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The processes of useful signal formation in the short-range radar systems constructed on the heterodyne, homodyne and auto-
dyne principles are considered. The mathematical fundamentals of the fulfilled analysis are described in brief. It is shown that 
the autodyne configuration is much more complicated for the examination compared to the heterodyne and homodyne configu-
rations due to the necessity of taking into account its own re-reflected signal. To simplify the theoretical analysis, the examina-
tion of the autodyne effect is performed under an assumption of reflected signal smallness. The comparison results of the con-
sidered configurations, which show that the homodyne and autodyne signal processing in the usual Doppler short-range radar 
turns out similar, are given. However, the autodyne short-range radar configuration itself has its own specific peculiarities, 
which should be taken into consideration in practice. It is proved that in the autodyne configuration one can meet the accompa-
nying frequency modulation of the probing oscillation. It appears even at the absence of the forced frequency modulation, 
which is widely used to improve the short-range radar noise immunity. It is found out that this accompanying frequency modu-
lation at weak reflected signals does not affect noticeably on the autodyne converter operation. The main theoretical conclu-
sions of this paper are in the good conformity with the published results. 
 

 

Introduction 
 

The short-range radar (SRR) systems [1─4] repre-
sent a specific class of radar devices operating at very 
small distance to the target or to the object under ex-
amination. They can be used in the measuring mode 
where the object under examination is in immediate 
vicinity of SRR, for example, at the measurements of 
substance parameters placed into the device resonator. 
Such measuring SRR can be conditionally considered 
as the radar because they are very close to the conven-
tional radar by the structural construction as well as by 
the principle of signal generation and processing. The 
measuring SRR is widely used to determine the sub-
stance properties, the motion velocities and the other 
parameters of the various objects [5─8]. 

The radar belongs to the second class of SRR, which 
radiates the probing signal towards the object under 
examination and receives the signal reflected from the 
target. The SRR systems have the distinctive features 
compared to the long-range radars. 

In SRR, the distance between radar and the target 
(object under examination) is often comparable to the 
geometric dimensions of both the radar and the target. 
In this case, the target is located in the near zone of the 
radar antenna where it is extremely difficult to analyze 
the electromagnetic fields with account of the peculiari-
ties of electromagnetic wave generation, reflection and 
diffraction. 

In SRR, the mechanism of prolonged data accumula-
tion, which is typical for long-range radar, is really ab-

sent. At solution the tasks of missile guidance or the 
space apparatuses landing, where time of flight (time of 
interaction) is extremely small while the solution should 
be made extremely fast and reliable, it is impossible to 
use the conventional pulse mode of radar operation 
since the working distance corresponds exactly to the 
usual dead-zone. Therefore, the continuous wave (CW) 
mode is used in SRR that essentially changes the radar 
structure. 

Owing to the small distance to the target, the re-
flected signal in SRR has essentially larger intensity 
than in the conventional long-range radar. Even under 
the strong dispersion of the reflected signal, its ampli-
tude level may constitute the units of percents in respect 
to the radiated signal level. It means that not every re-
flected signal can be considered as a small one. 

Some SRR, due to the operation conditions, for in-
stance, at the artillery shot and at shell flight, are sub-
jected to extremely large acceleration up to 10,000g. 
This essentially increases demands to SRR construction 
durability that can be achieved by means of dense pot-
ting of the UHF and RF units with special rigid com-
pounds. The last measure does not permit to make the 
SRR final adjustment and it is very uncomfortable at 
mass serial production. 

Besides these difficulties, which essentially compli-
cate the development, alignment and implementation of 
SRR, the SRR technology has a number of other prob-
lems. Some of them relate to the necessity of non-
standard power source application, the non-standard 
antennas with specific forms of pattern etc. 
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However, the most difficult problem is to achieve 
the maximal simplicity of UHF unit simultaneously 
with the high technical performances of SRR as a 
whole. One of the ways to solve this problem is the use 
of homodyne configuration of the SRR receiver. The 
improvement of the SRR performance can be achieved 
by integration of the probing signal oscillator (a trans-
mitter) and the frequency converter (an input unit of 
receiver) in the one unit. This unit is called an autodyne 
[2, 4, 9─12]. The autodyne, which is linked with the 
SRR antenna by means of reciprocal circuit, generates 
the probing signal and simultaneously converts the re-
flected signal on the frequency. Such function integra-
tion in the one unit essentially complicates the devel-
opment, designing and implementation of a combined 
device. Along with this, the theoretical analysis of such 
combined device is also very complicated. 

It is known [2, 4] that the autodyne represents the 
non-linear self-oscillating system coupled to the two-
way antenna and being affected by its own delayed sig-
nal. The slightest variations of its mode influence im-
mediately the radiate signal structure, which changes 
the parameters of the signal reflected from the target. 
Considered autodyne features essentially complicate the 
development of the well-composed scientific theory and 
the approaches to SRR engineering design. 

SRR development inseparably relates to the solution 
of the most complicated tasks of the theory, designing 
and adjustment of various types of SRR. Increasing re-
quirements to the SRR performance lead to the neces-
sity of provision the further theoretical research     
towards the implementation of the compact transceiver 
devices with high-accuracy signal processing. 

