the oscillation system 
besides the non-linearity of the frequency function of its 
active component. The analysis of such a case is con-
nected with the use of numerical methods for the solu-
tion of the problem on the basis of the developed ma-
thematical model of an autodyne oscillator. 

 

The mathematical model of autodyne oscillator 
for large reflected signal 

 

The offered mathematical model is called upon to 
take into consideration internal parameters and key con-
struction features of stabilized autodyne UHF oscilla-
tors. To obtain equations that are the basis of this model 
and describe the autodyne response formation under 
conditions of large reflected signals, we use an equiva-
lent circuit and analysis results obtained in [19]. Equa-
tion (3) from this paper for conductance ( , )LY t   of the 
external oscillator load describing also the effect of the 
reflected radiation on the autodyne can be rewritten tak-
ing into account (2) from [19] in the form: 
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the modulus and the phase of the instantaneous reflec-
tion factor; ,  and ( )A t ( , )A t   ,  are ampli-
tudes and phases of the voltage on the load 

( , )t 
( ,LY t ) , 

creating by the oscillator in the current time moment  
and in the moment t  from the system prehistory, 
relatively; L  is the external load conductance of the 
autonomous oscillator in which . Here, the 

t
 

G
( , ) 0t     

quantity characterizes the radiation decay at its propa-
gation to the object and back;  is the full phase 
shift of the reflected wave during time 

( , )t 
2 /s c   of ra-

diation propagation to reflecting object and back; s  is 
the distance to the reflector; c  is a velocity of radiation 
propagation.  

Then equations (8), (9) from [19] for the conduc-
tance Y G jB     reduced to the active element (AE) 
section can be presented in the form taking into account 
(1):  
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where eG  and eB  are averaged over the oscillation pe-
riod active and reactive parts of the complex AE con-
ductance depending upon the bias voltage E , ampli-
tude  and frequency A   of oscillations: ( ,eY E , )A    

( ,G E , ) ( ,A jB E A, )e e    ; 1 1 ;  is the 
intrinsic loss of the main cavity; 1 1 ex  is 
the efficiency of the main cavity; 1LQ , ex  are its 
loaded and external Q-factors; 1 , 2  are coupling co-
efficients of the main and stabilizing cavities with the 
transmission line between them [19]; 1с , 2с  are rela-
tive offsets of current frequencies of the first and sec-
ond (stabilizing) cavities having the natural frequencies 
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1с , 2с  and intrinsic Q-factors 1сQ  and 2сQ ; ( ,g t )L  , 

L ( ,b t )  are normalized variations of the active and reac-
tive load conductance in the vicinity of the steady-state 
oscillator mode: 
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To simplify the analysis of equation system (2), (3), 
we substitute the nonlinear terms of the electronic con-
ductance e e e  by its quasi-linear approxima-
tions in the vicinity of the steady-state oscillation mode. 
At analysis, we take into consideration that components 
of the conductance 

Y G jB 

eY  are the slower frequency   
functions than the oscillation system conductance. We 
shall express the processes occurring in the oscillator as 
functions of the effect of the reflected radiation level in 
normalized (dimensionless) values of oscillation pa-
rameter variations with respect to the steady-state 
mode. We limit our research to the case of autodyne re-
sponse extraction of variations of oscillation amplitude 
by external detector at fixed AE bias voltage: 0E E . 
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Following the stated analysis logic, we expand 
functions eG  and eB  in the system (2), (3) into 
Taylor series in the vicinity of the steady-state 
mode of the autonomous oscillator. Taking into 
consideration the closeness of frequencies 1с  and 

2с  to the steady-state frequency 0 , we present 
oscillation amplitude and frequency in the form: 

0 ; 0 , where 



A A A        E , , A   are 
the appropriate variations of steady-state parame-
ters. As a result, we obtain the system of linearized 
equations to determine the relative variations of 
oscillation amplitude  and frequency 

: 
1 /a A  0A

0/  
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11 1 11 ( ) ( , ) ( , ) 0os La b t b t            ,        (7) 
 

where 11 0 0( /2 )( / )e eA G G A     is the reduced slope of 
the oscillator increment defining the regeneration de-
gree and the strength of its limit cycle; 11   

0 0( /2 )( / )e eG G     is the parameter of oscillator’s 
non-isodromic properties or the influence factor of fre-
quency variations onto the oscillation amplitude; 

