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Results of the autodyne signal analysis of the self-oscillating systems stabilized in frequency by the external high-quality cav-
ity are given. The coupling between the main and stabilizing cavities is realized on the basis of a pass-reflective filter with a re-
sistive link. Mathematical equations are obtained describing an autodyne response onto impact of the own radiated signal re-
flected from a target. The analysis of phase, amplitude, frequency and amplitude-frequency characteristics of the autodyne sys-
tem is fulfilled. The calculation of an autodyne signal spectrum is discussed. A new type of nonlinear distortions of an auto-
dyne signal is examined, which is caused by a frequency dispersion of an oscillating system of the stabilized autodyne. Advan-
tages of the stabilized autodyne compared to the usual single-tuned autodyne oscillator are shown. 

 
 

Introduction 
 

Autodyne oscillators (or simply autodynes) are 
widely used in the compact short-range radar systems, 
in measuring equipment for aeroballistic testing, in 
guard devices, in sensors and measuring systems of dif-
ferent parameters on transport, in industry and in scien-
tific researches [1─7]. A combination of functions of 
the probing electromagnetic radiation transmitter and 
receiver of the reflected signal from a target in the sin-
gle oscillator (autodyne) provides the constructive sim-
plicity, compactness and the relatively low cost of an 
UHF module of the autodyne short-range radar. 

The principle of these devices operation is based on 
the phenomenon of oscillations amplitude and fre-
quency variations as well as an average value of current 
or voltage variations in the supply circuit of an active 
element (AE) at the influence of the own reflected ra-
diation. By means of the devices for autodyne response 
extraction these variations are converted into the output 
signal (current or voltage), which is suitable for the fur-
ther processing. These signals processing provides the 
information about the reflecting objects and the parame-
ters of their movement. 

Autodyne transmitter-receiver (or transceiver) de-
vices are permanently improved and its application ar-
eas are widened [7─9]. Development of autodyne sys-
tems is going on the way of assimilation of a millimeter 
wavelength range and creation of the hybrid-integrated 
modules [2, 8, 9]. At this wavelength range assimilation 
there are a number of problems, one of which is linked 
with appearance of the signal nonlinear distortions at 
the increase of level and delay time of reflected radia-
tion [10─13]. These distortions caused by the autodyne 
frequency variations are unwanted at many autodyne 

applications since they create the serious problems at 
signal processing, especially in the case of the spatially 
distributed reflecting objects [14]. 

To reduce the signal distortion level and the influ-
ence of various destabilizing environment factors 
(among which the temperature is the key factor) upon 
the technical characteristics of autodyne systems, in 
[12─14] it was offered to stabilize the frequency of the 
autodyne oscillator by the external high-quality cavity 
(resonator). At the investigation of such autodyne, it is 
necessary to use the double-tuned model of the oscillat-
ing system. 

Double-tuned and more complicated triple-tuned 
models were investigated in publications [7, 15, 16], 
which were devoted to autodyne examination used in 
UHF radio spectroscopy as well as in techniques for in-
spection of the material parameters and articles dimen-
sions. In [17] the research of biharmonic autodynes is 
offered, which use the additional cavity at the second 
harmonic for the frequency stabilization. 

Nevertheless, in known publications devoted to the 
radar applications of the single-frequency autodynes 
containing the basic and additional stabilizing cavities, 
the output signal analysis is absent, although the results 
of these investigations are undoubtedly interesting to 
determine the potential opportunities of such autodynes 
and to widen its application area. 

The aim of this paper is to conduct the analysis of 
autodyne signals of the self-oscillating system in the 
form of combination of the main and stabilizing cavi-
ties, the theoretical investigation of phase, amplitude, 
frequency, amplitude-frequency and spectral character-
istics of the autodyne system, as well as formation of 
recommendations on development of autodyne short-
range radar for various purposes. 
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Equivalent circuit of stabilized autodyne 
oscillator 

 

For mathematical description of the principal aspects 
in the system under analysis, we consider the functional 
scheme of the simple autodyne radar presented in Fig. 
1a, in which the autodyne oscillator (AO), stabilized by 
the external cavity (EC), is implemented on the basis of 
one-port AE of N- or S-type (Gunn diode, IMPATT di-
ode). The oscillator AO is directly connected with the 
transmitting-receiving antenna A, through which its in-
teraction with returned radiation from the reflecting ob-
ject (RO) (or reflector) takes place. 

 

 
 

Fig. 1. The functional (a) and equivalent (b) schemes of the 
stabilized autodyne oscillator.  

 

At that, autodyne variations of the average value of 
current or voltage in the AE supply circuit arising are 
converted into the voltage of the “output” auto-
detecting signal by means of the registration device RD 
[18]. In some constructions of autodyne short-range ra-
dar the useful signal is extracted by an external detec-
tor, which converts the autodyne variations of oscilla-
tion amplitude or frequency into the output signal volt-
age [14]. 

An equivalent circuit of the autodyne oscillator re-
duced to the AE plane is presented in Fig. 1b. In this 
high-frequency circuit the stabilizing cavity (external 
cavity) and the basic (operating) cavity are presented by 
conductivities ec  and bcY , accordingly, and LY  repre-
sents the conductivity of an oscillator load and its varia-
tions caused by an impact of reflected radiation. The 
average (over the oscillation period) electronic conduc-
tivity of AE 

Y

eY  in the general case depends on the bias 
voltage E, the amplitude A and frequency  of oscilla-
tions: 

ω
( ,E ,ω)Y Y Ae e . In accordance with the general 

theory of UHF oscillators [19], the oscillation equation 
for the equivalent circuit shown in the Fig. 1b takes the 
form: 

 

Σ Σ Σ 0eс e bc LY G jB Y Y Y Y       .          (1) 
 

The reflected wave action in equation (1), according 
to the equivalent circuit method known in practice of 
UHF circuit calculation, is presented by the variable 
load  [11, 19, 20]. Assume that the incident wave in 

the form of sinusoidal voltage and current for the given 
time moment t  is specified by expressions 

LY

( )incU t   
( )exp )incU t t(u 

( ,I t

 and inc inc i . Then 
the reflected wave, which energy was created by the os-
cillator at time moment , can be presented in the 
form of voltage  and 
current ref ref i