        

One of the ways for these tasks’ solution is the use 
of autodyne configuration principles for SRR UHF unit. 
Its main element is the autodyne: non-linear self-
oscillation system coupled to two-way SRR antenna by 
means of the reciprocal circuit. If inside the SRR oper-
ating area there is the moving target, then the reflected 
signal received by antenna will be offset in the fre-
quency for Doppler amendment, which is usually much 
smaller of the carrier frequency. In the simple single-
frequency autodyne the forced frequency modulation 
mode is absent. The strong radiated signal and the weak 
reflected signal are interacting on the non-linear auto-
dyne structure. Due to this so-called an autodyne effect, 
all parameters of autodyne (the amplitude of UHF oscil-
lations, a power, the DC currents, an auto-bias voltage) 
will have the amplitude modulation or AC component 
with Doppler frequency. This is exactly the output 
autodyne result, which can be sensed in the power sup-
ply circuits or may be extracted by the amplitude detec-
tor of UHF oscillations. 

Task setting 
 

The goal of this paper is to present the research re-
sults of peculiarities of converted (in frequency) signal 
formation in SRR using the homodyne (or standard su-
per-heterodyne) and the autodyne configurations, and to 
consider in detail the condition of output signal genera-
tion for the simplest frequency converter, which does 
not use the forced frequency modulation; and for the 
weak reflected signals to examine the attendant fre-
quency modulation caused by the autodyne effect and, 
as a rule, not-examined in the published papers. 

 

Heterodyne and homodyne configurations 
 

Let us consider consecutively the several different 
cases, beginning from the situation, when any reflecting 
object is absent in the SRR operation area [2]. Then, the 
probing signal generated by the transmitter can be pre-
sented as 

 

( ) cos( )prob prob prob probu t U t    ,            (1) 
 

where , ,prob prob probU    are an amplitude, a frequency 
and a phase of the radiating (probing) signal. 

In the absence of the target in the operating area, the 
radiated probing signal is not reflected (in an explicit 
form) and is not received by an antenna. For the consid-
ered homodyne or super-heterodyne receiver a mixer is 
an ideal multiplier. At its output, there is RF filter sup-
pressing the fundamental frequency of the probing RF 
signal and all higher harmonics. At that, some part of 
the radiated signal power is acting at the heterodyne 
input of the mixer. At the second input of the mixer 
there is an input noise only, which may contain the 
noise components located near the carrier frequency. 

As a result, the differential (low-frequency) signal is 
formed at the mixer (or homodyne) output, which con-
tains only the interaction products of heterodyne signal 
and a noise, which frequency is near the carrier fre-
quency. In the upshot, the noise components only are 
present at the mixer output, and there are no any de-
pending on time signal components. 

Thus, in the considered simple case of the target ab-
sence, the amplitude of the differential converted signal 
is equaled to zero and the regular converted signal is 
absent. The converted signal is equal to zero even if due 
to some reasons the amplitude of the probing signal will 
have some low-frequency modulation. In practice, 
however, the mixer is not a simple signal multiplier, but 
a non-linear (for both inputs) element. Therefore, the 
signal  will obtain some parasitic amplitude 
modulation (PAM). When detected, this parasitic com-
ponent will distort the converted low-frequency signal. 

)(tU prob
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So, in the simple situation, when any reflecting tar-
get is absent in the SRR operation area there is no the 
useful signal at the mixer output. 

In this case, when the spectrum transfer is fulfilled 
into the low-frequency range, the situation in the homo-
dyne slightly differs from the super-heterodyne con-
figuration, when the spectrum transfer is fulfilled into 
an intermediate frequency. 

Now let us examine the case when there is the fixed 
reflecting object inside the SRR operation zone. Here, 
the reflected signal appears which can be presented in 
the form: 

 

( ) cos( ),ref ref ref refu t U t                      (2) 
 

where  are its amplitude, frequency and 
phase, respectively. In this case, the reflected signal 
frequency exactly equals the probing signal frequency 
(the Doppler effect is absent). To obtain the expression 
for the converted signal of the homodyne we will take 
into account the multiplier property of the mixer. Then 
we can define prob ref . Substituting (1) 
and (2) into this expression and carrying out the trans-
formation we find 

, ,ref ref refU  

( )conu t ( ) ( )u t u t

 

( ) {cos[( ) ]con prob ref prob refu t D t          

cos[( ) ]}prob ref prob reft       , 
 

where ; con prob ref  is the amplitude 
of the converted signal. Neglecting the first RF compo-
nent of this expression (we consider it as a filtered one) 
we get the following equation for determination of the 
converted signal: 

2/conUD  U U U

 

( ) cos[( ) ]con prob ref prob refu t D t     , 
 

where ; con  is the amplitude of the con-
verted signal. For the situation when  this 
equation is transformed into 

2/conUD  U

prob ref  

 

( ) cos( )con prob refu t D    .                 (3) 
 

In accordance with equation (3) after RF component 
filtering, the direct voltage appears at the mixer output. 
This voltage is determined by the value of conU  that 
takes into account the attenuation at radiation, reflection 
from the target, and reception, and depends on the 
phase difference . prob ref

If the low-frequency amplitude modulation (useful 
or spurious) of the heterodyne signal takes place, the 
modulated signal is detected due to the mixer non-
linearity, and spurious signal of modulation appears at 
the mixer output. This signal has no any relations with 

the target, is not defined by target parameters and can-
not consider as useful. 

