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PRUNING MINIMUM SPANNING TREES AND CUTTING LONGEST EDGES
TO CONNECT A GIVEN NUMBER OF NODES
BY MINIMIZING TOTAL EDGE LENGTH
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Background. Whereas in many tasks of designing efficient telecommunication networks, the number of network nodes is
limited, the initial choice of nodes is wider. There are more possible locations than factually active tools to be settled to those
locations to further satisfy consumers. This induces an available node constraint problem.

Objective. Given an initial set of planar nodes, the problem is to build a minimum spanning tree connecting a given
number of the nodes, which is less than the cardinality of the initial set. Therefore, the available node constraint problem aims
at building an optimally minimum spanning tree to connect a given number of planar nodes being less than an initial number of
nodes by minimizing the tree length.

Methods. The initial set of nodes is triangulated. This gives a set of edges, whose lengths are calculated and used as graph
weights. A minimum spanning tree is built over this graph. The desired number of nodes is reached by pruning the minimum
spanning tree connecting the initial number of nodes, where free edges whose weights are the largest are iteratively removed
from the tree. The other approach, the cutting method, removes longest edges off the initial minimum spanning tree, regardless

of whether they are free or not.

Results. Unlike the pruning method, the method of cutting longest edges may result in a minimum spanning tree
connecting fewer nodes than the desired number. However, the cutting method often outputs a shorter tree, especially when the
edge length varies much. Besides, the cutting method is slower due to it iteratively rebuilds a minimum spanning tree.

Conclusions. The problem is initially solved by the pruning method. Then the cutting method is used and its solution is
compared to the solution by the pruning method. The best tree is shorter. A tradeoff for the nodes and tree length is possible.

Keywords: minimum spanning tree, triangulation; edge lengths,; pruning the tree, cutting longest edges.

1. Available node constraint

In many tasks of designing efficient transportation
and telecommunication networks, the number of
available network nodes is less than the total number of
nodes [1], [2]. For a rational allocation problem, in
other words, there are more possible (recipient)
locations than factually active tools to be settled to
those locations to further satisfy consumers. Such
problems are solved by using minimum spanning trees
to ensure efficient coverage with the minimum of cost
[3], [4]. In particular, article [5] considered a problem
of building a minimum spanning tree connecting a
given number of the nodes, which can be less than the
cardinality of the initial set of planar nodes. This
problem was suggested to solve by using the Delaunay
triangulation [6], [7] and an iterative procedure in order
to connect the desired number of nodes. In more detail,
the set of edges is obtained via a Delaunay triangulation
performed over the initial set of nodes. Then distances
between every pair of the nodes in respective edges are
calculated. These distances being the lengths of the
respective edges are used as graph weights, and a
minimum spanning tree is built over this graph. It is
obvious that this problem is always solved if the desired
number of nodes (the number of available recipient

nodes) is equal to the number of initially given nodes. If
there is an available node constraint, i. e. the number of
available nodes is lesser, the maximal edge length is
found and the edges of the maximal length are excluded
while the number of minimum spanning tree nodes is
greater than the desired number of nodes. However, this
problem may be not solved to an exact number of
available nodes, and the eventual number of tree nodes
will be less than desired. Even when the root node is
changed by selecting it from the missing nodes, it does
not ensure the exact solution. In this case, the number
of available nodes may be either decreased or increased
just by 1, but this adjustment is not always possible.

2. Goals and tasks to achieve it

Given a set of N planar points (nodes), primarily
not connected with edges, the goal is to build a
minimum spanning tree connecting a given number M
of the points, where M <N . To achieve the goal,
obtaining a set of edges is to be formalized first. Then
the minimum spanning tree built over N nodes is to be
further processed to obtain a tree over M nodes. Third,
the method from article [5] is to be applied to the
minimum spanning tree built over N nodes with a
purpose to try further shortening the total edge length.
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While it is fulfilled, the root node can be changed, but
number M is not changeable.

