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Background. Whereas in many tasks of designing efficient telecommunication networks, the number of network nodes is 

limited, the initial choice of nodes is wider. There are more possible locations than factually active tools to be settled to those 
locations to further satisfy consumers. This induces an available node constraint problem. 

Objective. Given an initial set of planar nodes, the problem is to build a minimum spanning tree connecting a given 
number of the nodes, which is less than the cardinality of the initial set. Therefore, the available node constraint problem aims 
at building an optimally minimum spanning tree to connect a given number of planar nodes being less than an initial number of 
nodes by minimizing the tree length.  

Methods. The initial set of nodes is triangulated. This gives a set of edges, whose lengths are calculated and used as graph 
weights. A minimum spanning tree is built over this graph. The desired number of nodes is reached by pruning the minimum 
spanning tree connecting the initial number of nodes, where free edges whose weights are the largest are iteratively removed 
from the tree. The other approach, the cutting method, removes longest edges off the initial minimum spanning tree, regardless 
of whether they are free or not. 

Results. Unlike the pruning method, the method of cutting longest edges may result in a minimum spanning tree 
connecting fewer nodes than the desired number. However, the cutting method often outputs a shorter tree, especially when the 
edge length varies much. Besides, the cutting method is slower due to it iteratively rebuilds a minimum spanning tree. 

Conclusions. The problem is initially solved by the pruning method. Then the cutting method is used and its solution is 
compared to the solution by the pruning method. The best tree is shorter. A tradeoff for the nodes and tree length is possible. 
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1. Available node constraint 
 

In many tasks of designing efficient transportation 
and telecommunication networks, the number of 
available network nodes is less than the total number of 
nodes [1], [2]. For a rational allocation problem, in 
other words, there are more possible (recipient) 
locations than factually active tools to be settled to 
those locations to further satisfy consumers. Such 
problems are solved by using minimum spanning trees 
to ensure efficient coverage with the minimum of cost 
[3], [4]. In particular, article [5] considered a problem 
of building a minimum spanning tree connecting a 
given number of the nodes, which can be less than the 
cardinality of the initial set of planar nodes. This 
problem was suggested to solve by using the Delaunay 
triangulation [6], [7] and an iterative procedure in order 
to connect the desired number of nodes. In more detail, 
the set of edges is obtained via a Delaunay triangulation 
performed over the initial set of nodes. Then distances 
between every pair of the nodes in respective edges are 
calculated. These distances being the lengths of the 
respective edges are used as graph weights, and a 
minimum spanning tree is built over this graph. It is 
obvious that this problem is always solved if the desired 
number of nodes (the number of available recipient 

nodes) is equal to the number of initially given nodes. If 
there is an available node constraint, i. e. the number of 
available nodes is lesser, the maximal edge length is 
found and the edges of the maximal length are excluded 
while the number of minimum spanning tree nodes is 
greater than the desired number of nodes. However, this 
problem may be not solved to an exact number of 
available nodes, and the eventual number of tree nodes 
will be less than desired. Even when the root node is 
changed by selecting it from the missing nodes, it does 
not ensure the exact solution. In this case, the number 
of available nodes may be either decreased or increased 
just by 1, but this adjustment is not always possible. 

 

2. Goals and tasks to achieve it 
 

Given a set of N  planar points (nodes), primarily 
not connected with edges, the goal is to build a 
minimum spanning tree connecting a given number M  
of the points, where M N . To achieve the goal, 
obtaining a set of edges is to be formalized first. Then 
the minimum spanning tree built over N  nodes is to be 
further processed to obtain a tree over M  nodes. Third, 
the method from article [5] is to be applied to the 
minimum spanning tree built over N  nodes with a 
purpose to try further shortening the total edge length. 
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While it is fulfilled, the root node can be changed, but 
number M  is not changeable. 

 

3. Obtaining a set of edges 
 

A set of Q  edges 

    1 1

Q Q
q q qq q

E j k
 

    E  (1) 

is obtained from a set of N  planar nodes 

     1 1
NN

i i ii ix y P , (2) 

where edge qE  connects nodes 
qj

P  and 
qkP  for  

 1,qj N ,  1,qk N , q qj k ,  

via the Delaunay triangulation [5]. The triangulation 
performed over set (2) does not depend on number M . 
However, the number of edges Q  connecting planar 
nodes after they are triangulated is not necessarily the 
same for a given number N  [5], [8], [9]. The result 
depends on the shape of planar data [10], [11]. In 
general, edge set (1) and its cardinality Q  depend on 
the topology [12] of the initial set of planar nodes (2). 