  

Thus, at fixed reflecting object presence in the SRR 
operation zone, the signal at mixer output represents the 
DC voltage depending on the phase difference of prob-
ing and reflected signals. Appearance of this DC volt-
age at the mixer output indicates merely the presence of 
the fixed object and does not carry any useful informa-
tion. 

Let us suppose now that the object is moving with 
non-zero radial velocity inside the SRR operation zone. 
This velocity will cause the Doppler variation in fre-
quency. In this case, the reflected signal appears with 
the time delay  , which determines by propagation 
time of the electromagnetic wave from radar to target 
and back, i.e.   is the function of the doubled distance 
to the target. If during propagation time of the electro-
magnetic wave the delay does not change or has the 
small changes, then it can be represent in the following 
form: 

2 /r c  ,                                 (4) 
 

where r  is the distance from observation point to the 
target,  is the propagation velocity of the electromag-
netic wave. If the radial velocity of the target does not 
change in time (

c

constradV  ), then denoting the named 
velocities relation as /radV c  , we get from (4) 

 

2 t   .                                 (5) 
 

As follows from (5) the delay at long time intervals 
depends linearly on time, although it can have the small 
variation during the propagation time. Because the 
value   is extremely small, the actual variation of  , in 
accordance with (5), occurs during the large time inter-
vals only. 

Let us determine the Doppler amendment to the fre-
quency of the received signal. As it follows from (1), 
the probing signal is pure sine. The reflected signal is 
delayed for the time of  . Then 

 

( ) cos[ ( )ref ref ref refu t U t ]        .         (6) 
 

It follows from (5) and (6) that 
 

2ref ref t t      ,                      (7) 
 

where   is Doppler frequency defined by the follow-
ing expression: 
 

2 ref   .                               (8) 
 

Combining (6) and (7), we get: 
( ) cos(ref ref ref refu t U t t )       .         (9) 
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As follows from (9), in the discussed case, the fre-
quency of the reflected signal is shifted on the Doppler 
amendment with respect to frequency of probing signal. 
If the radial velocity of target is varied in time (e.g., due 
to the target foreshortening change), then the Doppler 
frequency is changed as well. That, of course, influ-
ences the radar efficiency. If the target flights beside the 
radar, then its radial velocity passes through zero and 
changes the sign. This phenomenon can be used to de-
termine the minimal distance from SRR to the target. 

Let us examine the conversion of the reflected signal 
for the scenario, when there is the Doppler variation in 
frequency. Taking into account that the reflected signal 
is delayed we obtain from (1) and (9) 

 

( ) [cos( )cos( )]con con prob prob ref refu t U t t t        . 
 

This equation can be rewritten in following form: 
 

( ) {cos[( ) ]con prob ref prob refu t D t          

cos[( ) ]}prob ref prob reft        . 
 

Neglecting here the first term because of its small-
ness as a result of RF components filtration we finally 
obtain the following expression for the converted sig-
nal: 

( ) cos[( ) ]con prob ref prob refu t D t        . (10) 
 

Assuming that DC components of probing and re-
flecting frequencies are equal, we get from (10): 

 

( ) cos( )conu t D t    , 
 

where prob  is the phase difference, which is 
constant in time. 

ref    

As follows from equations (6)─(10) the signal at 
mixer output (after filtering the RF components) repre-
sents the single-frequency Doppler signal. Hence, in 
this case, the type of SRR is the Doppler one and can 
determine the value of radial velocity of target. To gate 
the converted signal on velocity after its amplification, 
this signal runs through a filter tuned to Doppler fre-
quency defined by equation (8). 

So, in the considered case, the spectrum of the con-
verted signal has one component on the Doppler fre-
quency. 

Let us determine the spectrum of the RF reflected 
signal. As it follows from previous consideration, the 
signal on the mixer second input has the component on 
the offset probing frequency prob . At that, the 
sign of   depends on the direction of target motion in 
respect to SRR. 

Let us examine the case, when amplitude of hetero-
dyne oscillations is modulated by the sine signal, which 

frequency m  is much more than the Doppler fre-
quency. Then, the expression for the converted signal 
can be written as: 

 

( ) (1 cos )cos( )con con a m prob probu t U m t t        

cos( )ref reft    , 
 

where a  is the coefficient of amplitude modulation of 
the converted signal. 

m

Taking into account that  we get ref prob   
 

( ) (1 cos ) [cos( )con con a m prob probu t U m t t         

cos( )]prob reft t     . 
 

This expression can be written in alternative form 
 

( ) (1 cos ){cos[(2 )con a m probu t D m t t       

] cos( )}prob ref prob reft         . 
 

Neglecting here the term  cos[(2 )prob probt    
]ref because of its smallness as a result of RF com-

ponents filtration we obtain: 
 

( ) cos( ) cos cos( )con a mu t D t Dm t t         . 
 