( ) ( )expI t I t

t  
( , ) ( , )expref uU t U t   
)exp ( , )t

( )t

( , )t ref


( ,I t)     . Here c/s2  is 
the time of radiation propagation to the reflecting object 
and back; s  is the distance to the reflector; c is the ve-
locity of radiation propagation. Using these expressions 
we obtain the equation for the complex voltage reflec-
tion factor ( , )t   from the load : LY

 

( , ) ( , )
exp[

( ) ( )
ef

c inc

U t U t

U t U t

 
( , ) ref

in

( , )]t tr  
      


 

( , )

( )


ex

P t
p[ ( , )exp[t t( , )] ( , )]tref

inc

P t
      

( , )P t

    ,  (2) 

 

where inc , ref( )P t   are powers of radiated signals 
on the oscillator load at time moments t  and ( )t τ , 
respectively; (t, )   and  are the instantaneous 
values of modulus and phase of the reflection factor. At 
that, 

( ,t )

  characterizes the radiation damping at its 
propagation to the object and back, and  

u

( , )  ( )ut t  
( , )t   is the complete phase incursion of the re-

flected wave.  
Taking (2) into consideration, we obtain the expres-

sion for the conductivity : LY
 

( , )

( , )

I t

U t

 1 ( ,
)

1 ( ,
L

L L
L

t

t

  
  

  

 
 

)

)

)

( ,Y t G


0

,             (3) 

 

where L  is the conductivity of the oscillator load at 
absence of the reflected wave, when . Equa-
tions (2) and (3), in contrast to known equations [11, 
19, 20], take into account the impact of the own re-
flected radiation as a result of amplitude-phase lag on 
time 

G
( ,τt

  of oscillations influencing from the previous 
state of a system. The correct account of this phenome-
non seems to us important enough at analysis of radar 
applications of autodynes, especially with using various 
types of modulation [21─24]. 

Since in real conditions of autodyne system func-
tioning, the amplitude of natural oscillations considera-
bly exceeds the amplitude of signals returned from the 
reflector to the main cavity, so the condition 1   is 
fulfilled and equation (3) can be simplified: 

 
 

( , ) 2G ( , )cL t os ( ,L LG t )Y t     
G


, )L t



L

 

2j G ( , )sin (L t Y ( , )t     

( , )t



j B

 ,          (4) 
 

where ( ,Y t ) ( , )L L LG t        is the complex 
conductivity caused by the action of the reflected wave; 
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( , ) 2 ( , )cos ( , )L LG t G t t     
( , )sin ( , )t t   

  and L  
 are its resistive and reactive compo-

nents. 

( , ) 2LB t j G  

From the practice of frequency stabilization of UHF 
oscillators by external high-Q cavities, the resistive 
method of stabilizing cavity connection is known [25, 
26], which has an advantage of unambiguity of tuning 
characteristics in the operating frequency range. This 
property of the oscillating system is necessary for ob-
taining the high-quality autodyne signal with absence of 
step-wise variations of oscillation parameters in the 
wide range of input signal amplitudes. The simplest 
way of constructive realization of this coupling is con-
nection of the external cavity in the form of pass-band 
reflective filter. 

 

 
 

Fig. 2. The equivalent circuit of the oscillating system with 
resistive coupling between cavities.  
 

The equivalent circuit of such oscillation system is 
shown in Fig. 2. Here eG  is the active conductance of 
AE connected in parallel to the first tank. This tank in-
cluding passive components of AE as well as the induc-
tance 1 , the capacitance 1  and the conductance of in-
herent losses 1r , represents the equivalent of the basic 
oscillator cavity. The second (stabilizing) cavity is also 
presented in Fig. 2 by the parallel tank, which contains 
the inductance 2 , the capacitance 2C  and the conduc-
tance of inherent losses 2rG . The transmission line 
segment between cavities matched with the resistive 
coupling conductance c  has the length , which is 
multiple of half wavelength in the waveguide: 

, where . 

L

Λ/2

C

...

G

L

G

2,

l

l n 1,n
The conductance of the considered oscillating sys-

tem reduced to connection terminal of AE at the oscilla-
tion frequency 0  without the reflected radiation, when 

, is defined by the following equation [27]:  
ω

0 
 

os os os er bc LY G jB Y Y G       

1 2 2
1 1 1



2 2 2

(1 2 )
1 2

(1 ) 2
с с

L с
с с

j Q v
G j Q v

j Q v

  
     

,       (5) 

 

where 1 1 , 2 2  are coefficients charac-
terizing the coupling degree of the based and stabilizing 
cavities with the transmission line; 1 0 1с , 

 are relative offsets of current fre-

quencies of the first 1с  and the second (stabilizing) 2с  
cavities, having the natural frequencies 

  and Q-factors of the 
first (loaded) 1с

/сG G 

2 2( )с с  

/с rG G 

2/ с

( )/сv   
v

v

с 
1 1

v

1/2
1 1 11/( ) ,с L C 

L

1/2
2 2 21/( )L C

1/Q C G   and the second (unloaded) 

2 2 2 2/c с rQ C G 

1G

 cavities; .  1 1r L

Separating the real and imaginary parts in (5) and 
performing its normalization with respect to the value 

, we obtain:  

G G G

2 2
2

2

1 4

(1 ) 4

G Q 


 
2 2
2 2

2 2 2

с c

с c

v

Q v
2 11

G


1

os ( )os cg v ;      (6) 

1 2
1

(1 )
с

c
B Q

v
 


 

2 2
2 1 2 2 2

2 2 24
os c

L
с c

v
Q

G Q v1

 ( )
2os cb v .   (7) 

 

Graphs of frequency dependences of the normalized 
conductances 2os c( )g   and  calculated accord-
ing to (6) and (7) for Q-factor 2  are presented 
in Fig. 3. In the calculation we took into consideration 
the matching condition of the connecting line with the 
stabilizing cavity, at which 2  and the fixing capa-
bility of the stabilizing cavity is maximal, for different 
values of the 1

2( )os cb 
1000сQ 

1 

  parameter, defining the coupling de-
gree with the basic cavity.  