 

4. Pruning minimum spanning trees 
 

In edge set (1), the length of edge qE  is calculated 

using the common Euclidean metric in : 

 

  for 1,q Q . (3) 

It is quite clear that lengths  

  (4) 

can be used as weights for any graph containing 
respective edges from set (1). So, length (3) is the 
weight of edge qE . A minimum spanning tree for the 
graph with edges (1) and their respective weights (3) 
contains 1N   edges [1], [3], [13], [14] 

   1(MST) (MST)
1

N
n n

E E


 E  (5) 

whose respective weights are 

 , (6) 

where edge (MST)
nE  connects nodes 

nj
P  and 

nkP  for  

 1,nj N ,  1,nk N , n nj k . 

As the task is to build a minimum spanning tree over 
M  nodes (i. e., the tree should be of 1M   edges), the 
tree over N  nodes is pruned to a tree containing 1M   
edges [15], [16]. At doing this, only free edges are 
removed from the tree. A free edge of the minimum 
spanning tree is such that one of its two nodes belongs 
only to this edge (and does not belong to any other). 
Thus, such a node can be called free as well. It is easy 
to see that a minimum spanning tree contains at least 
two free edges. In this case, the tree is just a polyline 
having no branching. Commonly a minimum spanning 
tree has more than two free edges (Fig. 1). 
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Fig. 1. A minimum spanning tree of 35 edges connecting 
36 nodes by 7 free edges (whose free nodes have numbers 
1, 5, 9, 18, 32, 34, 35); altogether there are 97Q   edges 
after the triangulation (they are shown with thinner line) 

 
To solve the problem with the available node 

constraint, N M  free edges should be removed from 
the tree. Denote the set of free edges by 

      (MST)
1 1

UU
u u uu uF j k E   F , (7) 

where either node 
uj

P  or 
ukP  belongs only to edge uF . 

Obviously, no pruning is required if M N ; otherwise, 
temporary denotations 

*N N ,  

 
* 1(MST)* (MST)* (MST)
1

N
n n

E E E


  E ,  

  * *
1

U
u u

F F


 F  (8) 
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are done, and  

  ( ) *min ,C N M U    (9) 

free edges whose weights are the largest are removed 
from the tree: 

(MST)*(obs) (MST)*E E ,  
 (MST)* (MST)*(obs) *\ x x W

E E


 F  by  

 and  
(obs)U U , (obs) 1U U  ,  

 *(obs) *F F ,  * *(obs) *\ xF F F , (10) 

where operations (10) are repeated ( )C   times, and only 
one free edge u W  is removed at once (even if there 
are multiple free edges whose weights are maximal).  
If the pruned tree still has more edges than 1M    
(i. e. *N M ), it is pruned further. Set (7) as *F  is 
found again, and ( )C   free edges by (9) are removed by 
subroutine (10). This routine is executed until *N M . 

An example of optimally connecting 32 nodes out of 
36 nodes from Fig. 1 is presented in Fig. 2, where 4 free 
edges are removed in one round of pruning by  
(7) — (10). Here and below the removed edges are 
shown with dashed thinner line. If the available node  
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Fig. 2. The pruned minimum spanning tree  
from Fig. 1 for 32M  , where 4 free edges  

(whose free nodes have numbers 1, 5, 34, 35)  
are removed in one round of pruning by (7) — (10) 

constraint is made severer, another round of pruning is 
required. Fig. 3 presents the solution for 27M  , for 
which 9 free edges are removed in two rounds. This is 
so because primarily there are only 7 free edges (see 
back Fig. 1), and pruning in one round cannot solve the 
problem. The pruned minimum spanning tree after the 
first round contains 4 free edges whose free nodes have 
numbers 3, 17, 23, 24. The edges with free nodes 3 
(connected with node 15) and 23 (connected with node 
7) are shorter (the axes here are scaled almost equally) 
than the edges with free nodes 17 (connected with node 
11) and 24 (connected with node 33), and therefore the 
latter two edges are removed. Surely, when the number 
of desired nodes is decreased down to 25, i. e. 11 edges 
are to be removed from the tree in Fig. 1, the edges with 
free nodes 3 and 23 are removed at the second round 
(along with the edges with free nodes 17 and 24), and 
the problem is solved in two pruning rounds as well 
(Fig. 4).  
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Fig. 3. The pruned minimum spanning tree  
from Fig. 1 for 27M  , where 9 free edges  

are removed in two rounds of pruning  
(first 7 free edges whose free nodes have numbers 1, 5, 9, 
18, 32, 34, 35 are removed, and then 2 free edges whose 

free nodes have numbers 17, 24 are removed) 
 