Carrying out the transformation of this relation we 
finally obtain the following expression for the con-
verted signal: 

 

( ) cos( ) ( / 2)con au t D t Dm       

{cos[( ) )] cos[( ) )]}m mt t         . (11) 
 

As follows from (11) in the considered case the con-
verted signal has the one previous Doppler component 
and two components on frequencies m   and 

m  . There are no signal components on the ampli-
tude modulation frequency. 

Hence, the homodyne (heterodyne) SRR configura-
tion for the continuous wave signal without frequency 
modulation can be used as a Doppler SRR measuring 
the target velocity or indirectly the range to the target 
through variation of Doppler frequency for the known 
trajectory. 

 

Autodyne configuration of short-range radar 
without frequency modulation 

 

If there is no target in the SRR operation zone, the 
signal formed by the autodyne and radiated by an an-
tenna has a form (1). If the target is absent, the probing 
signal is not reflected and received by the receiving an-
tenna. If the signal falling into the bandwidth of the op-
eration frequencies does not influence autodyne, then 
no autodyne effect occur. At that, there are no any use-
ful variations in the RF signal envelope and in the auto-
bias DC voltage depending on the time phase (or fre-
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quency) variations. On the amplitude detector or in the 
bias circuit there is only output noise which can contain 
all the noise components including those which fre-
quency spectrum is located near the carrier. 

Thus, no useful signal is forming at the autodyne 
output when target is absent like in the homodyne con-
figuration. 

If there is a fixed reflecting object in the SRR opera-
tion zone, the reflected signal will appear in antenna 
defined by equation (2), where the reflected signal fre-
quency is exactly equal to the probing signal frequency 
(Doppler effect is absent). However, unlike the homo-
dyne configuration, the analysis of the converted signal 
in the autodyne represents the serious difficulties. We 
can suggest the following approach to find out the con-
verted signal in the autodyne. In accordance with this 
approach, the solution of the full differential equation of 
the autodyne can be replaced by the analysis of the sys-
tem of three “abbreviated” differential equations having 
the form [2]: 

 

( , )
cosrefoc

nat
oc oc

kIG U E GdU
T U

dt G G


    ;     (12) 

( , )
sinrefoc

nat
oc oc

kIB U E TGd
TU U

dt G G

 
    ;  (13) 

ememextem REUJEE
dt

dE
T ),( ,         (14) 

 

where  is the amplitude of the autodyne controlling 
voltage; 

U
E  is DC auto-bias voltage; , ),( EUG ( , )B U E

) 

 
are active and reactive components of the averaged 
conductance of the active element;  is the 
time-constant of autodyne oscillating circuit; ocG  is the 
active conductance of the oscillating circuit; 

0nat  is the detuning of the natural frequency in 
respect to the reference frequency 0 ;  is the feed-
back factor; ref  is the amplitude of antenna current 
caused by the reflected signal; ext  is the voltage of the 
external bias source; em  is non-linear DC current 
through the 

02 / (T 

k
   

I
E

J
RC -circuit of auto-bias; ememem  is 

the time-constant of emitter auto-bias circuit;   is the 
damping factor. First two equations (12), (13) are the 
equations of the HF circuits but the third one (14) is the 
auto-bias circuit equation. 

CRT 

The examination of equations (12)─(14) shows the 
following. 

At reflected signal absence ( ), the first two 
equations describe exactly the autonomous mode of an 
oscillator. Equation (12) corresponds to transient mode 
for stationary amplitude, and the second equation de-
scribes the transient process for phase relationships in 

oscillator, i.e. the oscillation frequency. If the active 
element is inertia-free (

0refI

0B

I

), it follows from (13) that 
the natural frequency of the oscillation circuit is equal 
to the frequency of autonomous oscillations ( ). 0 

When the auto-bias circuit is present, the first equa-
tion should be considered together with the third equa-
tion. The joint solution of equations (12), (14) allows to 
determine steady-state parameters and to study the tran-
sients  and . )(tU )(tE

The presence of the signal reflected from the object 
under examination at the autodyne input, can be mod-
eled by the appearance in the first two equations of the 
additional terms with ref , representing the external 
time functions. Addition of these terms into the oscilla-
tor non-linear equations transfers it to the non-
autonomous mode. With account of (7), these additional 
components will have the form of the harmonic func-
tions of the Doppler frequency: 

 

cos cosref ref
nat

oc oc

kI kI
t

G G
  

)

. 

 

The examination of (12)─(14) shows that the re-
flected signal is not included into the explicit form in-
side the auto-bias equation. As equations (12), (13) 
show, the reflected signal appearance in the auto-bias 
circuit happens due to occurrence of the autodyne sig-
nal in the RF voltage amplitude U  as well as in the fre-
quency 0/ (d dt t     where  is the autodyne 
frequency depending on time. Autodyne amplitude in-
crement from (12), being substituted into equation (14) 
for the auto-bias voltage, defines the autodyne bias sig-
nal. Therefore, the mechanism of autodyne auto-
detecting occurs. 