It should be noted that characteristics obtained at 

1 0   (curves 4) correspond to the autodyne with the 
single-tank oscillating system.  

As follows from Fig. 3а, the frequency characteristic 
of the reactive 2( c )osb   component of oscillation sys-
tem conductivity under condition of exact tuning of the 
stabilizing cavity, when 2 0c  , has the central sym-
metry whereas the same characteristics of the resistive 

2( )os cg   component have the axis symmetry. At that, if 
the coupling parameter 1  between cavities is less than 
its critical value cc , which in this case equals to 

3.4cc  , then characteristics  are unambigu-
ous frequency functions (curves 2, 3). If this inequality 
is not fulfilled, deflections appear (curve 1). Parts of 
these characteristics, where its derivatives have the 
negative sign, are unstable [25]. 

2( )os cb 

In the case 1 cc   , the operation point on charac-
teristics 2os c(b )  moves steadily due to autodyne fre-
quency variations, without trajectory jumps. Whereas at 
this inequality fulfillment another qualitatively situation 
is observed in the operation point movement. In this 
case the point on these characteristics passes during 
movement through unstable parts with the negative de-
rivative by the jumps with hysteresis phenomena. At 
another Q-factor 2с  the magnitude of critical coupling 

1 cc

Q
    has another value. This value of the coupling 
parameter cc  indicates the boundary between the cases 
of strong 1( cc )    and weak  coupling be-1( cc   )
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tween cavities, since it defines qualitative differences in 
the character of autodyne frequency variations.  
 

g o
s

b o
s

 
 

Fig. 3. Normalized curves of resistive osg  and reactive  
conductance of the oscillating system depending on the gen-
eralized offset , calculated for , 

osb

02с 1 10L  0Q 2 100сQ  , 

2 ,  and the following coupling parame-
ters: (1) ; (2) ; (3) 

1  3
ck v 

1 10  1

2 10 
3.4  1 1  1; (4) . 0 

 

Comparison of curves 1─3 and the curve 4 shows 
that in double-tank oscillating system the frequency 
function character essentially differs from the similar 
characteristics of the usual single-tank oscillator. The 
presence of sharp dip in 2(os cg )  limits the amplitude 
balance in the frequency band and improves excitation 
conditions of the single-frequency oscillations. The 
slope of the linear part in the center of the function 

2 , caused by the stabilizing cavity action is 
equal to the equivalent Q-factor  of the considered 
oscillating system:  

(os cb  )

equQ

 

2 1 2
0 1 2

0 2

( )

(1 )
os c

equ L с
db v

Q Q
d

        
2Q . 

 

This Q-factor characterizing the fixing capability in 
frequency for the stabilizing oscillator is usually much 
higher than for single-tank oscillator having the Q-
factor 1L . Mentioned features of characteristics 

2os c  and 2  of the considered oscillating 
system will be taken into account in the further analysis 
of processes in the stabilized autodyne oscillator.  

Q
)(g  (os cb  )

 

Key relations for analysis of stabilized autodyne 
 

From condition of self-oscillations (1) taking into 
account (4), (6) and (7), we obtain equations for the 
quasi-static analysis of the autodyne oscillator: 
 

12 ( , ) cos ( , )e osG G G G t t          0 ;       (8) 

12 ( , ) sin ( , )e osB B B G t t          0 ,        (9) 
 

where  is the efficiency of the 
based cavity;  is its external Q-factor;  

1 1/ /L LG G Q Q  
1 1 1 /ex с LQ C 

1e

2 2
1 1 2 2 2

1 2 2 2
2 2

(1 4 )

(1 ) 4
с с

os
с с

G Q
G G

Q v

  
 

  2

v
,               (10) 

1 1 2 2 2
1 1 1 2 2

2 2

2
2

(1 ) 4
с с

os L с
с с

G Q v
B G Q v

Q v

 
 

  2
2

            (11) 

 

are resistive and reactive components of the oscillating 
system conductivity, respectively. 

Finding the solution of equations (8) and (9) repre-
sents the essential complexities because of the presence 
of nonlinear terms eG  and eB  depending on the bias 
voltage E , amplitude  and frequency A   of oscilla-
tions. In order to find the approximate solution of the 
equation system (8), (9), we assume that variations of 
the stationary oscillation mode caused by the reflected 
radiation impact are sufficiently small. Then, the further 
analysis can be fulfilled in linear approximation for 
small variations of self-oscillation parameters in the vi-
cinity of the steady-state mode.  

At first, we find the parameters of the steady-state 
oscillation mode from the equation system (8), (9) at 

( , ) 0t    assuming that 0E E , 0 , 0A A    , and 
also 0e eG G , 0e eB B  and the average value of AE 
current 0e eI I . Then the operation mode of the non-
disturbed autonomous double-tank oscillator is de-
scribed by equations:  
 

0 0 0e osG G  ; 0 0 0e osB B  ; 

0 0 0 0 0( , , )e eI I E A  ,                     (12) 
 

where 0 0 0 0 0( , , )e eG G E A  ; 0 0 0 0 0( , , )e eB B E A  ; 

0 1 20osG G G   is the oscillating system conductance, 
consisting of the loaded conductance  of the based 
cavity and the insertion conductance 

1G

20 1 1 /(1G G    

2 )  of the stabilizing cavity; 0 1 1 01os L2B G Q v  is the 
reactive component of the oscillating system conduc-
tance; 01 0 1 1( )/с сv      is the relative offset of the 
based cavity frequency 1с  and the steady-state oscilla-
tion frequency 0  of an autonomous oscillator. This 
frequency can be calculated using (12):  
 

0 1 1(1 tan /2 )с LQ     ,                  (13) 
 

where 0 0arctan( / )e eB G   is the phase shift inserted 
by AE. Expressions (12), (13) represent the steady-state 
equations, which are well known in the nonlinear oscil-
lation theory for determination of amplitude and fre-
quency of the autonomous single-tank oscillator [19].  