The total edge length is 332.2455 of the pruned tree 

in Fig. 4. It is noticeable that, at the second round of 
pruning, the free edge connecting nodes 23 and 7 is 
much shorter than, say, the non-free edge connecting 
nodes 33 and 30. So why do we remove the shorter  
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Fig. 4. The pruned minimum spanning tree  
from Fig. 1 for 25M  , where 11 free edges  

are removed in two rounds of pruning  
(first 7 free edges whose free nodes have numbers 1, 5, 9, 
18, 32, 34, 35 are removed, and then 4 free edges whose 

free nodes have numbers 3, 17, 23, 24 are removed) 
 

edge instead of removing the much longer one? This is 
so because, along with minimizing the total edge 
length, the pruned tree must cover the nodes fairly 
enough. For example, as nodes 34 and 35 are removed, 
removing the non-free edge with node 33 would make it 
far harder to get to farther nodes 34 and 35 (by ending 
at node 30). To the contrary, the shorter free edge with 
node 23 is removed, and it is far easier to get to node 32 
(by ending at node 7). The latter version of the pruned 
tree has a greater total edge length, though. However, 
pruning by (7) — (10) contains a tradeoff for the sake 
of not losing the fair coverage. 

 

5. Cutting longest edges 
 

The pruning method is juxtaposed with article [5] 
which suggested to remove (cutting) longest edges off 
the set of all edges (1) right after the triangulation while 
the minimum spanning tree has more than 1M   edges. 
According with article [5], temporary denotations  

*N N , *Q Q ,  
*

* *
1

Q
q q

E E


 E ,  

  for *1,q Q  (11) 

are done for the case of inequality M N , and the 

following two-step routine is executed while the 
number of nodes connected by edges in the minimum 
spanning tree is greater than M  (i. e., while *N M ). 
At the first step, the edges whose length is maximal are 
excluded (cut off) from set *E : 

*(obs) *E E ,  * *(obs) *\ h h H
E E


 E   

 by . (12) 

At the second step, the respective edge weights 
(distances) are excluded from the set of distances  

  (13) 

by 

 *(obs) *Q Q ,  * *(obs)1, \Q Q H , (14) 

whence a new set of edge weights (13) is formed. Then 
a minimum spanning tree is found for the graph with 
new edges (12) and their respective weights (13). In 
general, it is unlikely to have multiple edges of 
maximal length, and thus set H  is a singleton. To make 
the routine stricter, only one edge of maximal length is 
excluded from set *E . Therefore, update (14) is to be 
re-written as  

 *(obs) *Q Q , * *(obs) 1Q Q  , (15) 

whereupon the while condition *N M  is checked 
again. 

Unlike the pruning method, cutting longest edges 
does not always solve the available node constraint 
problem. Nevertheless, it may outperform: Fig. 5 shows  
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Fig. 5. Cutting longest edges from Fig. 1 for 25M   
produces a shorter spanning tree than that in Fig. 4 
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the result of applying the method of cutting longest 
edges to the problem with 25 available nodes out of 36 
(see Fig. 1 and Fig. 4, where the scaling in Fig. 5 is 
maintained the same). Compared to the solution in 
Fig. 4, cutting longest edges produces a shorter 
spanning tree, whose total edge length is 254.0223, 
which is 23.5438 % less than the total edge length of 
the pruned tree in Fig. 4. This is indeed a huge 
difference, but the coverage is not fair here. Although 
the connection with node 5 is lost by both methods, a 
big subset of neighbouring nodes in southeast is lost 
while longest edges are cut off. In fact, these 10 nodes 
are 34, 31, 29, 25, 16, 27, 30, 33, 24, 35. In spite of the 
huge gain, the solution by cutting longest edges may be 
unacceptable in some real-world tasks of coverage with 
constraints due to the solution is kind of biased. 
Otherwise, when any biases matter not that much, the 
method of cutting longest edges may significantly 
outperform the pruning method. 

