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BOUNDARY PROBLEM SOLUTION FOR EIGENMODES
IN COAXIAL QUAD-RIDGED WAVEGUIDES

Fedir F. Dubrovka, Stepan I. Piltyay
National Technical University of Ukraine “Kyiv Pdgchnic Institute”, Kyiv, Ukraine

The boundary problem for eigenmodes in coaxial gidged waveguides has been solved by the trarestietd-matching tech-
nigue. The formulas obtained provide possibilit@salculate cutoff wave numbers and electric aadmstic fields distributions
of TEM, TE and TM modes in the presence of thea®dgither on the inner or on the outer perfectlydoating cylinder. The
analysis of the dependences of cutoff wave numdrediselectric field distributions convergences anriimber of partial modes
has been carried out. It has been shown that foulation of cutoff wave numbers with residual edess than 0.1 % it is enough
to utilize 27 partial modes, and for the corredtwation of fields distributions one should utdimore than 30 partial modes.

Introduction Problem statement

Ridged structures are widely used in modern wave- Configurations of hollow infinite CQRW under study
guide devices. The utilization of ridges enablesremte and denotations of their cross sectional dimensames
ultrawideband devices, to provide ultrawidebangdhown in Fig. 1, namely, the CQRW with ridges oe th
matching of hollow waveguides with coaxial transmisinner perfectly conducting cylinder is depictedHig. 1a,
sion lines and to create discontinuities of requige and the CQRW with ridges on the outer cylindehmven
in narrowband devices. Ridged structures are usedim Fig. Ib (hereinafter referred to as subscripts "in" and
filters [1—3], polarizers [4-6], waveguides [£10], an- "out" respectively).
tennas [12-13], orthomode transducers [146], lasers We will investigate only that eigenmodes, for which
[17—19], resonators [20, 21] and other devices. the CQRW vertical symmetry plan@ ¢ 0) is a magnetic

For development of the devices based on ridgawhll. Due to the symmetry of the CQRW relative lte t
structures one needs to know modal characterisfics horizontal planep=1/2, it is expedient to obtain the

ridged waveguides, namely, eigenmodes cutoff frgoundary problem solution separately for the eigsten
quencies (or cutoff wave numbers) and their fielts  with antisymmetric and symmetric relative to thine
tributions. The characteristics of ridged wavegside EFD. Consequently, the fields distributions in tagion
eigenmodes for rectangular cross-section have &een ||| will be, respectively, antisymmetric or symmietrela-
alyzed in [22-24]. The eigenmodes of square ridgegve to the distributions in the region I. The eigedes
waveguides have been investigated in [9]. Thgith symmetric relative to the plarg= 1t/ 2 EFD can be

eigenmodes of ridged waveguides for circular CB8SS  onyentionally divided into two types: 1) the eigedes
tion have been analyzed in [24]. The eigenmodes-of with symmetric EFD relative to the plage= 1t/ 4, 2) the

liptical ridged waveguides have been investigated i igenmodes with antisymmetric EFD relative to thme

[10]. The eigenmodes of rectangular coaxial ridge%_ : : . )
waveguides have been analyzed in [8]. In [25] atho =11t/ 4. For the eigenmodes with antisymmetric EFD

of this paper have solved the boundary problenséar the planed =11/2 is the electric wall, and for the
toral coaxial ridged waveguides using integral ¢igna eigenmodes with symmetric EFD it is the magnetid. wa
technique, and in [26] their eigenmodes have bean aBesides, for the eigenmodes with symmetric EFQtivela
lyzed. to the planep =11/ 2, that are also antisymmetric relative
In this paper the boundary problem solution for thg the planep =11/ 4, that plane is electric wall, for the

coaxial quad-ridged waveguides (CQRW) has been oljgenmodes, EFD of which are symmetric relativéneo
tained using transverse field-matching techniqud a lane ¢ = Tt/ 4, it is magnetic wall.

the solutions convergence analysis has been peztbr . .
for the dependences of cutoff wave numbers and elec Consequently, for the TE and the TM eigenmodes with

o P . antisymmetric EFD the boundary problem should be
:]rqlgdf;esld distributions (EFD) on the number of par solved only for the region limited by the magnetiall

@=0, by the electric wallh =11/ 2 and by perfectly con-
ducting circular cylinders with radii=a, r =b (see Fig.
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2). For the eigenmodes with symmetric EFD relative
the planed =1t/2 the boundary problem should be

solved only for the region limited by the magnetiall
@=0, and by electric or by magnetic walk= 11/ 4 (for

the eigenmodes, respectively, with antisymmetric or

symmetric EFD relative to it) and by perfectly conting
circular cylinders with radir =a, r =b (see Fig. 3).
=0 p=y/2

o= ¢=n-y/2
Magnetic wall

Magnetic wall

(b)

Fig. 1. Cross sections of coaxial quad-ridged waidss
with ridges: &) on inner conducting circular cylindel)(on
outer conducting circular cylinder.

¢=0 @=y/2

Magnetic wall

Electric wall
(@

=0 Q=y/2

Magnetic wall

Electric wall
()

Fig. 2. Computational models of coaxial quad-ridgesive-
guides with ridges:&) on inner conducting circular cylinder;
(b) on outer conducting circular cylinder.