Now, let us obtain equations in variations for the 
autodyne response of the double-tank oscillator relative 
to steady-state mode using equations (8)─(11) with ac-
count of (12) and (13). For this, we present the AE bias 
voltage, oscillation amplitude and frequency in the 

x

1G
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form: 0E E E   ; 0A A A   ; 0 , where    
E , ,  are the appropriate variations of steady-

state parameters. At that, parameters 
A 

eI , eG  and eB , 
being included in equations (8), (9), will get the appro-
priate variations in the vicinity of its steady-state values 
(12). We also take into consideration variations of auto-
dyne response in an auto-detecting process. As a result, 
due to autodyne variations of the average value of the 
AE current ( , ,ω)E Ae e , the possibility of the out-
put autodyne signal extraction occurs in the oscillator 
supply circuit. Assuming that the variations of bias and 
oscillation are small enough, so that conditions of 

0

I I

>>E E , 0 >>A A , 0  are fulfilled, the men-
tioned parameters can be presented in the following 
form with account of the first two expansion terms in 
Taylor series:  

>> 

 

0
0 0

e e e
e e

G G G
G G E A

E A

       
                  0

 , (14) 

 

0
0 0

e e e
e e

B B B
B B E A

E A

       
                  0

 ,  (15) 

 

0
0 0

e e e
e e

I I I
I I E A

E A

       
                  0

 .   (16) 

 

Hereinafter, the index “0” in partial derivatives 
means that their values are obtained in the vicinity of 
the steady-state mode.  

The oscillating system of the oscillator under inves-
tigation differs by considerable conductance non-
uniformity in the vicinity of the steady-state mode. At 
that, the resistive os  and reactive osG В  components are 
an even and odd functions of frequency, respectively. 
Therefore, when expanding these conductances into 
Taylor series, it is enough to take into account the first 
and third series terms in the resistive component and the 
first two series terms in the reactive component. Taking 
this into consideration, we obtain:  
 

2 2
0 (1/2)( / ω ) ωos os osG G G     2

0

0

2

, 
 

0 ( / ω) ωos os osB B B     ,                (17) 
 

where ; 

. 

2 2 3
0 1 1 2 2 2 2( / ω ) 8 [β β /(1 β ) ]( /ω )os с сG G Q   

2
0 1 1 1 2 2 1 2 2) 2 [( /ω ) ( /ω )β β /(1 β ) ]L с с сB G Q Q  ( / ωos 

Substituting (14)─(17) into (8), (9) and taking into 
account (12), we obtain the system of linearized equa-
tions for determination of the relative variations of am-
plitude 1  and frequency 0 , as well 
as the current 

0/a A A  /   
0 /e ei I I  0  and the AE bias voltage 

 0 0/E
a a   

a E 
 2

10 0 11 1 1 2 )n t      ( , ) cos ( ,t    ;  (18) 

01 0 11 1β β ξχ ( , )ηsin δ( ,τ)a a t t     ;        (19) 
 

00 0 01 1 0 0a a i       ,                   (20) 
 

where 00 0 0( )( /e e )E I I E     is the normalized dif-
ferential conductance of AE in its supply circuit in the 
oscillation mode; 01 0 0( / )( / )e eA I I A     is the dimen-
sionless parameter describing the phenomenon of auto-
detecting of the oscillation amplitude; 0 0 0( / )eI     

( /eI )    is the parameter defining the contribution of 
frequency variations into variations of AE supply cur-
rent (frequency auto-detecting); 10 0 0( /2 )eE G    

( /eG E)    is the parameter taking into account the am-
plitude modulation at variation of the bias voltage; 

11 0 0( /2 )( / )e eA G G A     is the reduced slope of the os-
cillator increment defining the regeneration degree and 
the strength of its limit cycle; 1 0 0( /2 )eG     

( /eG )    is the influence factor of frequency varia-
tions onto the oscillation amplitude;  2

2 2 14n сQ   
3

2 2/(1 )   is the parameter taking into account the 
nonlinear character of the autodyne response  due to 
the frequency function os ; 

1a
G 10 0 0( /2 / ))(e eE B B E     

tan   is the parameter of the modulation sensitivity of 
the oscillator frequency to small variations of the bias 
voltage; 11 0 0e e( /2 )(A B / )tanB A    

    
 is the parameter 

of oscillator’s anisochronous property; 1 2e ;  
0 0( /2 )( / )tane e eB B        is the parameter consid-

ering the frequency slope of the AE reactive conduc-
tance; 1 1LQ  , 2 2 1 2 2с  are parame-
ters of the frequency slope of the reactive conductance 
of based and stabilizing cavities. For the specific im-
plementation of the oscillator these parameters can be 
calculated or determined experimentally.  

2[ /(1 ) ] Q  

Equations (18)─(20) describe the steady-state values 
and quasi-static variations of the self-oscillation ampli-
tude and frequency of the double-tank autodyne oscilla-
tor as well as the auto-detecting phenomenon. These 
equations can be also used for calculation of the double-
tank autodyne with supply circuit modulation by means 
of variation of E  voltage, when  represents 
the modulating function.  

0 ( )mdla f t

It is necessary to note that although the equation sys-
tem (18)─(20) has been obtained by means of 
linearization of the AE nonlinear conductances 

( , ,ω)eG E A  and ( , ,ω)eB E A , it is nonlinear since in the 
general case these equations cannot be solved with re-
spect to variable   and, moreover, the phase variations 

( , )t   can be large enough.  
 

Autodyne characteristics and their analysis 
 

The further investigation on a base of the equation 
system (18)─(20) is carried out under certain 
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symplifying assumptions and without taking into 
account the oscillator modulation in the supply circuit 
supposing 0 . Then for each equation of the system 
(18)─(20) the first term will be eliminated since we can 
neglect the reaction of this circuit. At that, the auto-
detecting response 0  for the AE current variation can 
be found out according to equation (20) at substitution 
in it the responses  and  obtained from the system 
(18), (19).  