3. Obtaining a set of edges
A set of O edges

0 . 0
E:{Eq}q=l :{[‘]q kq ]}q:l (1)

is obtained from a set of N planar nodes
P ={lx »D5. )

where edge E, connects nodes P, and P, for
e{l,N}, kq e{l,N}, J,*k,

via the Delaunay triangulation [5]. The triangulation
performed over set (2) does not depend on number M .
However, the number of edges Q connecting planar

nodes after they are triangulated is not necessarily the
same for a given number N [5], [8], [9]. The result
depends on the shape of planar data [10], [11]. In
general, edge set (1) and its cardinality Q depend on

the topology [12] of the initial set of planar nodes (2).
4. Pruning minimum spanning trees
In edge set (1), the length of edge E, is calculated

using the common Euclidean metric in R”:

o (B ) =[x, x5 ) + (v, 0 ) =

=1.(E,) for ¢=10. (3)
It is quite clear that lengths
{ZRZ (Eq )}il 4)

can be used as weights for any graph containing
respective edges from set (1). So, length (3) is the
weight of edge E . A minimum spanning tree for the

graph with edges (1) and their respective weights (3)
contains N —1 edges [1], [3], [13], [14]
EMST) _ {E(MST)}N’I cE (5)

n=1

whose respective weights are
MsT)y )\ V! 0
{ZRZ (E” )}n:l < {ZR: (Eq )}q=l ’ (6)
where edge E™" connects nodes P, and P, for

e{l,_N}, kne{l,_N}, Jj. =k,

As the task is to build a minimum spanning tree over
M nodes (i. e., the tree should be of M —1 edges), the
tree over N nodes is pruned to a tree containing M —1
edges [15], [16]. At doing this, only free edges are
removed from the tree. A free edge of the minimum
spanning tree is such that one of its two nodes belongs
only to this edge (and does not belong to any other).
Thus, such a node can be called free as well. It is easy
to see that a minimum spanning tree contains at least
two free edges. In this case, the tree is just a polyline
having no branching. Commonly a minimum spanning
tree has more than two free edges (Fig. 1).

Fig. 1. A minimum spanning tree of 35 edges connecting
36 nodes by 7 free edges (whose free nodes have numbers
1,5,9, 18, 32, 34, 35); altogether there are O =97 edges

after the triangulation (they are shown with thinner line)

To solve the problem with the available node
constraint, N —M free edges should be removed from
the tree. Denote the set of free edges by

F={F} ={lj, kI, <E™", ()

where either node P, or P, belongs only to edge F, .
Obviously, no pruning is required if M = N ; otherwise,
temporary denotations

N =N,

* * N'-1
E(MST) :{E;MST) } :E(MST) cE ,

n=1

F={F} =F ®)

u
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are done, and
)

free edges whose weights are the largest are removed
from the tree:

C” =min{N"-M, U}

(MST)*(obs) __ 7+(MST)*
E =F

b

(MST)* __ ~(MST)*(obs) *
E _E \{F’}er by

X

W =arg max Lo (FU ) and
U(Obs) — U , U — U(Obs) _1 ,
F*(obs) :F* ’ F* _ F*(obs) \{F:} , (10)
where operations (10) are repeated C*” times, and only
one free edge u €W is removed at once (even if there
are multiple free edges whose weights are maximal).
If the pruned tree still has more edges than M —1
(i.e. N'>M), it is pruned further. Set (7) as F' is
found again, and C* free edges by (9) are removed by

subroutine (10). This routine is executed until N* =M .
An example of optimally connecting 32 nodes out of
36 nodes from Fig. 1 is presented in Fig. 2, where 4 free
edges are removed in one round of pruning by
(7) — (10). Here and below the removed edges are
shown with dashed thinner line. If the available node