11 0 0( /2 )( / )tane eA B B A      is the parameter of ani-
sochronous property; 11 0 0( /2 )( / )tane e   is 
the parameter of frequency stabilization taking into ac-
count the frequency slope of the reactive AE conduc-
tance; ,  are normalized variations of os-
cillation system conductance in the vicinity of the 
steady-state mode:  
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where 02  is the normalized frequency offset of 
the stabilizing cavity with respect to its boundary value 

2bv c ; 02 0  is the relative offset 
of the natural frequency 2c  of the second cavity with 
respect to steady-state frequency 0  of the autonomous 
oscillator. We shall call as isodromic the self-oscillator, 
in which the oscillation amplitude does not depend 
upon the oscillation frequency variations. We assume 
the presence of this dependence in the non-isodromous 
oscillator. Differential AE parameters , , 

/ bv   

1/2Q    2 2( )/c c  

11 11 11  and 

11  in (6), (7) can be calculated for the specific oscilla-
tor implementation or determined experimentally. 

The obtained system of equations (6), (7) describes 
steady-state values and quasi-static variations of ampli-
tude and frequency of autodyne oscillators for all values 
of reflected radiation levels and for arbitrary value of its 
delay time. It should be noted that at the absence of sta-
bilizing cavity coupling when 1  these equations 
correspond to the case of single-tank autodyne [10].  

0 

Under relevant SRR functioning conditions, the 
large level of reflected radiation commensurable with 
amplitude of natural oscillations is observed at compa-
rably small distances to the reflector. At that, in spite of 
considerable parameter variations, it is quite acceptable 
to expand the parameters of delayed effect ( , )t   and 

( ,t )   in Taylor series on the small delay time   com-
pared to the current time t  (  [10]) in order to 
simplify the further analysis of the steady-state auto-
dyne response. 

t 

Restricting by two first expansion terms, we obtain 
the first approximation solution for the modulus and 
phase of the reflection factor in the form: ( , )t    ; 

( ,t )    . 
Taking into consideration this expansion, we obtain 

mathematical expressions necessary for the further nu-
merical analysis of the autodyne oscillator. Having ex-
cepted from equation (6) the variable   and from equa-
tion (7) the variable  and assuming in them 1a 1  , we 
obtain:  

 

1 / ( ) ( )a osr Lr da K g g 0      ;             (10) 
 

 

/ ( ) ( ) 0a osr Lr dL b b       ,              (11) 
 

where 111 / (1 )aK    
111 / (1 )aL

 is the autodyne amplification 
factor;    

( ) ( )osr osg g
 is the frequency deviation 

factor; os ( )b  
)

  ,  ( ) ( )osr osb b     
(osg 

( ) ( ) (L d L db b g

 are relative active and reactive conductances 
of the oscillating system; Lr d L d L d , (

)
) ( ) ( )g g b     

Lr d       are relative active and reac-
tive load conductances; 11 11 , 11 11  are 
non-isochronous and non-isodromous factors of the os-
cillator.  

/    /   

At that, taking into account (10) and (11) the equa-
tion for phase ( , )t   including into equations (4), (5) 
for derivative calculation  and ( )Lr dg  ( )Lr db   can be 
written as:  

 

( , ) ( , ) 2 (1+ )( + )d dt N          ,           (12) 
 

where 2 /N s 

0 /2

 is the integer of half-wavelength being 
packed between the reflecting object and the autodyne; 

d      is normalized (dimensionless) time.  
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The solution of equation system (10), (11) provides 
a possibility of analysis of the autodyne response for-
mation features on variation of the amplitude 1a  and 
the frequency  oscillations at d  changing on the 
separate parts of the distance 

 
s  to the reflector.  

 

Effect of the oscillation system and the oscillator 
load upon the process of autodyne response 

formation 
 

A main point of the autodyne effect consists in oscil-
lator reaction on the influence of the proper reflected 
radiation, which is equivalent to variation of the load 
that moved away on the definite distance. These varia-
tions introduce the active and reactive conductances 
into oscillating system that leads to variations of the os-
cillation amplitude and phase. In the case of small re-
flected radiation, the amplitude of quasi-harmonic auto-
dyne response is usually proportional to the reflected 
radiation level. However, at large reflected radiation 
level such a proportionality of the response is disturbed. 
Moreover, oscillating system characteristics and AE pa-
rameters as well as the value of distance to reflecting 
object affect the process of response formation. 

The analysis of equations (10), (11) taking into con-
sideration (4), (5) and (8), (9) allows clarification of the 
mentioned factor influence upon features of the auto-
dyne response formation. At that, we provide investiga-
tions without taking into account the delay time value 
of the reflected radiation supposing in (12) 0N  . 