0a 

i

1a 

In contrast to resistive os  and reactive osG B  conduc-
tances, the value of eY  is the slowly-varying function of 
frequency. Therefore, to simplify an analysis we can 
consider in (19) only parameters  and 1 2  since 

. 1 2 12 >> e     
To simplify further examination, we consider the 

linear case only, when due to the high Q-factor 2с  and 
the relative small level of reflected radiation, the ampli-
tude of autodyne frequency variations   is so small that 
we can neglect the influence of the non-linearity pa-
rameter . Then the equation system (18), (19) takes 
the form:  

Q

2n

 

11 1 1 ( , ) cos ( , )a t         t

t

1

;             (21) 
 

11 1 12 ( , ) sin ( , )a t          .            (22) 
 

Having this system solved by the Kramer method, 
after some transformation we obtain equations for the 
instantaneous values of , 0 0( )u t u 1( )a t a  and 

: 0( ) ( )t t   
 

0 0 0 0 0( ) ( , ) cos [ ( , ) ]u t Z i t K Z t      0

 

2aL

;    (23) 
 

1 1( ) ( , ) cos [ ( , ) ]aa t t K t      ;             (24) 
 

0 0 2( ) ( , ) sin [ ( , ) ]at t L t          ,        (25) 
 

where 0 01 1 0 2 0  is the 
coefficient of autodyne response auto-detecting charac-
terizing the process of its transition into the AE bias 
circuit; 12 1  is the coefficient of autodyne 
amplification showing how much the autodyne re-
sponse on the amplitude variation is more than the am-
plitude of radiation returned from the reflecting object 
[12]; 2 11  is the factor of autodyne fre-
quency deviation;  

, 1 1 12 , 
 are angles of the signal relative phase 

shift in the AE supply circuit, autodyne variations of 
amplitude and frequency, respectively; 11 11  is 
the coefficient of oscillator’s anisochronous property; 

 is the determinant of the system (21), 
(22); 0

( cos sin )/cosa aK K L      

/ cosaK    

/ cos a    
0 01arctan[( sinaK    

01 1 0 2/( cos sin )]a aK L     arctan( 
an( )

  

12 11 1  

L

1 0 
/ ) 

/

cos 
 

 

)
arct

11
Z  is the impedance of autodyne current variation 

conversion into the voltage by means of the registration 
unit [18].  

Equations (23)─(25) have the same view as equa-
tions obtained for the usual single-tank autodyne [12]. 
Coefficients of auto-detecting 0  and autodyne ampli-
fication a  incoming in these equations are similar for 
both cases. However, values of factors of autodyne fre-
quency deviation of the usual 1a  and stabilized 2a  
oscillators differ considerably. Taking into account an 
inequality 11 12 11 1

K

L

K

L

>>    , which is true for most oscilla-
tors, we obtain the relation between values 1a  and 

2a , indicating the degree of decreasing of the auto-
dyne frequency deviation:  

L
L

 

1
2

2 1 1 2

1
(1 )

equa с
f

a L L

QL Q
S

L Q Q

 
   


2 1 2 .          (26) 

 

The value fS  represents the stabilization coefficient 
by analogy with the theory of usual oscillators, which 
indicates the effectiveness of the means for decrease of 
any disturbance influence [25].  

Let us consider now a behavior of phase ( , )t   in-
coming into equations for the autodyne response (8), 
(9), (18), (19), (21)─(25), which is defined as 

( , ) ( ) ( , )t t t     
( , )t

. Having expanded functions 
  ( , )t and  

( , )t

 into the Taylor series on the delay 
time of reflected radiation and limiting by two first ex-
pansion terms, we obtain the solution for the module 
     and phase ( , ) ( )t t     . Taking into ac-
count the equality (25) the last expression for phase can 
be written as:  
 

0 2( , ) sin [ ( , ) ]аt p t          ,            (27) 
 

where 2а mp     is the distortion parameter of the 
autodyne signal [12]; 0 2m aL  



 is the value of the 
autodyne frequency deviation, which is defined by the 
relative level of reflected radiation  and the inherent 
oscillator parameters.  

The analysis of expressions obtained allows us to 
clarify a role of the distortion parameter 2аp  in forma-
tion of the autodyne response. Consider the key charac-
teristics of oscillator under condition of the uniform 
movement of the reflecting object. Suppose that the 
phase in equation (27) changes linearly and continu-
ously with the speed 2  rad/sec because of the speci-
fied movement of the object on the analyzing interval of 
normalized time 0 2d     . Then according to the-
ory of short-range radar systems we obtain the phase 
characteristic (PC) equation to define the phase shift of 
the reflected wave 
 

2( ) 2 sin[ ( ) ]d d а dp         .            (28) 
 

The equation (28) as well as (27) is transcendental 
one since its left and right parts contain insoluble vari-
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able . To solve (28) we use the method of succes-
sive approximations [14]. According to this method, we 
successively substitute the approximate values of the 
phase  into the right part of the equation (28). As 
a result we obtain the solution of (28) for the general 
case of n-th approximation. The obtained expression for 
the steady-state phase values can be written as follows:  

(τ )d

(τd )

 

( ) (0) 2 (1)(τ ) [2 ] sin{[2 ] θd n d а dp        

2 (2) 2 ( )sin{[2 ] ... sin{[2 ] }...},а d а d np p         (29) 
 

where indices in parenthesis designate the order of ap-
proximation.  

Autodyne responses in the form of variations of the 
AE bias current 0u  and oscillation amplitude 1  in 
equations (23), (24) differ by angles of the relative 
phase shifts 0  and 1  only. Therefore, further calcu-
lations will be carried out for the generalized response 

 which denotes both values 0  and 

a

1a

 

( )da  ( )du  ( )d  
taking into account the relative phase shift angle  .  

Using (29) the steady-state values of the normalized 
characteristics of the autodyne frequency variations 

 and the generalized response  in n-th 
approximation can be expressed as:  

( )d d  ( )d da 

 

(0)( ) ( )/ ( ) sin{[2 ]d d d m d d              

2 (1) 2 (2)sin{[2 ] sin{[2 ] ...а d а dp p        



d

 

2 ( )... sin{[2 ] }...}}а d np    ,              (30) 
 

(0)( ) ( )/ ( ) cos{[2 ]d d d m d da a a         

2 (1) 2 (2)sin{[2 ] sin{[2 ] ...а d а dp p         

2 ( )... sin{[2 ] }...}}а d np    ,              (31) 
 

where  and  are the amplitude frequency 
variations and the generalized response. According to 
[11─14], we will designate the quantities  and 

d d  as a frequency characteristic of autodyne (FCA) 
and an amplitude characteristic of autodyne (ACA).  