Fig. 2. The pruned minimum spanning tree
from Fig. 1 for M =32, where 4 free edges
(whose free nodes have numbers 1, 5, 34, 35)
are removed in one round of pruning by (7) — (10)

constraint is made severer, another round of pruning is
required. Fig. 3 presents the solution for M =27, for
which 9 free edges are removed in two rounds. This is
so because primarily there are only 7 free edges (see
back Fig. 1), and pruning in one round cannot solve the
problem. The pruned minimum spanning tree after the
first round contains 4 free edges whose free nodes have
numbers 3, 17, 23, 24. The edges with free nodes 3
(connected with node 15) and 23 (connected with node
7) are shorter (the axes here are scaled almost equally)
than the edges with free nodes 17 (connected with node
11) and 24 (connected with node 33), and therefore the
latter two edges are removed. Surely, when the number
of desired nodes is decreased down to 25, i. e. 11 edges
are to be removed from the tree in Fig. 1, the edges with
free nodes 3 and 23 are removed at the second round
(along with the edges with free nodes 17 and 24), and
the problem is solved in two pruning rounds as well

(Fig. 4).

Fig. 3. The pruned minimum spanning tree
from Fig. 1 for M =27, where 9 free edges
are removed in two rounds of pruning
(first 7 free edges whose free nodes have numbers 1, 5, 9,
18, 32, 34, 35 are removed, and then 2 free edges whose
free nodes have numbers 17, 24 are removed)

The total edge length is 332.2455 of the pruned tree
in Fig. 4. It is noticeable that, at the second round of
pruning, the free edge connecting nodes 23 and 7 is
much shorter than, say, the non-free edge connecting
nodes 33 and 30. So why do we remove the shorter



Fig. 4. The pruned minimum spanning tree
from Fig. 1 for M =25, where 11 free edges
are removed in two rounds of pruning
(first 7 free edges whose free nodes have numbers 1, 5, 9,
18, 32, 34, 35 are removed, and then 4 free edges whose
free nodes have numbers 3, 17, 23, 24 are removed)

edge instead of removing the much longer one? This is
so because, along with minimizing the total edge
length, the pruned tree must cover the nodes fairly
enough. For example, as nodes 34 and 35 are removed,
removing the non-free edge with node 33 would make it
far harder to get to farther nodes 34 and 35 (by ending
at node 30). To the contrary, the shorter free edge with
node 23 is removed, and it is far easier to get to node 32
(by ending at node 7). The latter version of the pruned
tree has a greater total edge length, though. However,
pruning by (7) — (10) contains a tradeoff for the sake
of not losing the fair coverage.

5. Cutting longest edges

The pruning method is juxtaposed with article [5]
which suggested to remove (cutting) longest edges off
the set of all edges (1) right after the triangulation while
the minimum spanning tree has more than M —1 edges.
According with article [5], temporary denotations

N'=N.0'=0. E=(E}] -E.

I;Z(Eq):le(Eq) for qzﬁ (11)

are done for the case of inequality M <N, and the
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following two-step routine is executed while the
number of nodes connected by edges in the minimum
spanning tree is greater than M (i. e., while N” > M).
At the first step, the edges whose length is maximal are
excluded (cut off) from set £ :

E™=E" | E =E“N\[E,}
by H =arg mgl;;z (E;) .

q=1,0"

heH

(12)

At the second step, the respective edge weights
(distances) are excluded from the set of distances

(. (5, (13)

by

0 =0, O :‘{1’ Q*(obs)}\H‘ , (14)
whence a new set of edge weights (13) is formed. Then
a minimum spanning tree is found for the graph with
new edges (12) and their respective weights (13). In
general, it is unlikely to have multiple edges of
maximal length, and thus set H is a singleton. To make
the routine stricter, only one edge of maximal length is
excluded from set E". Therefore, update (14) is to be
re-written as

Q™ =0, 0 =0"" -1, (15)

whereupon the while condition N >M is checked
again.