At first, we consider a behavior of relative conduc-
tance components  and  of the oscillating 
system with respect to relative frequency variations 

( )osrg  ( )osrb 
  

in the vicinity of the steady-state oscillation mode. Af-
ter that, we consider the response formation process it-
self, which as it follows from (10)─(11) is determined 
by a behavior of relative load conductance components 

 and Lr db  depending on relative variations 
of dimensionless time d  taking into account the intro-
duced by AE parameters of non-isochronous  and 
non-isodromous  properties of the autodyne. 

( )Lr dg  (



)




In the further analysis, we consider the matching 
condition for transmission line with the stabilizing cav-
ity, at which 2 . We determine the frequency func-
tions of normalized conductances  and 

1 
( )osrg  ( )osrb   

assuming the different values of the 1  parameter de-
termining the cavity coupling degree at variations of 
non-isochronous  and non-isodromous   features of 
the oscillator, which characterize its intrinsic properties. 
Calculation results according to (10) and (11) taking 
into account (8) and (9) for 1LQ , 2c  and 

 in the form of graphs of frequency functions of 
normalized conductance 



100 Q





( )osr

1000
0 

g   and  are pre-

sented in Fig. 1. We would like to note here that curves 
1 show characteristics corresponding to the case of the 
autodyne with the single-tank oscillation system, at 
which 

(osrb )

1 0  . 
 

( )osrb 

( )osrg  


 

                  (a)                            (b)                            (c) 
 

Fig. 1. Normalized characteristics of frequency functions of 
reactive ( )osrb   and active osr  components of oscilla-
tion system calculated at different values of parameter 1

( )g 
 : 

1 0   (curves 1); 1 1   (curves 2); 1  (curves 3); 3.4 
1 10   (curves 4) and factors   and  : (a) 0    ; (b) 

0.5    ; (c) 0.5     . 
 

The analysis of graphs for the case of the isochro-
nous and isodromous oscillator  shown in Fig. 
1a proves that under condition of the exact tuning of the 
stabilized cavity (when ) characteristics of the 
frequency functions of the reactive  component 
of the oscillating system conductance have a central 
symmetry, while characteristics of the active compo-
nent 

0   

(osrb 
0 

)

( )osrg   have the axial symmetry. At that, if the 1  
parameter does not exceed the critical value of coupling 
between cavities 1( cc )   , which is equal 3.4cc   in 
the considered case 2c , then characteristics (Q 1 000)

( )osrb   are one-valued functions of frequency as curves 
1─3 demonstrate. It follows from curves 4 that at value 
of 1  parameter exceeding the critical value, the “bend-
ing deflections” appear in these characteristics, which 
was noted in [19]. Segments of these characteristics, 
where derivatives have the negative sign, correspond to 
unstable operation [20]. 

In the case when 1 cc  
)

, the operation point on 
characteristics osr (b   for autodyne frequency varia-
tions moves along the continuous trajectory. If this ine-
quality does not fulfil, the qualitatively another situa-
tion is observed in the operation point movement. In 
this case, the operation point on these characteristics 
bypasses unstable segments with a negative derivative 
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by the jump with hysteresis phenomena. Calculations 
show that the critical coupling value 1 cc    takes an-
other one at the variation of 2cQ . We consider this 
value of the coupling paramete cc  as the boundary 
value between cases of large ( )cc   and small 

1( )cc    coupling between caviti t determines 
 differences in the character of autodyne fre-

quency variations. 
The sharp dip pr

r 
1

es

he ch

 

a

since i

racteristic 

qualitative

esence in t ( )osrg   
ind

trod

tance o

 

icates the abrupt increase of the active conductance 
during autodyne variations of generation frequency 
with respect to 0  . At that, the additional amplitude 
modulation with doubled frequency occurs. As it was 
proved in [19], this phenomenon is a reason of auto-
dyne oscillator non-linearity on amplitude. 

The similar characteristics for the case, when AE in-
uces the additional dependence of the reactive 
( )osrb   and active ( )osrg   components of the conduc-

n amplitude ons (non-isochronous prop-
erty) and on frequency variations (non-isodromous 
property) into the resonance system are shown in Fig. 
1b and Fig. 1c. As can be seen from these graphs, in 
this case the central and axial symmetry of characteris-
tics are observed. Due to oscillator non-isochronous 
property ( 0)   and introduction of the component of 
the active ctance ( )osg   into the reactive con-
ductance ( )osrb  , the cha tics ( )osrb   receive the 
frequency    in the form of bending deflection 
for the single sign, while for another sign it is observed 
their flattening. A behavior of characteristics ( )osrg

 variati

rac
condu

 offset
teris

  is 
specified by the introduction of the quantity ) (osb 

rom
 

into the conductance ( )osg   due to non-isod
property ( 0)   of the oscillator. Owing to this, the 
slope and t height of the characteristic ( )osrg

ous 

 descen   
are changed. Mentioned peculiarities of charact  

( )osrg   and ( )osrb   essentially influence the autodyne 
t the large reflected signal. 