Another merit of cutting longest edges is applicable 
to solving the available node constraint problem 
approximately (if approximation is admissible at all). 
Consider a problem with an initial set of 800 nodes, 
where only a half is available. The pruning method 
solves this problem with the total edge length of 
1354.1323 (Fig. 6). The method of cutting longest 
edges does not solve this problem, whichever root node 
is selected. A minimum spanning tree nonetheless is 
built over 398 nodes (Fig. 7). Its total edge length is 
1115.6912, which is 17.6084 % less than the total edge 
length of the pruned tree in Fig. 6. Thus, it appears that 
“turning off” just two nodes leads to a gigantic 
shortening of the length (that is surely connected with 
the cost of coverage). Why does it happen, anyway? 
The matter is, in this particular example, many short 
free edges are removed by pruning, whereas cutting 
longest edges avoids removing short edges. In this way, 
this method can be more efficient than pruning. 

 
Fig. 6. The pruned minimum spanning tree over an initial set of 800 nodes, where the total edge length is 1354.1323  

for 400M   (exactly a half of the initial nodes is removed) 
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Fig. 7. Cutting longest edges from the initial edge set in Fig. 6 for 398M   results in a 17.6084 % shorter spanning tree 

than that in Fig. 6 (“turning off” just two nodes leads to a gigantic shortening of the total edge length) 

The best way is to use both methods. The initial tree 
is pruned first and the total edge length of the pruned 
tree is found. Then the set of all edges (1) is tried by 
cutting longest edges off it right after the triangulation 
while the minimum spanning tree has more than 1M   
edges. If the cutting results in a tree covering exactly 
M  nodes and its total edge length is less than that of 
the pruned tree, then this tree is a solution. Otherwise, 
when the cutting results in a tree covering less than M  
nodes or its total edge length is greater than that of the 
pruned tree, the pruned tree is a solution. The case of a 
tie is still possible, when both trees have the same total 
edge length. Then an additional criterion must be 
introduced to select the better tree. The fair coverage 
can be such a criterion [17], [18]. 

 

6. Discussion 
 

Although the pruning method is significantly faster, 
it may fail to produce the shortest possible tree. This 
property vanishes as number M  is decreased with 

respect to the number of initial nodes (i.e., as difference 
N M  becomes bigger). Moreover, the volume of the 
initial node set does not seem to affect much the 
possible successfulness of the method of cutting longest 
edges. Thus, an example is shown in Fig. 8, where the 
total edge length of the pruned tree is 814.5889, but it is 
778.3002 upon having cut longest edges. So, the cutting 
solving this particular problem exactly results in a 
4.4549 % shorter tree. A huger example with 1172 
initial nodes, wherein 1128 nodes are available (44 
nodes are redundant), is solved by pruning to a tree 
whose total edge length is 1984.293, but the cutting 
results in an exact solution with a tree whose total edge 
length is 1957.8496 being 1.3326 % shorter. In another 
example of the same volume, where the number of 
redundant nodes is doubled, the pruning results in a tree 
whose total edge length is 1865.0095, but the cutting 
results in an exact solution with a tree whose total edge 
length is 1837.7613 being 1.461 % shorter. This means 
that the gain by applying the cutting can be very 
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significant even for voluminous node sets and big 
differences N M . In a third example for 1172N  , 

1084M  , the pruned tree has the length of 1881.6969 

(Fig. 9), whereas the cutting results in an exact solution 
with a tree whose total edge length is 1842.5508 being 
2.0804 % shorter (Fig. 10). 

     
Fig. 8. The pruned tree (left) and a 4.4549 % shorter spanning tree (right) upon cutting longest edges ( 86N  , 81M  ) 

 
Fig. 9. The pruned tree for another example of 1172N   and 1084M   whose total edge length is 1881.6969 
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In these examples, the initial node set is generated 
by drawing random values from uniform and normal 
distributions, where the values distributed uniformly are 
added to the values distributed normally, and the latter 
are multiplied by a factor so that the part of the normal 
distribution is less than the part of the uniform 
distribution. The bigger the part of the normal 
distribution, the greater the difference is between the 
shortest and the longest edges. This might imply that 
the cutting method would fail more as the normal 
distribution part is increased (or, in other words, the 
uniform distribution part is decreased). However, it is 

not always so. Fig. 11 presents the pruned tree for a 
problem with 1600 nodes, among which 100 nodes are 
unavailable. The tree whose total edge length is 
1977.0938 resembles a square shape (just as the initial 
node set) because the normal distribution part here is 
decreased compared to the set in Fig. 9. Nevertheless, 
the cutting method solving this problem exactly results 
in a spanning tree whose total edge length is 2013.8545 
being 1.8593 % longer (Fig. 12). Therefore, the pruning 
method surely can significantly outperform even when 
the edge length does not vary much (i. e., the normal 
distribution part is lesser). 