( )t

Determination of the converted and high frequency 
signals appearing in the autodyne is one of the most 
complicated problems of SRR theory. Equation (12) is 
principally non-linear one in respect to the varying in 
time amplitude. It describes the particularly non-linear 
process of exciting and developing of oscillations. The 
solution of such non-autonomous and non-linear equa-
tion with the right part in the form of the sine function 
of Doppler frequency is enough complicated. The solu-
tion complexity is defined also by the fact that the right 
part of equation initially contains the signal delayed in 
time. As a result, this equation has a structure of differ-
ential equation with the retarded argument. 

Factually, the solution of equation (12) may be es-
sentially simplified assuming that the reflected signal 
amplitude is much less than the probing signal ampli-
tude. In this case the process of solution obtaining can 
be divided into two stages. Assuming that the reflected 
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signal amplitude is equal to zero, we find out at the first 
stage the general solution of the autonomous equation. 
This equation is well-known in the oscillator theory. It 
allows the determination of the autonomous amplitude 
value U  and then the auto-bias voltage value . 0 0

At the second stage, we can take into account the 
earlier assumed supposition about smallness of the re-
flected signal. For this, we find out the partial solution 
of the non-autonomous equation considering that the 
non-autonomous solution differs a little from the 
autonomous values:  and 

0

E

0( ) ( )U t U t  
( ) ( )E t E t    at 0  and 0U E  . Here,   and 
 are small increments depending on time, which 

represent the autodyne signals of amplitude and 
auto-bias voltage. Using the conditions of small-
ness of  and , we can linearize the non-linear equa-
tions (12)─(14) around the point of so-called stationary 
autonomous mode. Let us illustrate this approach on the 
example of a single auto-bias circuit. 



 

It follows from the equations for the steady-state 
autonomous mode that 

 

ocGEUG ),( 00 ; 

extemem EREUJE  ),( 000 . 
 

We find out the well-known equations of so-called 
diagrams of skip and bias for the single-tuned oscillator. 
Having solved them (analytically, graphically, or nu-
merically), we obtain the unknown parameters of the 
steady-state mode  and 00U E . Having calculated then 
the function 0 , we find out  from (13) 
for , i.e. the frequency in autonomous mode. If 

, then this frequency does not coincide with ref-
erence frequency

), 0E(UB /d dt
0refI

0B
. 

Now we can proceed to the search of the partial so-
lution of the non-autonomous system (12)─(14). At 
first, we examine equations (12) and (14) with the pur-
pose of  and  obtaining, and then we determine 
from (13) the frequency increment. 

( )t ( )t

For this we expand the non-linear terms of equations 
(12) and (14) into Tailor series in orders of   and  : 

 

0 0
0

( , )( , ) ( , )
[

oc oc oc

G U EG U Е G U E
U U U

G G U G


 


]  

2
2

2

( , ) 1 ( , )
[ ] [ ]

2oc oc

G U E G U E
U U

E G GU

 
  
 

   

2
2

2

1 ( , )
[ ]

2 oc

G U E
U

GE





...                  (15) 

Neglecting here the second and higher orders of the 
increments due to their smallness, substituting (15) in 
(12) and excluding the equations of steady-state mode, 

we find out the first linearized differential equation of 
the autodyne: 

 

0 0 0 0 cosref

oc oc oc

kIU G U Gd
T t

dt G U G E G

 
    

 
, 

 

where  is the function value in the autonomous 
point. 

0G

This equation may be rewritten in the following 
form to be more suitable for the future consideration: 

 

' sk
d

T
dt


cosF t      ,               (16) 

 

where 0 0' / [( / )( / )]ocT T U G G U   

( / ) / ( / )G E G U

 is the reduced 
time constant of the oscillation circuit; 

0 0sk      

( / ) / [ ( / )(ref oc oc

 is a parameter defining 
by the slope of the skip diagram in the autonomous 
point; 0 0 / )]F kI G U G G U     is the 
reduced amplitude of the reflected signal. 

We can see that all terms in (16) have the voltage 
dimension. Two unknown increments are included into 
this equation. To find out the solution, one additional 
equation should be added to it, which can be obtained 
from the equation of the auto-bias circuit. Having lin-
earized the non-linear terms in equation (14), we get 

 

0 0
0 0( , ) ( , ) ...em em

em em
J J

J U E J U E
U E

 
    

 
(17) 

 

Having substituted (17) into (14) and excluding the 
equation of steady-state mode for the auto-bias circuit, 
we obtain the second unknown equation 
 

0 0em em
em em em

J Jd
T R R

dt E U

 
     

 
.      (18) 

 

Equation (18) can be rewritten also in the reduced 
parameters: 

 

1
'em

bi

d
T

dt


    


0 ,                    (19) 

 

where '
0/ [1 ( / )]em em em emT T R J E   

bi

 is the reduced 
time constant of auto-bias circuit; σ  is the slope of 
bias diagram in the autonomous point. We can see that 
all terms in equation (19) have the voltage dimension. 