Fig. 2 shows diagrams calculated according 

eristics

response form

(11

ation a
to (10), 

), which illustrate the process of autodyne response 
formation for the case of the isochronous and isodro-
mous oscillator ( 0    ). The diagram sequence 
numbers are shown res in the low right corner, 
the functional direction of conversion processes is indi-
cated by arrows, the sign “+” means its summation. Let 
us consider the autodyne response formation process it-
self using diagrams shown in Fig. 2. As the probing sig-
nal, we take sinusoidal variations of the reactive and ac-
tive load conductances of unit amplitude: ( )Lr db

 by figu

   
( ) sin 2L d db    ; ( ) ( )Lr d L dg g cos2 d      

 1

As follows from (11) and the diagram 2, the conduc-
tance )Lr db


 that the pa-

3.4 . 
shown in diagram
rameter 1

s  and 6
 is equal to its boundar

. We assume
y value 1 

(  leads to displacement of th cte chara eris-
tic ( )osrb   along ordinate axis: ( ) ( )osr Lr db b   . At 
that, in  points of the characteristic and abscissa 
axis give the current values of the a e on 
the frequency variations ( )d

tersect
utodyne respons

  , which is called as the 
frequency characteristic of autodyne (FCA) in the auto-
dyne theory. As can be se m the diagram 3, these 
variations ( )d

en fro
   are inverted with respect to the input 

impact ( )Lr db  . 
 

( )Lr db 

( )r 

( )Lrb 

( )Lr rg 

( )osr rg  ( )osrg 

( + )( )Lr osr rg g  1( )ra 

 
 

Fig. 2. Diagrams of the process of autodyne response fo ma-
n for the stabilized isochronous oscillator for the larg  re-

r
etio

flected signal. 
 

The slope of the central part of the characteristic 
( )Lr db   shown in the diagram 2 reflects the stabilizing 

cav
of the os

ity action. It is equal to the equivalent Q-factor equQ  
cillating system under consideration 

 

1 2
0 1 2

( )osr
equ L

db
Q Q

        2
0 2(1 )

сQ
d  

. 
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Beyond the limits of the central part, where the ine-
quality qu  is fulfilled, the slope of this charac-
teristic is det

clo

 1L eQ Q
erm

ne freq

ined by the Q-factor of the main cavity 

1LQ . Therefore, the fixing capability on frequency of 
the oscillating system for small variations of the con-
ductance ( )Lr db   is higher than for the large deviations 
of ( )Lr db  . This explains the presence of breaking in 
frequency response curve ( )d   in the diagram 3. 

Autody uency variations ( )d   formed in ac-
cordance with the diagram 3 cause the operating point 
dis tic g placement along the characteris ( )osr , as it is 
shown in the diagram 4. At that, the current variations 
of the conductance ( )osrg   occur with the doubled fre-
quency, which is illustrated by the diagram 5. A sum of 
the harmonic variations of the active conductance 

( ) ( ) cos2Lr d L d dg g       and caused variations of 
the conductance ( )osr dg  , shown respectively in dia-
grams 6 and 5, gives a law of variations of the resultant 
conductance ( )osr r dg  , presented in diagram 
7. Inversion of this law in accordance with (10) at limit 
cycle fastness    gives the autodyne response 

1( )da   on amplitude variations (the diagram 8) for con-
sidered oscillating system, which is accepted to call as 
the amplitude characteristic of the autodyne (ACA) in 
the autodyne theory. As follows from diagrams 3 and 8, 
due to non-linearity of the frequency functions of active 

( )osg   and reactive ( )osb   conductances of the oscil-
lating system, the stabilized oscillator response is far 
enough from the sinusoidal form even in the hypothetic 
case of sinusoidal variations of the load conductances 

( )Lr dg   and ( )Lr db  . 
As follows from (4) and (5), under conditions of the 

large reflected signal, when the reflection factor value is 

( )d L 

1

g

11

sed to 1, both the active ( )Lr dg   and the reactive 
( )Lr db   components of the load conductance shown in 

diagrams 1 and 6 in Fig. 2 are also non-sinusoidal func-
tions of the delay time. Calculation results of these 
characteristics for different values of the reflection fac-
tor modulus  , coefficients of non-isochronous prop-
erty   and non-isodromous property   are presented in 
Fig. 3. Fig. 4 shows the harmonic coefficients of reac-
tive bK  and active gK  conductances as well as levels 
of first five harmonics of reactive ( )Lrb n  and active 