 
Fig. 10. Cutting longest edges from the initial edge set of 1172 nodes for 1084M   results in a tree  

covering exactly 1084 nodes; the total edge length of the tree is 1842.5508 which is 2.0804 % shorter  
than that in Fig. 9 (it is noticeable that too long edges on the boundaries of the initial node set shape have been cut off) 

The cutting method not necessarily producing an 
exact solution, often outputs a very good 
approximation. In another example with 1600 nodes, 
among which 100 nodes are unavailable, the pruned 
tree covering 1500 nodes has the length of 2911.3346, 
but the cutting method results in a spanning tree over 
1499 nodes. This tree total edge length is 2801.7781, 
which is 3.7631 % shorter. In a one more example of 
the same volume, the pruned tree covering 1500 nodes 
has the length of 2867.4715, and the cutting method 
once again results in a spanning tree over 1499 nodes 
with the total edge length of 2712.4066. This time the 
gain is 5.4077 %, which seems really admissible to 
concede just one node.  

The gain can be huger, though. A problem with an 
initial set of 1600 nodes, among which 1400 nodes are 
available, is solved by the pruning method to a tree 
whose total edge length is 2624.9907 (Fig. 13). 
Meanwhile, the cutting method produces a tree whose 
total edge length is 2318.3744 being 11.6807 % shorter, 
although the tree covers just a node less (Fig. 14). This 
is a gigantic gain if “turning off” a one node 
additionally is admitted. Besides, it is worth noting that 
the normal distribution part in this example is far bigger 
compared to the previous examples. The initial node set 
has a circular shape, and the edge length varies more 
severely (this is distinctly seen in Fig. 13). The cutting 
method thus shortens the edge length variation. 
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Fig. 11. The pruned tree of a 1977.0938 length over a square-shaped set of 1600 nodes with 100 unavailable nodes 

 
Fig. 12. A spanning tree of a 2013.8545 length upon cutting longest edges over the square-shaped set of 1600 nodes  
in Fig. 11 with 100 unavailable nodes (it is an exact solution, but the tree is 1.8593 % longer than that in Fig. 11) 
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Fig. 13. The pruned tree of a 2624.9907 length for a problem with 1400 available nodes out of 1600 

 
Fig. 14. A tree covering 1399 nodes (a node less) by the cutting method; it is 11.6807 % shorter than the tree in Fig. 13 

The cutting method seems tending to solve the 
available node constraint problem exactly if there are 
just a few unavailable nodes. Thus, for another problem 
with 1600 initial nodes, among which only two nodes 

are unavailable, both methods produce the exact 
solution — a spanning tree of a 2136.3556 length. Here, 
however, the cutting method is about as twice as slower 
than the pruning method. The slowdown can be even 
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more significant. Thus, a pruned tree of a 1948.1791 
length (Fig. 15) for a problem with 1500 available 

nodes out of 1600 is found about 4.77 times faster than 
a spanning tree by the cutting method (Fig. 16).  

 
Fig. 15. The pruned tree of a 1948.1791 length for a problem with 1500 available nodes out of 1600 

 
Fig. 16. A tree covering 1500 nodes by the cutting method; found by 4.77 times slower, it is 1.3433 % longer (Fig. 15) 
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Overall, the cutting method slowdown is caused by 
the cutting method requires rebuilding a minimum 
spanning tree while *N M , whereas the pruning 
method operates on the same tree built at the start of the 
solution process. Nevertheless, as the part of the normal 
distribution is bigger and difference N M  is smaller, 
the slowdown becomes smaller. Besides, the cutting 
method in such cases usually provides shorter trees, 
although the coverage may lack for a few nodes (but 
difference *M N  is still not that big). As difference 
N M  is increased, difference *M N  grows on 
average. 