Expressions (16) and (19) represent together the si-
multaneous system of two linearized equations of the 
autodyne. The first (high-frequency) equation (16) con-
tains the reflected signal and has a non-autonomous 
character. The second equation (19) is an autonomous 
equation of auto-bias circuit. This system describes the 
behavior of the autodyne signals for amplitude ( )t  and 
auto-bias voltage ( )t  at different amplitude and fre-
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quency of the reflected signal for the various values of 
the mode parameters defining by the values of deriva-
tives of functions  and mG  eJ . The simultaneous sys-
tem of two linearized equations considered can be re-
written in the matrix form in respect to two autodyne 

 

t



.      (20) 

ste of the autodyne linearized 
equ

he 
equ

ions on the as-
sum

d by equation by means of the 
ter

signals: 

'

1 ' cos

01 / 1

pT t F     
          

( )

( )t

m 

 

sk

pT

 

 the high-frequency

bi em

 

Let us analyze the sy
ations (20). 
1. It can be seen, that (20) is the second-order sys-

tem of the differential equations because it contains the 
first-order derivative in the abbreviated equation of the 
single tuned circuit and the first-order derivative in t

ation of the single RC-chain of auto-bias voltage. 
2. The system (20) is linear in respect to increments 

(i.e. autodyne signals) since it is obtained by lineariza-
tion of the autodyne non-linear equat

ption of reflected signal smallness. 
3. The auto-bias equation of system (20) does not 

contain the reflected signal. Autodyne mode is de-
scribe

m cosF t . 
The analysis of the system of equations (20) allows 

to make the following conclusions in respect to the 
autodyne converted signal. 

As the solutions of (20) the signals ( )t  and ( )t  
consist of two components. The first one (autonomous) 
defines the initial transient of the autodyne output sig-
nal at 0F , when the autonomous values of incre-
ments are equal to zero. At the transient end, due to in-
crements absence (the absence of the autodyne signals), 
the autodyne ode of waiting for reflected 
sig

passes to the m
nal. 
These autonomous components of the signals ( )t  

and ( )t  can be described by

'

sk

pT
 

' )

 the following m
equation for th ents: 

 

            (21) 

e 
autonomous (free ode) oscillator follows fro

 

 ,           (22) 

wh

atrix 
e increm

1 '

m

')(1 

( )
0

( )1 / 1

pT t

t

    
     

.
bi em 

 

The well-known characteristic equation of th
m (21): 

(1 / 0pT pT  em sk bi
 

ere p  is the index of exponential solutions. 
Quadr icat  ch equation (22) has two solu-

tions for 
aracteristic 

p  

0 1p( )t p 2( ) [ex exp( )]t  .p t   

If the autonomous mode is stable, the autonomous 
solutions for the increments ( )t  a hand ( )t ve the de-
caying behavior in accordance with equation (22). 

 

The second component of the solution of equation 
(20) represents the autodyne signal arising at 0F . 
Because the right part of equation (20) is the harmonic 
function of Doppler frequency, the solution of the non-
autonomous equation in the form of an increment 
(autodyne signal) is the harmonic function as well: 

 

( ) cos( )aut t t       , 
 

where   is the amplitude of the voltage autodyne signal 
( )aut t ;   is its phase. Substituting the obtained solu-

tion into equation (19) for auto-bias DC voltage incre-
ment, we get the non-autonomous equation with the 
pure harmonic right part and hence, the increment ( )t  
takes the following form: 
 

( ) cos( )aut t t       , 
 

where   is the amplitude of the auto-bias autodyne sig-
nal ( )aut t ;   is its phase. The amplitudes of the auto-
dyne signals can be expressed via the autodyne parame-
ters. 

Let us consider a spectrum of the autodyne con-
verted signal in the case when the target is moving. We 
assume that the auto-bias signal is used as an output 
autodyne signal, and the auto-bias autodyne signal is 
caused, as usual, by the own detector properties. It can 
be shown that it is the Doppler harmonic signal super-
imposed onto DC bias voltage. 

Thus, the converted signal spectrum can be dis-
played on the frequency scale by the single spectral line 
on the Doppler frequency. At that, the signal phase   
does not affect the autodyne features. 

For effective application of theoretical investigations 
in the designing of SRR it is necessary to consider in 
detail the case when the increment of HF voltage ampli-
tude is used as the useful autodyne signal. This incre-
ment can be extracted with the help of an amplitude 
detector with followed filtering of HF components. 
Then the HF autodyne voltage can be expressed in the 
following form: 

 

( ) [ cos( )]prob probu t U t         

cos( )prob probt    .                 (23) 
 

It follows from previous analysis that HF voltage 
represents the pure AM signal. It means that the HF 
signal spectrum consists of the carrier frequency and 
two symmetrical collateral lines shifted in respect to the 
carrier on the Doppler frequency. The single Doppler 
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component will be generated at the amplitude detector 
output after filtering the HF components. It is obvious 
that such signal spectrum occurs at the ideal (linear) 
detector. For the real detector, due to the non-linearity 
of its characteristics, the higher harmonics of Doppler 
frequency may occur in the autodyne signal spectrum. 

Thus, we see another result on the spectrum struc-
ture for the autodyne without FM compared to the ho-
modyne (heterodyne) configuration. To compare these 
situations we assume the spectra identity of both the 
output signal of the autodyne and the converted signal 
of the homodyne (heterodyne). Then the received signal 
spectrum in the homodyne configuration has a single 
component (the carrier frequency shifted on the Dop-
pler frequency), but in the autodyne besides the carrier 
frequency two Doppler components are added: one 
from each side (left and right) from the carrier. 

