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BOUNDARY PROBLEM SOLUTION FOR EIGENMODES 
IN COAXIAL QUAD-RIDGED WAVEGUIDES 

Fedir F. Dubrovka, Stepan I. Piltyay 
National Technical University of Ukraine “Kyiv Polytechnic Institute”, Kyiv, Ukraine 

The boundary problem for eigenmodes in coaxial quad-ridged waveguides has been solved by the transverse field-matching tech-
nique. The formulas obtained provide possibilities to calculate cutoff wave numbers and electric and magnetic fields distributions 
of TEM, TE and TM modes in the presence of the ridges either on the inner or on the outer perfectly conducting cylinder. The 
analysis of the dependences of cutoff wave numbers and electric field distributions convergences on the number of partial modes 
has been carried out. It has been shown that for calculation of cutoff wave numbers with residual error less than 0.1 % it is enough 
to utilize 27 partial modes, and for the correct calculation of fields distributions one should utilize more than 30 partial modes. 
 

Introduction 

Ridged structures are widely used in modern wave-
guide devices. The utilization of ridges enables to create 
ultrawideband devices, to provide ultrawideband 
matching of hollow waveguides with coaxial transmis-
sion lines and to create discontinuities of required type 
in narrowband devices. Ridged structures are used in 
filters [1─3], polarizers [4─6], waveguides [7─10], an-
tennas [11─13], orthomode transducers [14─16], lasers 
[17─19], resonators [20, 21] and other devices. 

For development of the devices based on ridged 
structures one needs to know modal characteristics of 
ridged waveguides, namely, eigenmodes cutoff fre-
quencies (or cutoff wave numbers) and their fields dis-
tributions. The characteristics of ridged waveguides’ 
eigenmodes for rectangular cross-section have been an-
alyzed in [22─24]. The eigenmodes of square ridged 
waveguides have been investigated in [9]. The 
eigenmodes of ridged waveguides for circular cross sec-
tion have been analyzed in [24]. The eigenmodes of el-
liptical ridged waveguides have been investigated in 
[10]. The eigenmodes of rectangular coaxial ridged 
waveguides have been analyzed in [8]. In [25] authors 
of this paper have solved the boundary problem for sec-
toral coaxial ridged waveguides using integral equation 
technique, and in [26] their eigenmodes have been ana-
lyzed. 

In this paper the boundary problem solution for the 
coaxial quad-ridged waveguides (CQRW) has been ob-
tained using transverse field-matching technique and 
the solutions convergence analysis has been performed 
for the dependences of cutoff wave numbers and elec-
tric field distributions (EFD) on the number of partial 
modes. 
 

Problem statement 

Configurations of hollow infinite CQRW under study 
and denotations of their cross sectional dimensions are 
shown in Fig. 1, namely, the CQRW with ridges on the 
inner perfectly conducting cylinder is depicted in Fig. 1a, 
and the CQRW with ridges on the outer cylinder is shown 
in Fig. 1b (hereinafter referred to as subscripts "in" and 
"out" respectively). 

We will investigate only that eigenmodes, for which 
the CQRW vertical symmetry plane ( 0φ = ) is a magnetic 
wall. Due to the symmetry of the CQRW relative to the 
horizontal plane / 2φ = π , it is expedient to obtain the 
boundary problem solution separately for the eigenmodes 
with antisymmetric and symmetric relative to that plane 
EFD. Consequently, the fields distributions in the region 
III will be, respectively, antisymmetric or symmetric rela-
tive to the distributions in the region I. The eigenmodes 
with symmetric relative to the plane / 2φ = π  EFD can be 
conventionally divided into two types: 1) the eigenmodes 
with symmetric EFD relative to the plane / 4ϕ = π , 2) the 
eigenmodes with antisymmetric EFD relative to the plane 

/ 4ϕ = π . For the eigenmodes with antisymmetric EFD 
the plane / 2ϕ = π  is the electric wall, and for the 
eigenmodes with symmetric EFD it is the magnetic wall. 
Besides, for the eigenmodes with symmetric EFD relative 
to the plane / 2ϕ = π , that are also antisymmetric relative 
to the plane / 4ϕ = π , that plane is electric wall, for the 
eigenmodes, EFD of which are symmetric relative to the 
plane / 4ϕ = π , it is magnetic wall. 

Consequently, for the TE and the TM eigenmodes with 
antisymmetric EFD the boundary problem should be 
solved only for the region limited by the magnetic wall 

0φ = , by the electric wall / 2ϕ = π  and by perfectly con-

ducting circular cylinders with radii r a= , r b=  (see Fig. 
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2). For the eigenmodes with symmetric EFD relative to 
the plane / 2ϕ = π  the boundary problem should be 
solved only for the region limited by the magnetic wall 

0φ = , and by electric or by magnetic wall / 4φ = π  (for 
the eigenmodes, respectively, with antisymmetric or 
symmetric EFD relative to it) and by perfectly conducting 
circular cylinders with radii r a= , r b=  (see Fig. 3). 