Unlike the pruning method, cutting longest edges
does not always solve the available node constraint
problem. Nevertheless, it may outperform: Fig. 5 shows

25
29
3 —

Fig. 5. Cutting longest edges from Fig. 1 for M =25
produces a shorter spanning tree than that in Fig. 4
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the result of applying the method of cutting longest
edges to the problem with 25 available nodes out of 36
(see Fig. 1 and Fig. 4, where the scaling in Fig. 5 is
maintained the same). Compared to the solution in
Fig. 4, cutting longest edges produces a shorter
spanning tree, whose total edge length is 254.0223,
which is 23.5438 % less than the total edge length of
the pruned tree in Fig. 4. This is indeed a huge
difference, but the coverage is not fair here. Although
the connection with node 5 is lost by both methods, a
big subset of neighbouring nodes in southeast is lost
while longest edges are cut off. In fact, these 10 nodes
are 34, 31, 29, 25, 16, 27, 30, 33, 24, 35. In spite of the
huge gain, the solution by cutting longest edges may be
unacceptable in some real-world tasks of coverage with
constraints due to the solution is kind of biased.
Otherwise, when any biases matter not that much, the
method of cutting longest edges may significantly
outperform the pruning method.

Another merit of cutting longest edges is applicable
to solving the available node constraint problem
approximately (if approximation is admissible at all).
Consider a problem with an initial set of 800 nodes,
where only a half is available. The pruning method
solves this problem with the total edge length of
1354.1323 (Fig. 6). The method of cutting longest
edges does not solve this problem, whichever root node
is selected. A minimum spanning tree nonetheless is
built over 398 nodes (Fig. 7). Its total edge length is
1115.6912, which is 17.6084 % less than the total edge
length of the pruned tree in Fig. 6. Thus, it appears that
“turning off” just two nodes leads to a gigantic
shortening of the length (that is surely connected with
the cost of coverage). Why does it happen, anyway?
The matter is, in this particular example, many short
free edges are removed by pruning, whereas cutting
longest edges avoids removing short edges. In this way,
this method can be more efficient than pruning.

Fig. 6. The pruned minimum spanning tree over an initial set of 800 nodes, where the total edge length is 1354.1323
for M =400 (exactly a half of the initial nodes is removed)
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Fig. 7. Cutting longest edges from the initial edge set in Fig. 6 for A/ =398 results in a 17.6084 % shorter spanning tree
than that in Fig. 6 (“turning off” just two nodes leads to a gigantic shortening of the total edge length)

The best way is to use both methods. The initial tree
is pruned first and the total edge length of the pruned
tree is found. Then the set of all edges (1) is tried by
cutting longest edges off it right after the triangulation
while the minimum spanning tree has more than M —1
edges. If the cutting results in a tree covering exactly
M nodes and its total edge length is less than that of
the pruned tree, then this tree is a solution. Otherwise,
when the cutting results in a tree covering less than M
nodes or its total edge length is greater than that of the
pruned tree, the pruned tree is a solution. The case of a
tie is still possible, when both trees have the same total
edge length. Then an additional criterion must be
introduced to select the better tree. The fair coverage
can be such a criterion [17], [18].

6. Discussion

Although the pruning method is significantly faster,
it may fail to produce the shortest possible tree. This
property vanishes as number M is decreased with

respect to the number of initial nodes (i.e., as difference
N —M becomes bigger). Moreover, the volume of the
initial node set does not seem to affect much the
possible successfulness of the method of cutting longest
edges. Thus, an example is shown in Fig. 8, where the
total edge length of the pruned tree is 814.5889, but it is
778.3002 upon having cut longest edges. So, the cutting
solving this particular problem exactly results in a
4.4549 % shorter tree. A huger example with 1172
initial nodes, wherein 1128 nodes are available (44
nodes are redundant), is solved by pruning to a tree
whose total edge length is 1984.293, but the cutting
results in an exact solution with a tree whose total edge
length is 1957.8496 being 1.3326 % shorter. In another
example of the same volume, where the number of
redundant nodes is doubled, the pruning results in a tree
whose total edge length is 1865.0095, but the cutting
results in an exact solution with a tree whose total edge
length is 1837.7613 being 1.461 % shorter. This means
that the gain by applying the cutting can be very
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significant even for voluminous node sets and big (Fig. 9), whereas the cutting results in an exact solution
differences N —M . In a third example for N =1172, with a tree whose total edge length is 1842.5508 being
M =1084, the pruned tree has the length of 1881.6969  2.0804 % shorter (Fig. 10).