( )m d 

)

( )m da 

( )d d 
(a 

The normalized phase characteristics and their de-
rivatives calculated according to (29) are represented in 
Fig. 4a and Fig. 4b where curves 1 are related to the 
case of the usual oscillator having 1  as well as 
curves 2 are concerned with the stabilized oscillator for 
which 2 . For these cases the normalized FCA 

d d  and ACA 1  calculated according to (30), 
(31) are depicted in Fig. 4c and Fig. 4d respectively, 
where the curves numeration is the same as in previous 
consideration.  

0.8аp 

<<1аp
)(  ( )d da 

The analysis of these characteristics indicates that 
the autodyne frequency variations of the non-stabilized 
oscillator cause irregularities of the phase shift of the 

reflected wave as shown in Fig. 4a. At that, the varia-
tion speed of the phase shift characterized as the instan-
taneous frequency difference of radiated and reflected 
oscillations Ω ( ) [ ( )] /a d d dd      takes the oscillat-
ing character with formation of peaks of the instantane-
ous frequency as shown in Fig. 4b. A height of these in-
stantaneous frequency peaks increases with the growth 
of the distortion parameter 1аp . As follows from Fig. 
4b, these oscillations of instantaneous frequency 
Ω ( )a d  of the autodyne response are observed relative 
to its average value, which is equal to Doppler shift fre-
quency DΩ Ωa . 
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Fig. 4. Normalized phase characteristics (a), their derivatives 
(b), frequency (c) and amplitude (d) characteristics of auto-
dyne oscillators calculated at  and different values of 
distortion parameters: (1) ; (2) .  

1 
0.81ap 2 1ap 
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Irregularity of the phase shift of the reflected wave 
 is a reason of ACA distortions and additional de-

formations of FCA as can be seen in Fig. 4c and Fig. 
4d, at which the wave inclination effect is observed. Di-
rection of this inclination depends on the value of coef-
ficient of oscillator anisochronous property 1 , the an-
gle  characterizing a coupling type with a load (cou-
pling more than critical or less that critical), and the 
relative direction of the reflecting object motion. The 
degree of inclined distortions increases with the growth 
of the parameter 1а

( )d 




p . At further increase of this pa-
rameter, when it exceeds unity, the waveform becomes 
qualitatively another. This change consists in the ap-
pearance of the wave front jumps instead of the sharp 
wave front.  

It should be emphasized the principal differences of 
FCA and ACA distortions that are clearly visible from 
comparison of curves 1 and 2 in Fig. 4c and Fig. 4d. At 
the variation of parameter 1аp  the half-waves of FCA 
remain always symmetrical with keeping the transition 
phase through zero. However, the areas of the positive 
and negative ACA half-waves are different, that indi-
cates the presence of DC component in the autodyne re-
sponse. The position of transition points through zero 
considerably depends on the value of parameter 1аp , 
defining the level of the reflected signal. When the pa-
rameter 1аp  changes the observed offset of the gentle 
waveform front has the reverse direction with respect to 
the offset of the sharp front.  

The behavior of curves 2 in Fig. 4 calculated for 

2  shows that PC of the stabilized oscillator has a 
linear dependence versus the variable d  as well as 
FCA and ACA vary practically according to a harmonic 
law. As follows from Fig. 4b, the instantaneous fre-
quency difference  of the autodyne response varies 
weakly and practically always equals to the frequency 
of the Doppler shift DΩ , as in radar with homo-
dyne structure of a transceiver.  

<<1аp


Ωa

Ωa 

For descriptive presentation of processes in the 
autodyne oscillator we will use the autodyne’s ampli-
tude-frequency characteristic (AFC). It represents the 
autodyne frequency variations as a function of ampli-
tude variations and characterizes the biunique corre-
spondence between FCA and ACA [13]. This character-
istic usually has a form of an ellipse, which eccentricity 
and the axis slope angle depend on parameters of the 
oscillator under investigation. Therefore, in the general 
theory of oscillators such characteristic is called the el-
lipse of oscillator pulling by a load [28] and in this case 
it serves as a tool for research of autodyne inherent 
properties.  

An example of the autodyne AFC calculated for the 
usual oscillator with offset angles , 0  1   and at 

1 0.8аp   is presented in Fig. 5. The ellipse projections 
on its axes give the appropriate values of ACA and 
FCA depending on the value of d . Ellipse parameters 
and its orientation depend on the angle 


  and on the 

character of oscillator coupling with a load. The calcu-
lation origin on the ellipse, at which ( )d 0 n    , 
where  is the turnover number, is marked by the bold 
point.  

n

Positions of the image point through one tenth of the 
autodyne response period are designated by the circles. 
At growth of delay time d  the image point moves 
along the ellipse counter clockwise. If the delay time 
decreases, the image point moves along the ellipse 
counter in the reverse direction. In general case its mo-
tion speed is non-uniform, which is clearly seen on in-
tervals between circles. With the growth of the parame-
ter 1а



p  this speed increases on the lower part of the el-
lipse and decreases at the upper part. The analysis of 
this motion speed can be used for determination of the 
movement direction of reflecting objects [10]. The im-
age point motion becomes uniform in the case of the 
stabilized oscillator only, when . 2 <<1аp

 

 
 

Fig. 5. The amplitude-frequency , the amplitude ( )d da 
( )d da   and frequency ( )d d 

 
 characteristics of the auto-

dyne oscillator, calculated for ; . 1 1 0.8ap 
 

Results obtained in this section show that the stabi-
lized autodyne oscillator provides essential reduction of 
the frequency deviation value and reduction of the dis-
tortion degree of signals at keeping of the functional 
possibilities of the autodyne systems as compared with 
the usual system. Effectiveness of considered method 
relative to stabilization of oscillating system frequency 
is high enough. For example, whereas the value of 1аp  
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for the usual oscillator is closed to the critical value 
(nearly equal to unity), this parameter for the stabilized 
oscillator with the coefficient  has the value 

2 . This means that in considered case the auto-
dyne signal is practically sinusoidal. However, in each 
specific case of any autodyne application in radar sys-
tems, it is expedient to calculate the distortion parame-
ter taking into account the system functioning condi-
tions.  