EFD of the TEM mode are symmetric relative to not
only the planesp=0 and@=T1/2, but also relative to

the planesp=T1/4 and @=3mr/4, because all four
ridges have the same potential. Therefore for B¥ T
mode the CQRW has four magnetic walis=0; 11/ 4;
1t/ 2; 31t/ 4). Consequently, for the analysis of TEM
eigenmode it is necessary to solve boundary problem
only for the region limited by the magnetic wadjs=0,
@=T1/4 and by perfectly conducting circular cylinders
with radii r =a, r =b (see Fig. 3, in which both walls
should be chosen as magnetic ones).
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ok E/(r,¢)= iophsm[ll(n)(@-v/2)]r'1+'1(”); )
=, p=7/4 B (r,9)= ZO B,, cosl, ey 2™ ; ?)
i Ey(r.¢) = i)ph cosl, 0)@-y /21 ™ (3)
éo By (r.@)= ngo By Sinll, (M)l 2™, 4)

wherel (n) =2n(2n+1)/ (- 2 ); [,(m) =4m; A,,
B,, are unknown amplitude coefficients.

or Magnetic wall The boundary conditions at the interface between
the regions | and Il (Fig. 3) are as follows:
@ E' (r=d, O[y/2; /4=
=E (r=d, eO[y/2; 1t/ 4)); (5)
=0 ey = (lr =d, @O[y/2; Tt/ 4])=
=E,(r =d, e0[y/2; 1t/ 4]). (6)
Besides, at the perfectly conducting surface of the
Q=1/4 ridge atr =d and @O[0; y/2]:
E('p'(rzd, oO[0; y/2])=0. (7)

Having substituted (3)(4) in (5)—(7), we obtain:

Y. Bycosl, mypd 2™ =
m=0

Magnetic wall

[

> A sinlly (n)(@-y/2)ld ™™ @O[y/ 2; T/ 4]; (8)

n=0

Electric

or Magnetic wall i B, sinl, (m)gld ™ =
m=0
® > Acosl 0)@-y /2B gOly/ 2 /4], (9)
n=0
< ; ~1-ly(m) _ .
Fig. 3. Computational models of coaxial quad-ridgesive- n%:o B sinfl, (m)eld ™'=0, 0[0; y/2]. (10)

guides taking into account symmetry properties witlges:
(a) on inner conducting circular cylinderp)(on outer con-
ducting circular cylinder.

Multiplying left and right parts of the equation) (8
by the system of functionssinfl,(p)(e-y/2)] ,
p=0,1,2,...and integrating the resulting relation at the

TEM eigenmode interval [y/ 2; 1t/ 4], at which the system of these func-
In the regions | and Il (Fig. 3, in which both vall tions is orthogonal, we obtain
shoulq pe chosen as magnetic opes) we repre;ent ‘E?Bmll(p,m)d"l"z(m) =A, ”‘Zyd—ml(p), (11)
electric field component&, andE, in the form of in-  m=o 8

finite sums of the partial modes with unknown ampli from whence it follows, that the amplitude of tipe
tudes, each of which satisfies the Maxwell equation -th partial mode in the region I (Fig. 3)

the cylindrical coordinate system and boundary eéond ©

tions at the magnetic walls and at the perfectlydcwt- A, :82 Bm|1(pvm)d_l_'2(m) /(- 2y)d‘1+'1(p)]. (12)
ing surfaces of CQRW: m=0
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The value ofl,(p,m) in the formulas (11), (12) is

determined by the relation M-1
e . Y BoR(PM=0,  p=01..R- L
l,(p.m) = [ cosl, mplsinl, (0 )y / 2)ldp. = s
" Z Bsz(qvm):O, g=0,1..M-P-1

m=0

In the same way, the amplitude of tipeth partial

mode in the region | (Fig. 3) can be derived fr@ngs At the fixed number of partial moded , we define

_av% ~1-1, (m) _ -1+, (p) the number of equations of the first type by thguhar
A 8EOBmI2(p,m)d S (= 2y)d L (13) widths ratio of the regions | and Il (Fig. 3) [2@p

P =int[(r-2y)M /11, where integer part is rounded

herel T /o up or down.
wherel,(p,m) = j sinl, (M)g]cos], (p)e@-y / 2)ldp. The system of linear algebraic equations (18) @an b
viz rewritten in the matrix form:
Having equated (12) and (13), we obtain the system Foo = Fom-1 Bo 0
of equations : : N (19)
0 Bmll( p, m)d—l—lz(m) - i Bm|2(p,m)d_1_|2(m); FM a0 U FM ZIM-1 BM—l O
m=0 m=0

The elements of the matrpF] are determined by
i Bmd_l_IZ(m)[h(pv m)— | 2(p’m)] -0, (14) the following relation
powr - j)_{Fl(i,j), i= 0,1,.BF
' F(i-P),j), i=P, P+1),.M-1