( )Lrg n  conductances versus the reflection factor modu-
lus value  . On these graphs and later 1,2,...,5n   is 
the harmonic sequence number; 1d dF / T  is the nor-
malized period of conductance variations; 1dT   is the 
normalized period of the autodyne respon  

The analysis of graphs presented in Fig. 3 shows that 
the variations of reactive ( )Lr db

se.

  and activ ( )Lr de g   
conductances are sinusoidal for the small refl

dia

ected ra-

tion level, when 0.1  . The non-isochronous and 
non-isodromous properties  oscillator ca  
relative phase shifts of these conductances only. It fol-
lows from (10), (11)  into consideration (4), (5) 
and graphs of Fig. 3a that in the case of isochronous 
and isodromous oscillator ( )Lr dg   is the even function 
of d

 

 taking

of the use the

 , and ( )Lr db   is the odd function. It means that at 
changing of the reflector displacement direction (the 
sign of d ), the type of gra ( )Lr d  is not changed, 
wh graph )Lr d

phs g
ile s (b   are rotated mirror-like with re-

spect to abscissa axis. At noticeable characteristic dis-
tortions when 0.1  , the order of sequence of gentle 
and steep parts of the function ( )Lr db   is reversed at 
variation of d . As follows from curves 2 shown in Fig. 
3a and Fig. 3b, at large reflected signal, the sign reverse 
of the coefficient   of characte ( )Lr dbristics   of the 
non-isochronous oscillator ( 0)   changes not only the 
sequence order of the steep and gentle parts during 
variations of d , but the sequence polarity of sh  
flat half-waves. At variation d  in the case of non-
isochronous oscillator ( 0)

arp and

  , the sign change of   
coefficient causes variations of the sequence order of 
steep and gentle parts of characteristic ( )Lr dgs   only. 
These results allow conclus t autodyne response 
istortions in the case of the large reflected signal are 

mainly determined by non-linearity of the load conduc-
tance but not because of signal limitations by AE elec-
tronic conductance as it was supposed in [21]. There-
fore, the linear approximation of active 

ion tha
d

eG  and reactive 

eB  parts of conductance assuming in equations (6) and 
(7) seems to be quite correct. 

 

1

0

1

0

0 1

( )Lr rb 

r

1

2

2

1

0 1

( )Lr rb 

r

1

2

1

2

0 1

( )Lr rb 

2

1

1

2

−1

−1

( )Lr rb ( )Lr rb ( )Lr rb  

r  
                 (a)                          (b)                  (c)          
 

Fig. 3. Normalized reactive ( )Lr dg( )Lr db   and active  
ulated aload conductances versus normalized time d calc

0.01
  t 

   (curves 1) and 0.5   (curves 2) for different val-
ues of coefficients   and  0: (a)     ; (b) 0.5   , 

0.5  ; (c) 0.5  , 0.5   . 



V. NOSKOV, K. IGNATKOV, S. SMOLSKIY:  THEORY OF STABILIZED AUTODYNE OSCILLATORS 11

As f phs sh
 and 

ollows from gra own in Fig. 4, the depend-
ences of harmonic coefficients Kb gK  as well as 
harmonic components of  and active 

oscilla

 and 

 reactive 

o

( )b n

rac

Lr
( )Lr n  conductances have the similar character. There 

are slight differences only in harm nic cha teristics of 
reactive conductance of isochronous and isodromous 

tor. 
As can be seen from graphs in Fig. 4, at reflection 

factor modulus value 0.1   the levels of harmonic co-
efficients K

g

b gK  does not exceed 10 %. Such lev-
els of harmonics are in the limits of the measurement 
error and, hence, are quite acceptable for qualitative in-
vestigations of processes under consideration in the 
autodyne UHF oscillators. Therefore, at 0.1   the 
analysis of the autodyne UHF oscillators can be cor-
rectly fulfilled using the approximated equations for the 
load conductance [7─14]. 

 

( ) (%)b LrK ,b n ,

( )Lrb 1

( )Lrb 2

bK
( )Lrb 3

( )Lrb 4

( )Lrb 5

( )Lrb n

( ) (%)g LrK ,g n , ( )Lrg n

( )Lrg 1

gK

( )Lrg 2

( )Lrg 3

( )Lrg 4

( )Lrg 5

 
 

Fig. 4. Harmonic coefficients bK  and gK  as well as first 
five harmonics levels of reactive  and active ( )Lr( )Lrb n g n  

ductances versus reflection fact us value Γ calcu-con or modul
lated for 1   , 0.5   . 
 