30fS 

1 1)/d ma 

)n d n

sin[ (2n

] 

<<1аp

χ (τ )d d

[(n nA C

 

Calculation of the autodyne signal spectrum 
 

The considered approach to solution of the transcen-
dental equations (29)─(31) is suitable for the analysis of 
processes in the time domain. Another technique for 
solving these equations is based on the Bessel ─ Fubini 
expansions [14].  

This technique is the most suitable procedure for 
calculation of the autodyne signal spectrum. According 
to this approach, one can obtain the following equations 
for the spectrum definition of the main components of 
the normalized autodyne response of the stabilized os-
cillator:  

 

(τ ) (τd da a  

0
1

cos[ (2πτ ψ φ ]
n

A A n



   n

n

;         (32) 

1

ω τ )/ ω πτ ) θ]a d m d
n

( B n



     , (33) 

 

where  is the DC component and 
 is the normalized am-

plitude of n-th harmonic of the generalized autodyne re-
sponse; n n n  is the initial phase of 
n-th harmonic of the autodyne resoponse; 

0 1 2( )cos θаA J p
2cos )   ( sinnB 

φ arctan[( /B C

2 1/2) ]

)tan

nС   

1 2n а n а
1

1 2[ ( )( 1)n ( )]/J np J 

( 1) (2n
n аB n 

2( )n а

np

2 ) (np

n

2 )]аJ np

 

0 

 is the normalized 
amplitude of n-th harmonic of the autodyne response of 
the isochronous oscillator, which has the offset angle 

;  is the normalized 
amplitude of n-th harmonic of the autodyne frequency 
variations; J np  is the Bessel function of the first 
kind. 

The analysis of (32) and (33) shows that the position 
of gentle and sharp parts of autodyne amplitude 
variations of the non-isochronous oscillator is defined 
by initial phases  of the higher harmonics of the 
autodyne response. Calculated spectral diagrams of 
FCA and ACA of the autodyne response for its 
normalized frequency d , obtained according to 
(32), (33) for the usual oscillator at  and 

, are presented in Fig. 6.  

φn

1/dF  
1 

1 0.8аp 

0,5

1

0

0,5

1

0
0 2 4 6 8 Fd 0 2 4 6 8 Fd(a) (b)

 
 

Fig. 6. Spectral diagrams of FCA (a) and ACA (b) of the 
autodyne response, calculated for ; . 1  1 0.8ap 
 

As follows from Fig. 6b, the autodyne response on 
the oscillation amplitude variation has DC component, 
the value of which is directly proportional to the Bessel 
function 1 1( )аJ p . The noticeable level of higher 
components at 1 0.8аp   can achieve the seventh 
harmonic. In contrast to the spectrum of amplitude 
variations d  of the oscillator, in the spectrum of the 
frequency variation d

a
 , shown in Fig. 6a, the DC com-

ponent is absent, that is 0 . It follows that the aver-
age value of the oscillator frequency remains invariable 
during an interaction of the oscillations with reflected 
radiation. Thus, under condition 1 , all frequency 
and phase relations for the autodyne signals remain in-
variable despite the presence of the distortions, and they 
completely correspond those for signals of homodyne 
systems [29]. This is quite an important result for the 
practical application of autodynes in the short-range ra-
dar systems.  

0B

<1аp

Analysis of the stabilized autodyne with the same 
level of reflected radiation as usual oscillator shows that 
in the case when the parameter  the signal from 
the point reflector is practically sinusoidal as well as the 
signals of the homodyne radar. As a result, we can ob-
tain the solutions of equations (29)─(31) in the zero ap-
proximation supposing 

<<1аp

[2 d( ) (0)( ) ]d n    .  
Developed analytical techniques for the time and 

spectral analysis of autodyne signals based on the 
methods of successive approximations and the Bessel ─ 
Fubini expansions are applicable if the distortion pa-
rameter 1  [14]. If the parameter 1а<1аp p  approaches 
the unity, the number of terms to obtain the correct so-
lution of (29)─(31) and the number of the Bessel ─ 
Fubini expansion terms in formulas (32), (33) increases 
significantly. For instance, if 1 , the satisfactory 
accuracy of the result can be obtained at . 

0.8аp 
20n 

 

Non-linearity analysis on amplitude 
of the stabilized oscillator 

 

If the reflected radiation level increases the value, 
when it is necessary to take into consideration the pa-
rameter of non-linearity on amplitude 2n , the section 
of frequency variations remains still linear enough as 
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shown in Fig. 3a and Fig. 3b. Therefore, the solution of 
the quasi-linear equation (25) can be carried out to-
gether with the equation (24), having the quadratic de-
pendence on  . Supposing for simplicity of analysis 
that the oscillator is isochronous, when , we get:  11 0 
 

1 1 2( , { ( , ) cos [ ]а аa t K t k     1) ( , )t    

2( , ) cos 2 ( , )аt k t    },                   (34) 
 

where 1 1 11 1  is a coefficient of autodyne 
amplification of the isochronous oscillator, for which 

11 ; 2 1 12  is an amplification co-
efficient of conversion products of the second order.  

/ cosaK  

cosа nk  

 

2 1 

( ,t

0  2/2

As follows from equation (34) the non-linear con-
versions of the autodyne response on amplitude varia-
tions lead to the appearance of the DC component and a 
harmonic with doubled value of the phase . The 
level of these components is defined by the product of 
coefficients  and k . 