Simplifying the expressions (14) yields the result
plitying P 14y The condition of nontrivial solution of the homoge-

i B,R(p.m=0, p=0,12,.., (15) neous SLAE (19) is the equality to zero of the imatr
m=0 [F] determinant. This condition is satisfied, because
() the row of the matrifF] determinant with the index
where F (p,m) =d™"2™[1,(p,m)~1,(p,m)]. P is zero:
Next, we multiply left and right pgrts qf the edoat F(P,j)=F,(0,j)=15(0,] W) =
(10) by the system of functionssinfl,(Q)g] .
g=0,1,2,.. and integrate the obtained relation at the y/2 4
interval [0; y/ 2]. As a result, we get = [ sin(4j@)sin(0)a@rd*"20) = (.
© 0
> Byls(q,md ™2™ =0, (16)
m=0
vz While solving the homogeneous SLAE (19), the row

with the indexP must be excluded from the matrix
[F].
Simplifying the expression (16) yields the follogin 10 solve the homogeneous SLAE (19), let us as-

where I3(q,m) = [ sinfl,(m)glsind,@)plde.
0

result: sume thatB, =1. Then, we get:
> B,F,(q.m)=0,q=0,12,. (17) : 3 3
m=0 Foa - Fom-1 Foo
where F,(q,m) = I 5(q,m)d "™, e B, '
- . Foaa = Feoam-a . Fo_10
Combining the systems of equations (15), (17) and E ’ F CE A
limiting the number of partial modes in the regibn Pal " TPHIM-1 By P+10
we obtain the following homogeneous system of linea : ) : :
algebraic equations (SLAE) with unknown partial Fui1 * Fu-iv-t Fu-10

modes amplitudes, :
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- Fou Fou-1 | | Foo | X3ty m) (KDY, gy (KeP) = Y0, ey (KD) Iy, ey (KT, (23)
% _ Foo11 Fo_im-1 Fe-10 where L (n)=2m/(m-2y) ; lL,(m=2m+1 ;
B‘ Foi1 Fosap-1 For1o]| Z(f,k,)=2mfu,/k,; A,, B, are unknown amplitude
R : ' coefficients; J,(x) , (X, J/(%), () are Bessel
F F F functions of the first and the second kinds andr tthe-
M-11 M-1M-1] | "M-1,0]

rivatives; K. defines a cutoff mode number,denotes
an imaginary unit;f designates the frequenay;, is

By using these systems of equations, we define alhso|yte permeability of CQRW inner medium.

partial mode amplitude®,,. Then, the partial mode

The boundary conditions at the interface between

amplitudesA, are determined by formulas (12) or (13)the regions | and Il (Fig. 2) are as follows:

Further, we find distributions of electric field mpo-

nents in regions | and Il (Fig. 3) by the formulas

Ep (r =d, oO[y/2; (m-y)/2])=

(1)—(4). Electric field components in the whole cross

section of CQRW are determined using the EFD sym- ~ E,(r =d, @0[y/2; (m-y)/2]), (24)
metry properties of TEM mode. The components of the HY(r =d, @O[y/2; (m-y)/2])=
TEM mode magnetic field can be defined by the formu | _

=H(r=d, o0[y/2; (m-y)/2]). (25)

las: Hy(r,@=E(r.@/Z , H (r9=-E,(r.9/Z ,

On the perfectly conducting surfaces of the ridages

whereZ =/u, /¢, is the mode impedance depending =g and @O|[0; y/2]0[(t-V)/2; Tt/ 2], the follow-

on the CQRW homogeneous filling parametes €,
only.

ing condition is met:
Ey (r =d, @0[0; y/2]0[(-y)/ 2; 1/ 2])= 0

(26)
Having substituted (28)23) in (24)-(26), we ob-

TE modes antisymmetric relative to the plane
¢=n/2
. . . . . tain
The TE eigenmodes designations introduced in this

section coincide with the ones given above foriaé
mode, but they refer only to the TE modes. In the r

gions | and Il (Fig. 2) we represent the fields and
E, in the form of infinite sums of the partial modes

B.,sinfl, (m)@]J'Y'[l,(m), kb, kd] =

m=0
[ee]

=2 Accosl, 0)@-v/2PY' () kakd],
n=0

with unknown amplitudes and cutoff wave numbers, ®0lY/ 2 (T=y)/2]; 27)
each of which satisfies the Maxwell equations m ¢ly- > . _
lindrical coordinate system and boundary conditiahs mzzo B sinfl, (M)@ld V[l (m), kb, kd] =
the magnetic, electric walls and at the perfectip-c o
ducting surfaces of CQRW (see Fig. 2): =Y Acosl, M-y /2)PY] () kakd],
[ n=0
Hi(r,cp)=r§)ﬁh cosl, 0)@-v / 2) o0[y/ 2; (m-y)/2]: (28)
M),y (KA Y]y (Kel) =Y ) (K@) Iy, oy (KT 5 (20) 3" By, sinll, ()@]3Y'l,(m), kb, kd] =0,
) m=0
HY (r,@) = B,sinfl, (m)g]x @U[0; y/ 210 [(t-y) / 2; /2], (29)
m=0
Iy (KDY, gy (Keh) =Yy (KDY Ty (k)] 3 (22)  where IY(Lx ) =B 00 () =Y()9 (v)
. o IV(1L%,y) = J QY (V) =Y () (y).-
Eo(r, @) =Z(f k)Y A, cosl; 0)p-v / 2)K Multiplying left and right parts of the equation7{2
n=0 .
, , , , by the functionscos -v/2)], p=0,12,.. and
A kY kD) kD H okl @2 L®YXomy 2 b

integrating the result at the intenfgl/ 2; (rt—-vy)/2],

at which the system of these functions is orthogona

EL (@)= Z(1 Ky) S, By sinll, (gl obtain:
m=0 )
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S y/2
2, Bl (P mIYlo(m), kb k] = where 1,(am)= | sinll, (m)glsinl, @)plde+
m= !
= A (TT=2y) 1 41+ 3, WY I (p) kakd],  (30) w2
' ' de.
whence the amplitude of thp-th partial mode in (H_J;)/ZSIn[lz(m)cp]S|n[I2(q)(p] ?