As follows from Fig. 3 and Fig. 4, the increase of the 
reflection or 0.1   is accompanied fact  modulus over 

ith the essential distortion ariation of con-
du
w growth in v

i

ctances ( )Lr db   and ( )Lr dg   as well as the sharp in-
crease of the higher harmonic levels of these functions 
and essential decrease of the first harmonic components 

(1)Lrg  and Lr . In th ty of the value 0.7 (1)b e vicin   , 
there are the maximal higher harmonic levels, and at 
further reflection factor growth there is the sharp decay 

Below we describe the analysis of formation features 

ing results for the case of exact cavity tuning taking into 
consideration 

down to zero. 

of the autodyne signal on the basis of numerical model-

intrinsic oscillator parameters, non-line-
arity of oscillating system and load conductances.  
 

Autodyne characteristics at large reflected 
signal 

 

For correct application of stabilized autodyne UHF 
osc cy illators, it is important to investigate frequen

( )d   and amplitude a1( )d  cha
he proper ref

racteristics of the auto-
nder influence of t lected radiation dyne u

[8─

exami

14, 19]. These characteristics normalized with re-
spect to their maximal values provide the possibility of 

nation of autody ponse formation at its ex-
traction in the form of the useful signal on amplitude 
variations 1( )d da

ne res

  and frequency variations ( )d d   at 
variations of d  at separate fragments of distance s  to 
the reflector. Let us consider these characteristics for 
the case of extremely small distance to the reflector 
( =0)N  and exact tuning of the stabilizing cav 0)ity ( =  
on the natural frequency 0  of the autonomous oscilla-
tor. 

To calculate characteristics ( )d   and 1( )da   as 
ns of normalized time d , which reflect p

arities of the oscillation system behavior at load varia-
tions

functio

, we use equations (10) e
lut

eculi-

 search the so-
atical 

 and (11). W
sing m

e 

ion of this equation system u athem ap-
proach of the package Mathcad. At first, we find the 
autodyne frequency variations ( )d   solving the 
transcendent equation (11) by the secant method with 
the help of the iteration algorithm realized in function 
Root. Substituting the obtained   values into equation 
(10), we obtain the subset of variabl 1 1( )da  . After 
that, with the help of the built-in function Maximize (f, 
x1,…,xm), we obtain the maximal values 1ma  and m

a

  of 
resulting functions 1 1( )da a   and ( )d    . We use 
these maximal values 1ma  and m  for the normaliza-
tion of the required autodyne characteristics: FCA 

1 1 1( ) ( )/d d d ma a a    and ACA ( ) )/d d d m    An 
evaluation of the ana ility w eveloped 
algorithm was verified arison of calculated 
autodyne characteristics and results obtained in [19] for 

ected signal 
Results of numerical investigations of autodyne cha-

racteristics are presented below for the following pa-
rameter values: 2 1

(
the



 . 
 d

1 . 

lysis reli
by 

fl

ab
the co

it
mp

when 

h 

 the case of small re

  ; 1 100LQ  ; 2 1000cQ  ; 0  ; 
0N  ; 111  . Fig. 5 shows FCA  and ACA ( )  d d

1( )d da   for the cases of the small ( 0.01)   and large 
( 0 5).   reflected signals. Fragments of these charac-
teristics represen ty nd s 

( )osr

t the pes of frequency depe ence
of reactive b   and active ( )osrg  ctances of 

llating system. Graphs of harmonic coefficients 
 condu

the osci
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of frequency hfK  and amplitude haK  variations as well 
as the harmonic component levels of autodyne response 
spectra on frequency variations )d d (F

( )d d

arct

 and amplitude 
variations 1( )d da F  versus the reflection factor modulus 
value   of the oscillator under consideration are pre-
sented in Fig. 6. 

Let us examine the results of the numerical model-
ing of autodyne oscillators. As follows from curves 1 
shown in Fig. 5, in the case of the small reflected sig-
nal, FCA (d d  )  a

 

nd ACA  have sinusoidal 
for

1
m. At that, variations of coefficients of non-

isochronous property   and non-isodromous property 
  cause the variations of the relative angles of the 
phase shifts ctan  and 1 an

a

ar      of the auto-
dyne response components only. These conclusions are 
well coordinated with known results of the small-signal 

vestigations of the autodyne UHF oscillators [10, 19].  
 