To determine the cause of this difference we must 
consider the structure of HF autodyne signal more accu-
rately. After reception of the first reflected signal, the 
carrier frequency generated by the autodyne acquires an 
amplitude modulation with Doppler frequency  , hav-
ing a very small modulation factor under usual condi-
tions. Now towards the target the AM signal is emitted 
in contrast to the homodyne cascade. Then the probing 
signal acquires the form that is described by the expres-
sion (23). Assuming that the reflected signal received 
by an SRR antenna has the time delay of  , we obtain: 

 

( ) { cos[ ( ) ]}ref ref refu t U t             

cos( )ref reft t     .                  (24) 
 

Although   is small compared to the period of the 
HF signal, it can not be neglected for near systems. The 
whole principle itself of the autodyne and homodyne 
conversions with determination of the Doppler fre-
quency is based on this assumption. But the delay can 
be considered as negligible compared to the Doppler 
period. In this case we can neglect the appropriate delay 
in the equation (24). As a result, equation (24) is re-
duced to the following expression: 

 

( ) [ cos( )]ref ref refu t U t           

cos( )ref reft t     . 
 

In this case, the initial autodyne equations (12) and 
(13) acquire in the right parts the following terms: 

 

cos ;nat    cos nat   , 
 

where / [1 cos( )].ref oc refkI G t         

If the reflected signal ref  may be considered as a 
small and weakly varying the free oscillator mode (i.e. 

the increment 

I

ref  and  are the values of the same 
order), then the product 

refI

refI ref  has the next order of 
smallness and we can neglect it in the autodyne equa-
tions. Thus, the radiation HF carrier modulated in am-
plitude by the signal with Doppler frequency does not 
result in the noticeable variation of HF autodyne signal 
spectrum obtained above. 

 

Accompanying frequency modulation 
in a single-frequency autodyne 

 

The formation of autodyne response of both the am-
plitude and the auto-bias voltage was considered above 
in detail for the usual autodyne in case when frequency 
modulation (FM) is absent. The spectra of HF and con-
verted signals were analyzed in the autodyne and the 
homodyne configurations. 

The analysis of (12)─(14) shows that equation (13) 
for frequency in the first-order approximation can be 
examined after the analysis of equations for oscillations 
amplitude and auto-bias voltage. From these equations 
it follows that for the single-frequency autodyne, in the 
first-order approximation, the frequency does not influ-
ence amplitude in spite of the explicit system non-
isochronism at 0B . 

Nevertheless, more accurate consideration of the 
autodyne signal formation requires taking into account 
the components resulted from the frequency variation. 
Let the moving object be acting in the SRR operation 
zone and the autodyne signals are considered in the 
analysis not only in amplitude and the auto-bias volt-
age, but in frequency. Having determined the autono-
mous features of single-tune oscillator and then the 
autodyne increments   and , we can obtain from 
equation (13) the time function , i.e. the incre-
ment of the oscillation frequency. Having applied the 
previous analysis procedure to equation (13), we obtain 
the autonomous equation ( ) in the following 
form: 



ref

/d dt

0I

 

( ,B U ) oc

oc

E TGd
TU U

dt G

  .                 (25) 

 

It follows from (25) that in the steady-state mode 
( , ) 0ocB U E TG    or  0 0 oc

Now in (13) we introduce the autodyne increment 
for phase 

/ ( ).B TG   nat

( )t  in accordance with the following equa-
tion 0( ) ( )t t     , where  is considered to be 
small in respect to the stationary values. Let us linearize 
equation (13) in respect to the autonomous point with 
account of the phase increment . Having excluded 
the steady-state equations from the linearized equation 
for phase, we obtain: 

( )t

( )t
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0 0 0
0 ( ) sinref

nat
oc oc

kIU B Bd
TU

dt G U E G

 
    

 
 .    (26) 

 

It should be noted that the autodyne signals  and   
have the same order of smallness as a value ocref  
Then, all components in the right part of (26) after re-
ducing the similar terms are forming the pure harmonic 
function with the Doppler frequency. Therefore, the left 
part of equation (26) is also the harmonic function in 
time. Exactly, the equality  is the 
condition for the oscillations frequency to be the 
harmonic function 

GkI / .

/d dt  /d dt

 

( ) cos( )prob natt        t ,            (27) 
 

where  ,  are the amplitude and the phase of the 
autodyne signal of frequency. 



It is interesting to consider the usual single-
frequency autodyne when moving target is present in 
the SRR operation zone and the oscillator is non-
isochronous in the steady-state mode (i.e. B  depends 
on  or U E ). Then the autodyne signal appears in the 
oscillations frequency as well. This indicates that the 
autodyne signal can be detected by means of the fre-
quency or phase detector even when it has the same 
smallness order as the amplitude autodyne signal. 

Thus, the reflected signal almost does not depend on 
the internal autodyne amplitude modulation. An influ-
ence estimation of the accompanying frequency modu-
lation on the reflected signal is not simple and that re-
quires the special investigation. 