the region [ (Fig. 2) s defined as follows Simplifying the expression (35) yields the followin
& , result:

4% Byl (p.m)IY'[l,(m), kb kd] o

= =0 : 31 B.F,(g,mkb,kd)=0, g=0,12,.., (36)
(1= 2y)(A1+ 8,0 )Y, (p).ka.kd] 5D mZ:O e e

In the formulas (30), (31), the following designawhere F,(d,m.y,z)=1,(q.m)}JY'[1,(m),y,z].

tions are used: Having united the systems of equations (34), (36)
(y)/2 and limiting the number of partial modes in theioag
,(p,m) = .f sinl, (m)g]cosl, (0 )@-Y / 2)ldp; Il, we obtain .the following -homog.eneous SLAE with
v/2 unknown partial mode amplitudds;, :

i M-1
d,, is the Kronecker delta. S B, F(pmkakbkd)=0,p= 0,1, 1
In the same way, the amplitude of tpeth partial m=0 37)

mode in the region | (Fig. 2) can be derived frdra t |M=! o o
expression (28) mZZO B.F.(a.mkbkd)=09=01..0M-P-1

4i B, |, (p,m)J'Y[l,(m),kb.kd] At fixed number of partial models! , the number of
—_m=0 (32) equations of the first type is defined by the aagul
(- 2y)(1+ 3 WY, (p).kakd] widths ratio of the regions | and Il (Fig. 2) as
P =int[t—-2y)/ ], where integer part is rounded up
Having equated (31) and (32), one can obtain or down [27].
w IYL,(m), kb, kd] The SLAE (37) can be rewritten in the matrix form
B.l,(p,m e
ng,o ml1(P ){J’Y'[Il( 0.k a k] by the formula (19), but the matrpf] elements are

different:
_‘]'Y[IZ(m)! kcb! kcd]} =0. (33) E L. k k k d . 01 o
IYIL(p), k.a kd] F(i,j){ () kakbkd), 1= 0L.R- .
FW(-P),j.kbkd)i=P,P+1),..M-1
The condition of nontrivial solution of the homoge-

neous SLAE (37) is the equality to zero of the ratr
[F] determinant. This condition defines the -cutoff

By simplifying the expression (33), we obtain

Y B F(p,mkakbkd)=0, p=012,.., (34)

m=0
_ mode numbers of TE modes. The cutoff wave numbers
where F(p.m,x,y,z)=1,(p,m)x calculated are to be substituted in homogeneousESLA
N IY'(I,(m),y,z) JY(,(m),y,z) (37). The further solution qf the TE.modes problism
IY'((p).xz)  IY((P)x2) | the same as the one described hereinbefore farEe

mode except for the calculation of electric and neig
Multiplying left and right parts of the equation9j2 fields components distributions. The distributioof
by the system of functionsinfl, (q)¢], q=0,1,2,.. and longitudinal component of magnetic field, in the re-

integrating the resulting relation at the disjuastdf in- gions | and Il (Fig. 2) can be defined by the folasu
tervals[0; y/2]0[(rt-y)/ 2; Tt/ 2], we get (20), (21). The magnetic field solution for the ismnt
cross section of CQRW is found by using the symynetr
or the antisymmetry properties of the TE modesn3+a
versal components of magnetic and electric fields a
defined by using the formulas (38¢¥1) connecting
longitudinal and transversal field components (mch
for the TE modesE, =0):

> Bl o(@mIYI,(m) kb kd] =0, (35)

m=0
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_ _iBOE,(r,@ Z(f,k)oH,(r,Q). Substituting (20)(23) in (42)-(44) yields the re-
E(r.Q)= KX or kr 0 (38 guits:
i B, sinfl, (M)@ld"Y'TI,(m), kb, kd] =
E,(r.¢)=- klcgr aEa((r[') cp) Z(LCKC)OH a(rr ) . . (39) mm:o 2 2
=2 A.cosl, 0)@-v/2PY' () kakd],
__iBOH,(r®) , Y(f.k)E,(1,9). " v /2 /4l
L T raa LD oz (45)
> By, sinfl, (m)@ld'Y[l,(m), kb, kd] =
iB oH,(r.@) _Y(f.k)OIE,(r.g) o
Ho(r.@) =—— , (41) -
ker 00 ke or =2 Accosl, 0)@-v/2PY [, 0).kakd],
n=0
oO[y/2n/4]; (46)

whereY (f,k.) =2mnife, /k.; B denotes the longitudi-

nal mode number of CQRW; designates an imaginary i B,,sinfl, (M)@]J'Y'Tl(m), kb kd] =0,
unit; f is the operating frequencyg;, defines the ab- m=0

solute permittivity of CQRW inner medium. 600 y/2]. (47)
TE modes symmetric relativeto the plane Multiplying left and right parts of the equation5{
d=n/2 by the system of functionscos], (p)@-vy/2)],

é) 0,1,2,.. and integrating the resulting relation at the
interval [y /2; /4], at which the system of these func-
tions is orthogonal, we obtain:

In the regions | and Il (Fig. 3), we represent th
fields H, and E, in the form of infinite sums