0.5

in

−1

−0.5

10 0.5 1.5 1 1.5d d0 0.5

( )d d  1( )d da 



( )osrb  ( )osrg 
0

2

2

 
      (a) 

 

1

1

1

−1

0.5

−0.5

10 0.5 1.5 10 0.5 1.5

( )d d 

d d

( )osrb  ( )osrg 

1( )d da 

0

1
1

2

2

1

 
      (b) 

 

Fig. 5. FCA  and ACA  of stabilized auto-
dyne oscillato  an  values of coeffi-
cients 

( )d d 
r for 1

1( )d da 
d different1.5 

  and  : (a) 0    ; (b) 0.5 
flectio

ted for 

, 
n 

0 
factor

. Curves 
 modulus 

1 
with dots correspon

urves
d to the re

0.01  , solid c  2 are presen 0.5  . 
  

At the large reflected signal, the phase shifts of auto-
dyne frequency variations ( )d d   and amplitude varia-
tions 1( )da   depending on the values of coefficients   

ccur as well, what can be well s
d

  oand een on the dis
pla

nation -

 -
cements of curves 2 in Fig. 5. However, to provide 

the efficiency of the SRR autodyne oscillators under 
exami for the large reflected signal, the most im

portant problem is the search of reasons of distortion 
appearance of the autodyne response components. 

Comparison of the results presented in Fig. 3 and 
Fig. 5 shows that for the same values of coefficients   
and  , in contrast to normalized reactive ( )Lr db   and 
active ( )Lr dg   load conductances, the appropriate ch
act

ar-
eristics ( )d d   and 1( )d da   have additional distor-

tions caused by the oscillating system non-linearity. It 
follows also from Fig. 5 that the oscillator non-
isochro roperty affects the law of formation both 
FCA and A t the ime, the oscillator non-
isodromous property has an influence only on the form 
of ACA. 

 

nous p
CA. A same t

( ) (%)hf dK , n , ( )d n

( )d 1 ( )d 3

( )d 4

K ( )d 5hf

( )d 2

1( ) (%)ha dK ,a n , 1( )da n

1( )da 1

1( )da 2
haK 1( )da 3

1( )da 4

1( )da 5

 
 

Fig. 6. The main harmonic component levels of the autodyne 
response spectra for the stabilized oscillator on the frequency 
variation ( )d n  and on the amplitude variation 1( )da n  as 
well as the harmonic coefficients hfK  and haK  versus the re-
flection factor modulus values   calculated for 1 1.5   and 

0.5    . 
 

Comp  of frequency dependences of the reac-
tive ( )osrb

arison
  and active ( )osrg   conductances of the os-

cillating system as well as characteristics ( )d d   and 

1( )d da   shows that positive and negative half-waves of 
the autodyne response on the frequency variation 

(d d )  e the same am des only in the case of 
the isochronous oscillator ( 0)  , which frequency 

 ( )osrb

 hav

tion

plitu

func   has the symmetric form, as it follows 
from Fig. 5a. In the case of the non-isochronous oscilla-

0) , the partial cut of one of the half-waves of 
the autodyne characteristic  is observed, as can 
be seen in Fig. 5b. This phenomenon and the breaking 

tor ( 
( )d d  
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of characteristics ( )d d   in the range of small values of 
auto frequency variations occur due to the action 
of the stabilizing cavity, which tries to keep the oscilla-
tion frequency in the central part of the frequency band. 
Beyond the boundaries of the stabilization band, where 
the frequency function ( )osrb   slope is determined by 
the Q-factor 1LQ  of the main cavity only, frequency 
variations are sharply increased causing non-symmetry 
appearance in the characteristic of the autodyne re-
sponse.  

For more complete investigation of formation proc-
ess of distorted autodyne characteristics presented in 
Fig. 5, we examine Fig. 2 again. We replace the dia-
grams 1 a

dyne 

nd  the appropriate diagrams 
of 

6 in this figure by
reactive ( )Lr db   and active ( )Lr dg   load conduc-

tances presented in Fig. 3. We replace also the diagrams 
2 and 4 for the same values of coefficients γ and ρ by 
frequency functions of reactive ( )osrb   and active 

( )osrg   conductances of the oscillating system, which 
are shown in Fig. 1. Then, on diagrams 3 and 8 we ob-
tain the appropriate graphs of autodyne frequency varia-
tions ( )d   and amplitude variation )d , which af-

alization will have the form presented in Fig. 5 
as the frequency ( )d d   and amplitude 1( )d da

s 1(a 
ter norm

  char-
acteristics. 