\ —

Fig. 8. The pruned tree (left) and a 4.4549 % shorter spanning tree (right) upon cutting longest edges (N =86, M =81)

Fig. 9. The pruned tree for another example of N =1172 and M =1084 whose total edge length is 1881.6969



In these examples, the initial node set is generated
by drawing random values from uniform and normal
distributions, where the values distributed uniformly are
added to the values distributed normally, and the latter
are multiplied by a factor so that the part of the normal
distribution is less than the part of the uniform
distribution. The bigger the part of the normal
distribution, the greater the difference is between the
shortest and the longest edges. This might imply that
the cutting method would fail more as the normal
distribution part is increased (or, in other words, the
uniform distribution part is decreased). However, it is
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not always so. Fig. 11 presents the pruned tree for a
problem with 1600 nodes, among which 100 nodes are
unavailable. The tree whose total edge length is
1977.0938 resembles a square shape (just as the initial
node set) because the normal distribution part here is
decreased compared to the set in Fig. 9. Nevertheless,
the cutting method solving this problem exactly results
in a spanning tree whose total edge length is 2013.8545
being 1.8593 % longer (Fig. 12). Therefore, the pruning
method surely can significantly outperform even when
the edge length does not vary much (i. e., the normal
distribution part is lesser).

Fig. 10. Cutting longest edges from the initial edge set of 1172 nodes for M =1084 results in a tree
covering exactly 1084 nodes; the total edge length of the tree is 1842.5508 which is 2.0804 % shorter
than that in Fig. 9 (it is noticeable that too long edges on the boundaries of the initial node set shape have been cut off)

The cutting method not necessarily producing an
exact solution, often outputs a very good
approximation. In another example with 1600 nodes,
among which 100 nodes are unavailable, the pruned
tree covering 1500 nodes has the length of 2911.3346,
but the cutting method results in a spanning tree over
1499 nodes. This tree total edge length is 2801.7781,
which is 3.7631 % shorter. In a one more example of
the same volume, the pruned tree covering 1500 nodes
has the length of 2867.4715, and the cutting method
once again results in a spanning tree over 1499 nodes
with the total edge length of 2712.4066. This time the
gain is 5.4077 %, which seems really admissible to
concede just one node.

The gain can be huger, though. A problem with an
initial set of 1600 nodes, among which 1400 nodes are
available, is solved by the pruning method to a tree
whose total edge length is 2624.9907 (Fig. 13).
Meanwhile, the cutting method produces a tree whose
total edge length is 2318.3744 being 11.6807 % shorter,
although the tree covers just a node less (Fig. 14). This
is a gigantic gain if “turning off” a one node
additionally is admitted. Besides, it is worth noting that
the normal distribution part in this example is far bigger
compared to the previous examples. The initial node set
has a circular shape, and the edge length varies more
severely (this is distinctly seen in Fig. 13). The cutting
method thus shortens the edge length variation.
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Fig. 11. The pruned tree of a 1977.0938 length over a square-shaped set of 1600 nodes with 100 unavailable nodes
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Fig. 12. A spanning tree of a 2013.8545 length upon cutting longest edges over the square-shaped set of 1600 nodes
in Fig. 11 with 100 unavailable nodes (it is an exact solution, but the tree is 1.8593 % longer than that in Fig. 11)
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Fig. 13. The pruned tree of a 2624.9907 length for a problem with 1400 available nodes out of 1600

) &.
Fig. 14. A tree covering 1399 nodes (a node less) by the cutting method; it is 11.6807 % shorter than the tree in Fig. 13

The cutting method seems tending to solve the
available node constraint problem exactly if there are
just a few unavailable nodes. Thus, for another problem
with 1600 initial nodes, among which only two nodes

are unavailable, both methods produce the exact
solution — a spanning tree of a 2136.3556 length. Here,
however, the cutting method is about as twice as slower
than the pruning method. The slowdown can be even
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more significant. Thus, a pruned tree of a 1948.1791
length (Fig. 15) for a problem with 1500 available

nodes out of 1600 is found about 4.77 times faster than
a spanning tree by the cutting method (Fig. 16).