2 (t

1аK

, )

) 2а
Carrying out the normalization of the equation (34) 

relative to response amplitude ( , )t  , we obtain:  
 

1 2 1cos [ ( , ) ] , )m d ma a t a t      2 cos 2 (d  , (35) 
 

where 2 2  is the relative level of the sec-
ond harmonic. The solution of this equation in n-th ap-
proximation has a form:  

( , )m d аa t  k 

 

12 (0) 2( ) {[2 ] sid d d аa p       (1)n{[2 ]dcos  

2 (2) )sin{[2 ] ... sin{[2 }...}}а аp p      2 (]d nd   

2 (0) 2cos{[4 ] sin{m d d аa a p     2m d (1)[4 ]d   

2 (]d 2)sin{[4 ... sin{[4 ...}}а аp p      2 ( )] }d n (36)  

 

The results calculated according to (36) at values of 
the relative level of the second harmonic 2 0.2m da   as 
well as at 2  and 2  are presented in Fig. 
7b and Fig. 7d in the form of time and spectral dia-
grams of the autodyne response on amplitude varia-
tions. The similar diagrams calculated without taking 
into account the amplitude non-linearity are depicted in 
Fig. 7a and Fig. 7c for comparison. Fig. 8 illustrates the 
amplitude-frequency characteristics of the autodyne 
calculated at the same initial data as for features shown 
in Fig. 7.  

0.1аp  0.5аp 

Despite the high frequency stability of the oscilla-
tions and a small value of the distortion parameter 2аp , 
the additional signal distortions can occur in the auto-
dyne at influence of reflected radiation of the high level 
as can be seen in Fig. 7b.  

Under certain conditions the DC component in the 
autodyne response appearing due to the non-linearity on 
amplitude can compensate the DC component caused 
by PC non-linearity, as shown in Fig. 4a.  

 
 

 

Fig. 7. Normalized time (left) and spectral (right) diagrams of 
autodyne signals of the stabilized oscillator calculated with-
out taking into account (a), (c) and with the account (b), (d) 
of non-linearity on amplitude for , 1 , 21  0  0.2ak   
and for different values of the distortion parameter: (a), (b) 

2 0.1ap  ; (c), (d) 2 0.5аp  . 
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Fig. 8. Amplitude-frequency characteristics ( )d da  , calcu-
lated with taking into account of non-linearity on amplitude 
for 1  , 1  , 2 0.2k   and for different values of the dis-
tortion parameter: (a) 2ap 0.1 ; (b) . Curves pre-
sented by points are obtained at . 

2ap 
0

0.5

2 k
 

The curves of Fig. 8 show that at appearance of the 
non-linearity on amplitude, the AFC form of the stabi-
lized autodyne oscillator differs from the ellipsoid form 
typical for the usual single-tank autodynes. This indi-
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cates the fact that a nature of given distortions is not 
linked with the irregularity of the phase shift of the re-
flected wave.  

 

Some aspects of stabilized autodyne application 
 

Above-considered peculiarities of characteristic 
formation and respectively the output signals of the 
autodynes, which reveal the reasons of its distortions at 
increasing the reflected radiation level, have the great 
practical significance for correct application of the sta-
bilized autodynes in short-range radar systems, both at 
the choice of oscillator parameters and at signal proc-
essing. The principle of frequency-phase measurements 
of signal parameters is the basis of algorithms of many 
processing methods. For implementation of this princi-
ple, time samples are provided in moments of signal 
transition through zero level, which ensures the mini-
mal amplitude dependence of measurement results. 
However, positions of these points, as shown by curves 
1 in Fig. 4d, considerably depend on the distortion pa-
rameter 1аp  for signals registered on the basis of ampli-
tude variation or the bias voltage variation in non-
stabilized autodyne. 

Moreover, variations of the reflected radiation level 
cause variations of DC component of the autodyne out-
put signal. Although this component does not usually 
pass in the processing unit, the fast fluctuations of sig-
nal level may cause additional displacements of transi-
tion positions and, respectively, fluctuations of output 
signal fronts of the threshold device. Stabilized auto-
dynes provide the essentially better signal quality and 
independence of transitions through zero upon the level 
of reflected radiation.  

Application of frequency stabilization for the auto-
dyne signal quality increase is necessary not only for 
the CW mode of non-modulated radiation but for sys-
tems with various types of modulation. 

 

Conclusion 
 

The investigations of the autodyne signal features in 
the stabilized oscillators with the external high-Q cavity 
are performed. It is proved that the main parameters of 
these oscillators including coefficients of auto-detecting 
and autodyne amplification are the same as in the non-
stabilized oscillators. They also have the signal distor-
tions as usual autodynes but their level is considerably 
lower due to the less value of the autodyne frequency 
deviation. 

It is proposed to characterize the degree of fre-
quency deviation reduction of the stabilized oscillator 
by the stabilization coefficient, which indicates how 
much the value of frequency deviation in the oscillator 

under investigation is lower than in the usual oscillator 
for the same level of reflected radiation. The nonlinear 
distortions of the autodyne signal are revealed, which 
can be observed with growth of the reflected radiation 
level. In contrast to the single-frequency autodynes 
these distortions are cased not by autodyne frequency 
variations but by frequency dispersion of the oscillating 
system conductivity. 

The results of investigations concerning the nature 
of these nonlinear distortions of the autodyne signal 
show that at autodyne frequency variations the addi-
tional amplitude modulation occurs on each edge of the 
frequency characteristic with doubled frequency. This 
modulation is superimposed the natural autodyne am-
plitude variations caused by the phase variation of the 
reflected wave.  

The obtained results convincingly show the effec-
tiveness of the external high-quality cavity application 
to improve technical indices of the autodyne short-
range radar systems. For instance, the use of the stabi-
lized autodynes allows us to decrease the signal distor-
tions, to improve the spectrum of oscillator radiation, 
and to widen the dynamic range. 

In further theoretical investigations of the stabilized 
autodynes it is necessary to take into account the non-
linearity of the phase characteristic of the oscillating 
system as well as to examine the influence of the rela-
tive frequency detuning of cavities on the formation of 
the autodyne response.  

The experimental investigations of stabilized auto-
dynes are also interesting to make recommendations 
about their practical application in short-range radar 
systems. 

The features of signals of the autodyne oscillator, 
which use various types of modulation and various 
ways of coupling of the basic and stabilizing cavities, 
also seem to be interesting and require further examina-
tion. 

The authors would like to thank Petro Ya. Ste-
panenko for the serious study of paper materials and 
useful advices for their improvement.  
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