Now, we compare graphs (presen  Fig. 6) of 
functions of the main harmonic spectra components of 
the autodyne response for the stabilized tor on 
the frequen

ted in

oscilla
c  and on the amplitude 

var

 t
An excep-

tio

e

y 

oni

variation 

cs 

( )d n

load c

 of l

iation 1( )da n  as well as the harmonic coefficients of 
frequency hfK  and amplitude haK  characteristics ver-
sus the reflection factor modulus value   with graphs 
presented in Fig. 4 for the onductance. 

The results of this comparison indicate that a behav-
ior of all characteristics on their initial segments before 
the reflection factor value 0.1   and on he final seg-
ment, where 0 5.  , is qualitatively similar. 

n is the region of   variation between values from 
0.1 to 0.5. 

In this region, the bend vels characteristics of 
the first harm (1)d  and 1(1)da  as well as the no-
ticeable growth of levels of the higher harmonics ( )d n  
and 1( )da n  are observed. The n

this in

on-m

diate 

onotone behavio
of 

r 
harmonic coefficient functions hfK  and haK  is 

manifested here. In terme region of   value 
variations, the reflected signal level achieves the value 
corresponding to the bend point of the frequency func-
tion of the reactive conductance (osrb f the o lat-
ing system. At further growth of the reflected signal 
level, the non-linearity component due to stabilizing 
cavity is decreased since formation of this part of the 

characteristic is mainly determine arameters of the 
main cavity. 

)  o scil

d by p

The results of investigations show that the coupling 
degree of the main and stabilizing cavities is one of the 
most important parameters, which fundamentally effect 
the characteristics of the whole autodyne SRR system 
under conditions of the large reflected signal. At weak 
coupling between cavities, the autodyne response of the 
oscillator with the stabilizing cavity for large reflected 
signal is subject to distortion in a greater degree than 
the autodyne response of the usual non-stabilized oscil-
lator. 

Therefore, the practical interest is the case of strong 
coupling, at which advantages of single-tank and stabi-
lized oscillators are combined simultaneously. The re-
sults obtained by numerical examination of a number of 
characteristics for different values of the 1  parameter 
indicate that these advantages are clearly manifested at 
coupling parameter value not less than 10. For the case 
of the isochronous oscillator ( 0)     at strong cou-
pling between cavities, when 1 40  , the calculated 
FCA ( )d d   and ACA 1( )d da   are presented in Fig. 7. 
 

 
 

Fig. 7. FCA ( )d d 
cillato

 and ACA  of the stabilized 
autodyne os r with strong ling calculated for 

1( )d da 
 coup

1 40  , 0  
us 

  and different values of the reflection fac-
tor modul  : 0.01   (cur ots) and ves with d 0.5   
(solid curves).  
 

To summarize the research results, we compare FCA 

d d( )   and ACA 1( )d da   presented in Fig. 7 with ap-
propriate functi reactive ( )L db   and  

( )L dg
o activens of 

  load cond nces (Fig. 3ucta a), FCA ( )d d   and 
ACA 1( )d da   presented in Fig. 5а, as well as graphs of 

Fig. 6. Results of this comparison show that in 
the case of strong coupling between cavities the auto-

sponse properties of the stabilized oscillator and 
the single-tank oscillator become quite similar. In this 
case, the autodyne characteristics are subjects to distor-
tions in an essential lesser degree. The monotony prop-
erties of harmonic components ( )d n , 1( )da n  and co-
efficients hfK , haK  dependences are observed in the 
range of reflection factor variation 0 0.5   . 

Fig. 4, 

dyne re
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Conclusion 
 

The the ry of autodyne UHF oscillators stabilized 
by the external high-Q cavity is presented under condi-
tions of the large leve iatl of proper ref

ncy and ampi
mation of the whole SRR autodyne system are stud-

ied. The distortion of the autodyne response of UHF os-
cillators in the case of large reflected signal is investi-
gated. It is shown that the key reason of this distortion 
is non-sinusoidal form of variation of the active and ac-
tive components of the complex load conductance at the 
uniform phase variation for the reflected wave as well 
as non-linearity of frequency functions of the active and 
reactive components of the oscillating system. 

The approach of experimental researches of stabi-
lized autodynes and their results are interesting as well 
for working-out recommendations concerning their 
practical applications in short-range radar syste

The results obtained in this paper may be useful at 
development of calculation methods for stabilized auto-
dynes interacting with the proper reflected radiation, 
and at optimization of UHF oscillator parame

ich are intended for autodyne SRR. 
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