Fig. 15. The pruned tree of a 1948.1791 length for a problem with 1500 available nodes out of 1600
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Fig. 16. A tree covering 1500 nodes by the cutting method; found by 4.77 times slower, it is 1.3433 % longer (Fig. 15)



Overall, the cutting method slowdown is caused by
the cutting method requires rebuilding a minimum
spanning tree while N >M , whereas the pruning
method operates on the same tree built at the start of the
solution process. Nevertheless, as the part of the normal
distribution is bigger and difference N —M is smaller,
the slowdown becomes smaller. Besides, the cutting
method in such cases usually provides shorter trees,
although the coverage may lack for a few nodes (but

difference M — N is still not that big). As difference
N-M is increased, difference M —N" grows on
average.

7. Conclusion

The available node constraint problem aims at
building an optimally minimum spanning tree to
connect a given number of planar nodes being less than
an initial number of nodes by minimizing the tree
length. The suggested pruning method allows reaching
the desired number of nodes by pruning the minimum
spanning tree connecting the initial number of nodes,
where free edges whose weights are the largest are
iteratively removed from the tree. The other approach,
the cutting method, relies on removing longest edges
off the initial minimum spanning tree, regardless of
whether they are free or not [15], [19]. This process
iteratively lasts while the rebuilt minimum spanning
tree connects more than the desired number of nodes.
Eventually, unlike the pruning method, the method of
cutting longest edges may result in a minimum
spanning tree connecting fewer nodes than the desired
number.

However, the cutting method often outputs a shorter
tree, especially when the edge length varies much.
Therefore, the available node constraint problem is
initially solved by the pruning method. Then the cutting
method is used and its solution is compared to the
solution by the pruning method. If the cutting method
solution has the same number of nodes and its tree
length is less than that of the pruned tree, then the
cutting method solution tree is a solution to the
available node constraint problem. If the cutting method
solution tree connects fewer nodes than the desired
number, the further matter is the relationship between
the lengths of the trees produced by the methods. When
the pruning method tree is shorter (or not longer,
generally speaking), it is the final solution. Otherwise,
the cutting method tree is shorter, although connecting
not exactly the given number of nodes. So then a
tradeoff for the nodes and tree length must be made, if
“turning off” the respective number of nodes is
admitted. In such a case, for instance, dropping
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connection to just a few nodes can be more favourable
by shortening the tree, if the length shortening
percentage is greater than the percentage of the
disconnected nodes [17], [20], [21].

Obviously, the research must be furthered by
profoundly studying statistics of how both the methods
perform on datasets whose edge length variation range
is changeable. In this way, the slowdown of the cutting
method along with its performance is to be estimated on
average versus the edge length variation range and the
ratio of the desired nodes to the number of initially
given nodes. In addition, the tradeoff must be
formulated stricter in order to automatically select the
best tree, when the cutting method tree is shorter but it
connects fewer nodes than the desired number.
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IMigpizanHs MiHIMAJBHHX CIIOJIYYHMX /[epeB Ta BiApi3aHHS HaligoBIIMX pebep ISl CHOJYYEHHSI AAHOI
KiJIbKOCTI BY3J1iB Npu MiHiMi3anii 3arajibHoi 10B:KUHH pedep
IIpobaemaTuka. YV 0araThoX 3aBIaHHSX NPOEKTYBAHHS €(EKTHUBHUX TEICKOMYHIKAIIHHUX MEpeX KiTbKICTh BY3JiB

MEpexi € 00MEKEHO0, aye BUOIp BY3JIB € ImupmmM. [IJisi MOJaibIIoro 3a0BOJICHHS CIIOKHBAYiB (DaKTHYHO iCHY€E OLIbIIe
MOTEHIIITHUX MICIIb PO3TAIIYBaHHS, HiXK HAsBHUX 3aC00IB I iX pO3MINICHHS y X MicisX. Lle Mpu3BOANTh 10 BUHUKHCHHS
3amadi 3 00MEKCHHSM JTOCTYITHHX BY3JiB.