(20)—(23) of the partial modes with unknown ampli-
tudes and cutoff wave numbers. Each partial motle sa & , _
isfies the Maxwell equations in the cyIiF;ldricaI cie n%:oBmll(p’ m)JIYl(m), kb, kd] =

nate system and boundary_conditions at the two mag- -2y

netic walls or at the magnetic and electric wasaell =A (1+8,0)3Y'[11(p) ke, kd] (48)

as at the perfectly conducting surfaces of CQRW, 8

wherel;(n) =4m/ (- 2y), |,(m) =4m+ 2 for the TE for the TE modes with antisymmetric EFD relative
modes with antisymmetric EFD relative to the plant® the planep=Tt/4;

@=T1/4 (for which this plane is the electric wall) or

L(n)=2m(2n+1)/ (- %), 1,(m) =4m+ 4 for the TE 2. Bl (p,m)JYI(m), kb kd] =

modes with symmetric EFD relative to the plane m=0

-2y

@=T11/ 4 (for which this plane is the magnetic wall). =A, IY'IL(p), k.a kd] (49)
The boundary conditions at the interface between

the regions | and Il (Fig. 3) are as follows: for the TE modes with symmetric EFD relative to

the planep=rT1/4.

E('p' (r=d, eQ[y/2;1t/ 4])) = By using relations (48), (49), the amplitude of the
o _ ) p-th partial mode in the region | (Fig. 3) can be ob
= I”E(p(r =d, oU[y/ 2;m/ 4)); (42) tained:
H, (r=d, od[y/2;1t/4])= ,
_z ] _ . 82 1(p1m)J'Y [IZ(m)’kcbvkcd]
=H,(r =d, @O[y/ 2;mt/4]). (43)

A= m=0 - , (50)
(T1=2y)(1+ 8,503V (p).ka.kd]
Besides, there is the following relation at the-per

o U[Gy/2]: to the planep=T1/ 4;

E, (r =d, @0[0; y/2])=0. (44)
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83" Byl (p.m)IY [, (m).kb k] EL(r @)= 3 A sinl, () (- / 2)]x
= m=0 ) 51 n=0
(= 23V Th(p) ke kd] OO 0 (@Y (k) ~Y, (kD k)] (54)

for the TE modes with symmetric EFD relative to Il _<
E =>» B X
the planep=Tt/ 4. 2 (1.9) mz=o m COSI, M )p]

In the formulas (48}(51), we have believed that I, () (KDY, (ke =Yy (K D) Iy, (K] 5(55)
l,(p,m) = Tsin[lz (m)e]cosl, (p)@-y / 2)]dp. Ho(r.@) =Y (f ,kc)i A, sinll, () @~y / 2)]x
n=0

y/2

Xy, (m) (K@Y ) (KeF) =Y, 0y (K@) ) o) (K] 5 (56)
In the same way, the amplitude of tpeth partial 1 (63 Yy (e Lo eyt

mode in the region | (Fig. 3) can be derived frai)( H('pI (r,@)=Y(f ,kc)i B,, cos[, (m)p]x
m=0
83 B,l1(p,m)IY[I,(m),kb,kd] X1, (my (KDY iy (KeP) =Y, my(KD) Iy, ey (K] (B7)
— __m=0
N e @ s VL (P kakd] D where () =2n(n+ 1)/ (- 2); L(m)=2m+1; A

and B,, are unknown amplitude coefficients, (x) ,
E‘Y,(x), J/(¥), Y'(x) are Bessel functions of the first
and the second kind and their derivativiesjs a cutoff

8oo B 1. (p,m)J'Y[l.,(m),kbkd wave number.
_ m;) ml1 (P IV [ (m) ko] (53) The boundary conditions at the interface between

(1= 2y)IY[,(p), ka,kd] the regions | and Il (Fig. 2) are as follows:

for the TE modes with antisymmetric EFD relativ
to the planep=T11/4;

for the TE modes with symmetric EFD relative to  E; (r =d, @0[y/2; (t-y)/2])=
the planegp=Tt/4. =E)(r =d, @O[y/2; (m-y)/ 2]); (58)
Having equated (50) to (52) or (51) to (53) one can ,,u,, _ e _
obtain (33) and (34) received in the previous secti Ho(r=d, Oly/2; (m=v)/2)=
Next we multiply left and right parts of the equati = H('p(r =d, oO[y/2; (m-vy)/2]). (59)
(47) by the system of functiorsn[l, (q)¢], q=0,1,2..

, and integrate the resulting relation at the irdker
[0; y/2]. As a result, we obtain (35), where

vz _ El(r=d, @0[0; y/2]0[(m-y)/ 2; 1/ 2])=0. (60)
2(am) = { sinlz m)elsinl; (@)elde. Substituting (54)—(57) in (58)(60), we obtain

Besides, at the perfectly conducting surfaces of
ridges atr =d and@U[0; y/2]O[(11—V)/ 2; Tt/ 2]:

The further course of solving the problem is the S B cosl. MY M. (m).kbkdl=
same as that described in the previous section. mzzo m €Oz MRVl (M) kb k]
TM modes antisymmetric relative to - sinll. (M(o=v / 213YTL (M. k a.k.d