 

7. Conclusion 
 

The available node constraint problem aims at 
building an optimally minimum spanning tree to 
connect a given number of planar nodes being less than 
an initial number of nodes by minimizing the tree 
length. The suggested pruning method allows reaching 
the desired number of nodes by pruning the minimum 
spanning tree connecting the initial number of nodes, 
where free edges whose weights are the largest are 
iteratively removed from the tree. The other approach, 
the cutting method, relies on removing longest edges 
off the initial minimum spanning tree, regardless of 
whether they are free or not [15], [19]. This process 
iteratively lasts while the rebuilt minimum spanning 
tree connects more than the desired number of nodes. 
Eventually, unlike the pruning method, the method of 
cutting longest edges may result in a minimum 
spanning tree connecting fewer nodes than the desired 
number.  

However, the cutting method often outputs a shorter 
tree, especially when the edge length varies much. 
Therefore, the available node constraint problem is 
initially solved by the pruning method. Then the cutting 
method is used and its solution is compared to the 
solution by the pruning method. If the cutting method 
solution has the same number of nodes and its tree 
length is less than that of the pruned tree, then the 
cutting method solution tree is a solution to the 
available node constraint problem. If the cutting method 
solution tree connects fewer nodes than the desired 
number, the further matter is the relationship between 
the lengths of the trees produced by the methods. When 
the pruning method tree is shorter (or not longer, 
generally speaking), it is the final solution. Otherwise, 
the cutting method tree is shorter, although connecting 
not exactly the given number of nodes. So then a 
tradeoff for the nodes and tree length must be made, if 
“turning off” the respective number of nodes is 
admitted. In such a case, for instance, dropping 

connection to just a few nodes can be more favourable 
by shortening the tree, if the length shortening 
percentage is greater than the percentage of the 
disconnected nodes [17], [20], [21]. 

Obviously, the research must be furthered by 
profoundly studying statistics of how both the methods 
perform on datasets whose edge length variation range 
is changeable. In this way, the slowdown of the cutting 
method along with its performance is to be estimated on 
average versus the edge length variation range and the 
ratio of the desired nodes to the number of initially 
given nodes. In addition, the tradeoff must be 
formulated stricter in order to automatically select the 
best tree, when the cutting method tree is shorter but it 
connects fewer nodes than the desired number. 
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Романюк В.В. 
Підрізання мінімальних сполучних дерев та відрізання найдовших ребер для сполучення даної 

кількості вузлів при мінімізації загальної довжини ребер 
Проблематика. У багатьох завданнях проєктування ефективних телекомунікаційних мереж кількість вузлів 

мережі є обмеженою, але вибір вузлів є ширшим. Для подальшого задоволення споживачів фактично існує більше 
потенційних місць розташування, ніж наявних засобів для їх розміщення у цих місцях. Це призводить до виникнення 
задачі з обмеженням доступних вузлів. 

Мета дослідження. Для даної початкової множини вузлів на площині задача полягає у побудові мінімального 
сполучного дерева, що поєднує задану кількість вузлів, котра є меншою за кількість елементів початкової множини. 
Тому задача з обмеженням доступних вузлів має на меті побудову оптимально мінімального сполучного дерева для 
сполучення заданого числа вузлів на площині, що є меншим за початкове число вузлів, за мінімізації довжини цього 
дерева. 

Методика реалізації. Виконується триангуляція початкової множини вузлів. Це дає набір ребер, чиї довжини 
обчислюються і використовуються як ваги графа. На цьому графі будується мінімальне сполучне дерево. Бажана 
кількість вузлів досягається підрізанням цього мінімального сполучного дерева, з якого ітеративно видаляються вільні 
ребра, чиї ваги є найбільшими. Інший підхід, метод відрізання, видаляє найдовші ребра з початкового мінімального 
сполучного дерева незалежно від того, чи вони є вільними. 

Результати дослідження. На відміну від методу підрізання, метод відрізання найдовших ребер може призвести до 
мінімального сполучного дерева, що поєднуватиме менше вузлів, ніж потрібно. Однак метод відрізання часто видає 
коротше дерево, особливо коли довжина ребра сильно варіюється. Крім того, метод відрізання є повільнішим через те, 
що він ітеративно перебудовує мінімальне сполучне дерево. 

Висновки. Спочатку задача розв’язується методом підрізання. Тоді застосовується метод відрізання і його 
розв’язок порівнюється з розв’язком за методом підрізання. Коротше дерево є найкращим. Можливий компроміс 
числа вузлів і довжини дерева. 

Ключові слова: мінімальне сполучне дерево; триангуляція; довжини ребер; підрізання дерева; відрізання 
найдовших ребер. 