Meta pocaimkennsi. [[is qaHOT MTOYAaTKOBOT MHOXKWHH BY3IIB Ha IUIONIMHI 3a/1ada IOJATAE Y MOOYIOBI MiHIMAIbHOTO
CTIOJIyYHOTO JIEPeBa, 10 TIOETHYE 3a/1aHy KiJIbKICTh BY3JiB, KOTpa € MEHIIOIO 32 KiJIbKICTh €IEMEHTIB TIOYaTKOBOI MHOYKHHHU.
Tomy 3amada 3 0OMEKEHHSAM JTOCTYIIHUX BY3JB Ma€ Ha METi MOOYJIOBY ONTHMAIbHO MIHIMAJBHOTO CIIOTYYHOTO JepeBa LIS
CIIOJIYYCHHSI 3a]aHOT0 YKCIa BY3JIiB HA IUIOIIKHI, [0 € MEHIIIMM 3a TI0YaTKOBE YMCJIO BY3JIiB, 3a MiHIMI3allii JOBKHHH IIbOTO
JiepeBa.

Metoauka peadizamii. BUKOHYETBCSI TPUAHTYIIAIS MOYaTKOBOT MHOKMHM BY3miB. Lle nae Habip pebep, umi JOBKHHU
OOYNCITIOIOTECS 1 BUKOPUCTOBYIOTECS sIK Bard rpada. Ha mpomy rpadi OyayeTbest MiHIManbHE CHONYYHE AepeBo. bakaHa
KUTBKICTB BY3JIiB JOCATAETHCSA MiAPI3aHHAM IIbOTO MIHIMAJIBHOTO CIIOJYYHOTO JIePeBa, 3 SKOTO ITEPaTHBHO BUIASIOTHCS BiTbHI
pebpa, uni Baru € HaHOUIbIIMMHU. [HIIWHA TiAXiM, METOM BiIpi3aHHs, BUAAISE HANIOBII peOpa 3 MOYaTKOBOTO MiHIMAIIBHOTO
CTIOJIyYHOTO JiepeBa HE3aJIeKHO BiJl TOTO, YA BOHU € BUTHBHUMH.

PesyabTaTu gociaikenns. Ha BinMiHy Bift METOIy MiJpi3aHHs, METO BiJIpi3aHHS HalIOBIINX pedep MOXKE IIPU3BECTH JI0
MIHIMAJIBHOTO CIIOIYYHOTO JIepeBa, IO TO€AHYBaTHME MEHINE BY3JiB, HUK MOTpiOHO. OHAK METON BiApi3aHHSA 4acTO BHUIAE
KOpOTIIE JIEPEBO, 0COOIMBO KOJIH JIOBKHHA pedpa CHIIbHO BapitoeThes. KpiM TOro, MeTo BiZipi3aHHs € TOBUIBHIIINM Yepes Te,
110 BiH iTepaTHBHO TepeOyI0By€e MiHIMAIBHE CIIONyIHE ACPEBO.

BucnoBkn. Crnouatky 3ajava po3B’sI3ye€ThCS METOJOM minpi3aHHs. Toxi 3acTOCOBYEThCS METON Bifpi3aHHS 1 #oro
PO3B’SI30K TOPIBHIOETHCS 3 PO3B’SI3KOM 3a METOJAOM Tinpizanus. Kopotiie aepeBo € HaiikpamuM. MOKIUBHHA KOMITPOMIC
4yciIa By3JIiB 1 JIOBKHHH JIEPEBa.

Kniwowuosi cnosa: minimanvhe cnonyune oOepego, mMpuaneyisayis, 008icunu pebep, niopisanus oOepesa, 6iOpizanHs
Hatooswux peoep.