The TM eigenmodes designations introduced in this eOly/ 2 (T=y) /2] (61)
section coincide with the ones given above foriaé - ' -
B Y kbkd]=
mode and the TE modes. In the regions | and II. (Big mz=o m€OSly MIPRY'I, (M) kd kd]
we represent the fieldg, and H,, in the form of infi-

nite sums of the partial modes with unknown ampli- —%A@ln[ll(n)((p ¥/ 2PY' T (n).kakd],
tudes and cutoff wave .numbersz ea_ch of Whlgh seaisf o0[y/ 2; (m-vy)/2]; (62)
the Maxwell equations in the cylindrical coordinates-

tem and boundary conditions at the magnetic, etectr

walls as well as at the perfectly conducting swefaof

CQRW (see Fig. 2):
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o Using this designation, the relation (67) can be re
Z_: By, cosl, M)pNY[l,(m).kb kd]=0, written by the formula (34).
m=0 Next, we multiply left and right parts of the eqoat

ouI0; y/ 210 (m=y) /2 m/ 2], (63) (63) by the system of functionscos], @] .
where JY(1,%,y)= 3, (X)Y, (¥)=Y, (x)J, (y) ., 0=0,12,.. and integrate the result at the disjunction of
JY'(1L,xy) =3, OY'(Y) =Y, (X)J) (y). intervals[0; y/2]0[(1t-y)/ 2; 1t/ 2]. In the issue, we

Multiplying left and right parts of the equationl{6 obtain

by the system of functionssinfl,(p)(e-y/2)] , o
p=0,1,2,.. and integrating the result at the interval EOBmIZ(q’m)JY[IZ(m)’kcb'kcd]=0’ (68)
[y/2; (mt—-y)/2], at which the system of these func- "
. . . Y
tions is orthogonal, we obtain where l,(q,m) = J' cos|, (n)p]cos, & Jp Jdp+
o0 0
> Bl (p,m)JY[l,(m), kb, kd] = W2
m=0 ) [ cosl, Mmyplcos[, € )pldp.
= AT IV ((p) kakad), (64) "
_ _ Introducing  the  designation F,(q,m,y,z)=
V\_/hence |t. follows, .that th(_e amplltude of the-th = 1,(q.m)JIY[l,(m), y,z] , we can rewrite (68) by the
partial mode in the region | (Fig. 2) is expresasd formula (36). The further way of solving the pramblés
© the same as that described hereinbefore for the TE
4% Bly(p,m)IY[l,(m),kb,kd] eigenmodes.
—_m=0
= . (65) . .
(11=2y)JY [l (p) kea,kd] TM modes symmetric relative to

theplane ¢ =n/2
In the formulas (64), (65), the following desigioati _ .
is assumed In the regions | and Il (Fig. 3), we represent the

fields E, and H, in the form of infinite sums (54)-

(T-y)/2
[,(p,m)= j cos|, Mmyp]sinl, (p)@-y / 2)]dp. (57) of the partial modes with unknown amplituded a
vi2 cutoff wave numbers, each of which satisfies thexMa

In th h litude of h ial well equations in the cylindrical coordinate systam
n t_ € same .Way, t'e amplitude o “FPI partial el as boundary conditions at the two magneticlsval
mode in the region | (Fig. 2) can be obtained f(6®). or at the magnetic and electric walls and at théepty

As aresult, we get conducting  surfaces of  CQRW,  where
w0 ' l,(n) =4nt(n+1)/ (11— 2y), |,(m)=4m+ 2 for the T™M
4% Buly (p.m)3Y'[I,(m),k b,k d] modes with antisymmetric EFD relative to the plane

(66) @=m1/4 (for them this plane is the electric wall) or

_ _ (M =2m2n+1)/ - ), l,(m=4m for the TM
Having equated (65) to (66), one can easily obtain modes with symmetric EFD relative to the plane
w IY[L(m), k b,k d] @=T1/4 (for them this plane is the magnetic wall).

. Buli(p,m){ ML(p). kakd] - The boundary conditions at the interface between
mo P Re Re the regions | and Il (Fig. 3) are as follows:

_ YT, (m), kb, kd], -0

— m=0
A = 20V L (p) kankd]

67
IT(p), ka kd]’ (67) E} (r=d, O[y/2; 1t/ 4])=
— =l — . .

Let us introduce the following designation: B Ez(r =d, oLly/ 2, 1t/ 4]); (69)
F(pmx.y.2)= 1, (pmy by d Holr=c, gBly/z n/ah=

RS N () %, 2 =Hy(r =d, oOly/ 2 7/ 4). (70)
_IYTL(m), y, Z]} . Besides, at the perfectly conducting surface of the

JY'TL(p), % 2] ridge atr =d and @[0; y/ 2] we have:

El(r=d, @0[0; y/2]))=0. (71)
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Having substituted (54)—(57) in (69)—(71), we ob- Next, multiplying left and right parts of the eqoat

tain: (74) by the system of functionscos], @] .
g=0,1,2,.. and integrating the result at the interval
> By cosl, mpNY[l,(m),kb.kd]= [0; y/ 2], we obtain (68), where
m=0 y/2
° I,(0,m) = | cos|, m)p]cos[; € Jp Jdp.
=Y Asinfly(n)(@-y/2)PY[l,(n), ka,kd], 2 g 2 2
n=0 . .
i ) The further way of solving the problem is the same
GUly/ 2; T/ 4]; (72) as that described in the previous section.
> By, cosl, myplY'll,(m), kb kd]= Convergence of cutoff wave number solutions
m_om In this section we carry out the convergence aiglys
=Y Asinfly(n)(@-vy/2)PIY'TI,(n), ka,kd], of cutoff wave number solutions depending on the
n=0 number of partial mode®! limiting the sums in (18),
@0[y/ 2; T/ 4]; (73)  (37). The calculations have been performed forbibté
o CQRW configurations depicted in Fig. 1. As can be
2. Bycosl, mypNY[l,(m),kb kd]=0, seen in this Figure, for both configurations of G®R
m=0 :
o0[0: y/2]. (74) the regions | and Il are bounded by the threegutisf