As the reflected signal frequency acquires the Dop-
pler modulation of (27) type, the probing signal in the 
single-frequency autodyne can be expressed as 

 

( ) [ cos( )]prob probu t U t         

cos{[ cos( )] }nat probt t         .       (28) 
 

It follows from (28) that the reflected signal is ex-
posed to the amplitude and frequency modulations on 
the Doppler law. Hence, taking into account both the 
attenuation and the time delay on   the reflected signal 
received by the antenna can be presented in the form:  

 

( ) ( cos )ref ref refu t U         

cos[( cos )( ) ]nat reft         ,         (29) 
 

where ; . [ ( ) ]t        [ ( ) ]t      

The examination of (29) shows that due to smallness 
of  compared to the Doppler period, we can also ne-
glect the term with  in the amplitude factor. The sig-
nal part in (29) contains the fundamental carrier 




natt  

and the fundamental Doppler component nat . 
The both amplitude and phase in expression 

t   

cos ( )t     depend on the autodyne parameters. 
The total phase of the reflected signal (29) is defined as  

 

( , ) ( )nat natt t t            

cos[ ( ) ] reft         , 
 

from which we can determine the reflected signal fre-
quency 
 

( ) / [cosref natt d dt          

]

 

cos ( )(1 )sint         ,          (30) 
 

where / nat    . Equation (30) can be rewritten in 
more suitable form: 

 

( ) [cosref natt         
2cos (1 ) sin ].t                    (31) 

 

It should be noticed that all terms in both equations 
(30) and (31) have the dimension of frequency. As the 
amplitude of the autodyne signal of frequency   has 
the first-order of smallness in respect to ref , and a 
value of 

I
  has the next smallness order, we obtain 

from (31): 
 

( ) (cos sin )ref natt t          . 
 

Thus, in the first approach, the reflected signal fre-
quency is differed from the probing signal frequency on 
the value of  . It means that in the case of the moving 
target, the accompanying frequency (or phase) modula-
tion arising due to Doppler effect does not influence the 
formation of all autodyne signals. Certainly, this con-
clusion is right in the case of the absence of forced fre-
quency modulation and at the small reflected signals. 

 

Conclusions 
 

The homodyne and super-heterodyne conversions (at 
mixer presentation as an ideal multiplier with the output 
high frequency filter) and the autodyne conversion un-
der similar assumptions lead to the similar representa-
tions for the converted signals. At slow changes of the 
Doppler frequency, the resulting converted signal at the 
output of both the homodyne and the autodyne has the 
only one spectral component at the Doppler frequency. 
The similar results concerning both homodyne and 
autodyne signal processing are typical in the millimeter 
short-range radar systems constructed on the Gunn di-
odes [9]. The theory of microwave and millimeter wave 
autodynes is far from full completion. Many problems 
in the field of short-range radar implementation require 



S. SMOLSKIY, M. GENERALOV:  HOMODYNE AND AUTODYNE CONFIGURATIONS OF SHORT-RANGE RADAR SYSTEMS 

 
23

g so-called diffraction devices and sys-
tem

ng and complex areas of the modern radio 
engineering. 

logy. ─ Moscow: 
So

es. ─ Moscow: MPEI Publisher, 
19

rtech House Publisher, Norwood, MA, 
US

nes. ─ 
Sar

ow: Mashinostroenie Publisher, 1979. 
─ 2

sk, Russia, May 18─20. ─ 1999. ─ 
Vo

weapon to precision distance meter // Ibid. ─ 
P. 3

 

of 
Str

 Radio-
elec

ronic Appara-
tus

05. ─ German 
Ins

─ German 
Ins

005, 
ISI

 Physics Journal. ─ 2006. ─ Vol. 49, N. 9. ─ P. 
99─

y and Devices. ─ 2009. ─ N. 2. ─ P. 
46─

08, Sevastopol, Ukraine, 2008. ─ P. 475─481 [in 
Ru

nicheskie tetradi. ─ 2010. ─ N. 41. ─ P. 37─42 [in 
Ru

icheskie tetradi. ─ 2010. ─ N. 41. 
─ P

ber 3, 2010, Moscow, 2010. ─ P. 
123 127 [in Russian].  

 
Received in final form October 14, 2010 

the theoretical and practical investigations. Here the 
problems of the combined modulation application of the 
probing signal (for example, the simultaneous ampli-
tude and frequency modulation), and the digital ap-
proaches to modulation and signal processing should be 
included [11─15]. The problems of high-speed per-
formance analysis of the autodyne systems and the top 
speed of the probing signal modulation are of consider-
able interest [15, 17, 18]. It is very important now to 
increase essentially the short-range radar noise immu-
nity, for instance by means of the application of com-
plicated noise-type modulation. The problems of forma-
tion and examination of near electromagnetic fields are 
not solved now. The solution of these extremely com-
plicated problems enables the creation of the novel ra-
dio engineerin

s [16, 19]. 
It is expedient to attract an attention of readers to 

discussion of the mentioned problems related to the 
theory and construction of the short-range radar sys-
tems. These problems may be attributed to one of the 
most interesti
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