conducting surfaces of CQRW and by the interface of
o _ _ regions. The region Il is bounded by two magnetic
Multiplying left and right parts of the equation2)7 walls, by four perfectly conducting surfaces of O@R
by the system of functionssinfl,(p)@-Y/2)] , and by two interfaces between the regions. Thesefor
p=0,1,2,.. and integrating the result at the interva@ll formulas remain the same for both configuragion
[y/ 2; T/ 4], at which the system of these functions is FOr the CQRW with ridges on inner cylinder we set
. the ridges angle and dimensions ratios as follows=
orthogonal, we obtain
10°, 30°, 50°,a/b = 0.5,(b—d)/b = 0.1, and for the
CQRW with ridges on outer cylindey = 10°, 30°,
50° b/a = 0.5,(d—b)/a = 0.1. Residual error8 (
d=[k.(M)-k.B0)]/k. 30)x100%) plots for cutoff
wave numbers of the first three TE modes and tise fi
_ _ TM mode of CQRW versus the number of partial
whence it follows that the amplitude of the-th modesM are shown in Fig. 4-6. Herewith residual er-

partial mode in the region | (Fig. 3) can be foasd rors for the first, the second, the third TE moded for
the first TM mode are shown by solid, dashed, dash-

i Bmll( P, m)‘]Y[Iz(m), ka1 kcd] =
m=0

= A "_42\’ IV (p), kakd], (75)

o) dotted and dotted lines respectively. The resuliste
4% Byl (p,m)IY[I,(m),kb,kd] CQRW with ridges on inner cylinder are shown in.Fig
= =0 . (76)  4a-6a, and the ones for the CQRW with ridges on outer

(m=2y)JY[l(p). ka kd] cylinder are depicted in Figh46b. The residual errors

are calculated relative to the cutoff wave numhmys

It is assumed that in the formulas (75), (76) tained atM = 30.
W4 . . .
_ . _ As can be seen in Figures 4-6, the residual efoors
L (p,m) = VL cosl, Mplsink, (P~ / 2)]dp. cutoff wave numbers decrease as the ridges anghe

creases. Having compared Fig—8a with Fig. 40—6b,
. . . . one can see that the residual errors of cutoff weawe-
mode in the region I (Fig. 3) can be obtained i@ o o of the first three TE modes for the CQRW with
expression (73) ridges on outer cylinder are less than the onegher
4i B, 1, (p,m)JIY'[l,(m),k b,k d] QQRW with ridges on inner cyIir_1der for the sameavel
(77) tive \_/alue_ of the gaps between rldges and perfecthy
ducting circular cylinder. For the first TM modeetie

—_m=0
b i kakd] ing er. For the first TV modestie
Having equated (76) to (77), one can easily obtalffS'aua! €errors are almost the same for bot Q

(67) and (34) configurations.

In the same way, the amplitude of tipeth partial
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As one can see in Fig. 4-6, taking into accournid@®? Fig. 4. Cutoff wave numbers residual errors vetsgsnum-
tial modes provides the residual errors of cutofivev ber of partial modes for coaxial quad-ridged wavegs with
numbers of the first three TE modes and the fitgt Tridges: ) on inner conducting circular cylindeh)(on outer
mode less than 0.1 % comparatively with the valfes conducting circular cylinder.
cutoff wave numbers obtained in the case of 30igbart
modes. Consequently, it is enough to use 27 pantdles Oin. %o
for the calculation of the CQRW cutoff wave numbiers 16

. . . . L0
both configurations by the transverse field-maigtigch-

nigue with the residual error less than 0.1%. i;l
Convergence of electric field solutions L0+

Now we analyze solutions convergence of EFD fc).8
the TEM mode and the first TE mode depending on tly ¢ | *
number of partial modeM limiting the sums in (18), (4
(37). The calculations have been performed for bo P
CQRW configurations depicted in Fig. 1 with the eam() 0
dimensions ratios as the ones that were set dtineg
solutions convergence analysis for cutoff wave nersb
and the angley = 30°. The TEM mode’s EFD are (a)

shown in Fig. 7, 8, and EFD of the first TE mode ar _
depicted in Fig. 9, 10. The electric field radiahgo-  Oout: %

nent’s distributionskE, (r =d, ¢ O[0; 1]) computed at 1.6

— 2N°
the interface between the regions |, Il and llle($8g. 1.4 =0
1) are presented in Fig. 7, 9, and the distribgtitor 1.2
the azimuthal onée, (r =d, ¢ J[0; 1) are shown in 1.0
Fig. 8, 10. In Fig. 7-10 the results obtained ziti 10, 0.8
20, 30 partial modes are shown by dotted, dashdd a0.6
solid lines respectively. 04!
8ins %o 02N

0.0 ;om e T SR AT SN o o o e o
10 12 14 16 18 20 22 24 26 28 M

(b)

Fig. 5. Cutoff wave numbers residual errors verbgsnum-
ber of partial modes for coaxial quad-ridged wavegs with
ridges: &) on inner conducting circular cylindeh)(on outer
conducting circular cylinder.

10 12 14 l() 18 7() 22 24 26 28 M

Oin. %o
. (@)
Oout- %o l ()
2.8 v =50°
24 y=10° 0.8
2.0 0.6
1.6
12 04 \
0.8 0.2 N\ V[ 3 A% I

0.4 R, )
./\//\ """

0.0L_ ] e T By 0 X0 S R A o

10 12 14 16 18 20 22 24 26 28 M 10 12 14 16 18 i() 22‘ 2 ‘ 2» 28- M

(b) @
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(b) Fig. 7. TEM mode electric field radial componergtdbution

for coaxial quad-ridged waveguides with ridges: ¢n inner
conducting circular cylinderpj on outer conducting circular
cylinder (parameter is a number of partial moklgs

Fig. 6. Cutoff wave numbers residual errors vertbgsnum-
ber of partial modes for coaxial quad-ridged wavegs with
ridges: &) on inner conducting circular cylindeh)(on outer
conducting circular cylinder. E(p o
0.8
As one can see in Fig. 7-10, the EFD becomes mc (. 6}—{}:
narrow and sharp in the vicinity of the peak valass (4 L
the number of partial modd¥l increases. These sharg ¢ > E\g..‘.
rises of electric field are caused by the singtyafthe ) o \\\
field’'s behavior at the ridge. The more partial ®ed ) , M
are used in the EFD computing, the more accuraie thf0 4 b
sum approximates this singularity. The field bebaym 0‘6
the vicinity of the ridges’ edges and in the gapsueen )
the ridges and circular cylinders of CQRW for botl 0-8
configurations is in good agreement with the bednavi'l%o 0102030405060708 090/
of electric field of the fundamental TE mode oftseal S RS e SR i Bl Sonel

coaxial ridged waveguides [26]. @)
E(p out
Er in 82
.;'! Y '.." :..' l .' ‘." "

0.9 -4 Rk X 0.4 :
0.8} ] ! ' e ;
0.7k HAS ! ‘| 4. ! ‘i 4 0.0 ‘4/" i

A 2 ¢ 7, 1 \s 5 —
0.5 h :'. , | ::' -0.4 ::
0.4 B 1 1 ] A O I 0.6 J
03 'Ar'ﬁ"‘l.c' A' 'Al\h.“"l'lh -0.8 ]
s W VYWYV Lol 1
0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9¢/n
0.0 b

0.0 0.1 02 03 0.4 0.5 0.6 0.7 0.8 0.9¢/n (b)

@) Fig. 8. TEM mode electric field azimuthal compondistri-

bution for coaxial quad-ridged waveguides with gdg@)
on inner conducting circular cylindek)(on outer conducting
circular cylinder (parameter is a number of parti@desM).
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As one can see in Fig. 9, 10, for the first TE mode E(p e
CQRW the electric field components distributions-co
verge sufficiently fast and depend on the number i p
used partial modes weakly. The different situation 0:74‘
observed for the EFD of the TEM mode (see Fig.)7, € (; ¢
In the case of using of 10 or 20 partial modesdis&i- () 5
bution of the radial electric field componeft of the 0.4

TEM mode in the vicinity of the gap between theged 0.3
and the circular cylinder of CQRW is not as unifcas 0.2 - ;
in the case of utilizing of 30 partial modes. THistri- -1 Vo - 'N
bution should be close to the uniform one, becaee ©-0 XA YRS

M2 WO N
behavior of the radial electric field componenttire ‘0'01_0 0.1 0203 0.4 05 0.6 0.7 0.8 0.9¢/n
gap between the ridge and the cylindrical surfacine

same as for the fundamental TE mode of sectoradi-coa @)

al ridged waveguides [26]. Consequently, for the- co E(p out

rect calculation of CQRW modes’ field distributiobg
transverse field-matching technique one shouldzatil
more than 30 partial modes. ;
E.. 0.7

0.6
O.SA. | 0.5
0.6—%: 04—k
0.4 : 0.3 3 ;
T LN | 02| |} :
o T Neas i 0.1 AN P
0.2 il . S 0.0 M /’ﬁ/ﬂ
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0.8 f 7

Fig. 10. The first TE mode electric field azimutt@mpo-

0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 ¢/T N . . L
n nent distribution for coaxial quad-ridged wavegsideith

@) ridges: &) on inner conducting circular cylindeh)(on outer
conducting circular cylinder (parameter is a nuntifgpartial
Bt modesM).
[ Q.
i \ .
82 | 19 Conclusion
0.4 The boundary problem for eigenmodes in coaxial
0.2 guad-ridged waveguides has been solved by traresvers
0.0 field-matching technique. The formulas obtained-pro

0.2 R vide possibilities to compute cutoff wave numbens a
0.4 electric and magnetic fields distributions for fhEM,
-0.61 1 the TE and the TM modes in the presence of theesidg
0.8 ‘;J T T either on the inner or on the outer perfectly catitg

cylinder. It has been shown that for the calculatid

cutoff wave numbers by transverse field-matching
() technique with residual error less than 0.1 % it is

Fig. 9. The first TE mode electric field radial coament dis- €nough to utilize 27 partial modes, and for thereir

tribution for coaxial quad-ridged waveguides wittiges: &) calculation of the_fleld distributions one shoultlize

on inner conducting circular cylindek)(on outer conducting more than 30 partial modes.

circular cylinder (parameter is a number of parti@desM).

-1.
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