 

(a) 
 

 

(b) 

Fig. 1. Cross sections of coaxial quad-ridged waveguides 
with ridges: (a) on inner conducting circular cylinder; (b) on 
outer conducting circular cylinder. 

 

(a) 

 

(b) 

Fig. 2. Computational models of coaxial quad-ridged wave-
guides with ridges: (a) on inner conducting circular cylinder; 
(b) on outer conducting circular cylinder. 

 

EFD of the TEM mode are symmetric relative to not 
only the planes 0φ =  and / 2φ = π , but also relative to 
the planes / 4φ = π  and 3 / 4φ = π , because all four 
ridges have the same potential. Therefore for the TEM 
mode the CQRW has four magnetic walls (0φ = ; / 4π ; 

/ 2π ; 3 / 4π ). Consequently, for the analysis of TEM 
eigenmode it is necessary to solve boundary problem 
only for the region limited by the magnetic walls 0φ = , 

/ 4φ = π  and by perfectly conducting circular cylinders 

with radii r a= , r b=  (see Fig. 3, in which both walls 
should be chosen as magnetic ones). 
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(a) 

 

 

(b) 

 

Fig. 3. Computational models of coaxial quad-ridged wave-
guides taking into account symmetry properties with ridges: 
(a) on inner conducting circular cylinder; (b) on outer con-
ducting circular cylinder. 

TEM eigenmode 

In the regions I and II (Fig. 3, in which both walls 
should be chosen as magnetic ones) we represent the 
electric field components rE  and Eφ  in the form of in-

finite sums of the partial modes with unknown ampli-
tudes, each of which satisfies the Maxwell equations in 
the cylindrical coordinate system and boundary condi-
tions at the magnetic walls and at the perfectly conduct-
ing surfaces of CQRW: 
 

11 ( )I
1

0

( , ) sin[ ( )( / 2)] l n
r n

n

E r A l n r
∞

− +

=
φ = φ − γ∑ ; (1) 

21 ( )II
2

0

( , ) cos[ ( ) ] l m
r m

m

E r B l m r
∞

− −

=
φ = φ∑ ; (2) 

11 ( )I
1

0

( , ) cos[ ( )( / 2)] l n
n

n

E r A l n r
∞

− +
φ

=
φ = φ − γ∑ ;  (3) 

21 ( )II
2

0

( , ) sin[ ( ) ] l m
m

m

E r B l m r
∞

− −
φ

=
φ = φ∑ ,  (4) 

where 1( ) 2 (2 1) / ( 2 )l n n= π + π − γ ; 2( ) 4l m m= ; nA , 

mB  are unknown amplitude coefficients. 
The boundary conditions at the interface between 

the regions I and II (Fig. 3) are as follows: 
II ( ,  [ / 2;  / 4])rE r d= φ∈ γ π =  

I ( ,  [ / 2;  / 4])rE r d= = φ∈ γ π ; (5) 
II ( ,  [ / 2;  / 4])E r dφ = φ∈ γ π =  

I ( ,  [ / 2;  / 4])E r dφ= = φ∈ γ π . (6) 

Besides, at the perfectly conducting surface of the 
ridge at r d=  and [0;  / 2]φ∈ γ : 

II ( ,  [0;  / 2]) 0E r dφ = φ∈ γ = .  (7) 

Having substituted (1)─(4) in (5)─(7), we obtain: 

21 ( )
2

0

cos[ ( ) ] l m
m

m

B l m d
∞

− −

=
φ =∑  

11 ( )
1

0

sin[ ( )( / 2)] l n
n

n

A l n d
∞

− +
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φ − γ∑ , [ / 2;  / 4]φ∈ γ π ;  (8) 

21 ( )
2

0

sin[ ( ) ] l m
m
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B l m d
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− −

=
φ =∑  

11 ( )
1

0

cos[ ( )( / 2)] l n
n

n

A l n d
∞

− +
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21 ( )
2

0

sin[ ( ) ] 0l m
m

m

B l m d
∞

− −

=
φ =∑ , [0;  / 2]φ∈ γ .  (10) 

Multiplying left and right parts of the equation (8) 
by the system of functions 1sin[ ( )( / 2)]l p φ − γ , 

0,1,2,...p =  and integrating the resulting relation at the 
interval [ / 2;  / 4]γ π , at which the system of these func-
tions is orthogonal, we obtain 

2 11 ( ) 1 ( )
1

0

2
( , )

8
l m l p

m p
m

B I p m d A d
∞

− − − +

=

π − γ=∑ , (11) 

from whence it follows, that the amplitude of the p
-th partial mode in the region I (Fig. 3) 
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The value of 1( , )I p m  in the formulas (11), (12) is 
determined by the relation 

/4

1 2 1
/2

( , ) cos[ ( ) ]sin[ ( )( / 2)]dI p m l m l p
π

γ

= φ φ − γ φ∫ . 

In the same way, the amplitude of the p -th partial 
mode in the region I (Fig. 3) can be derived from (9) as 

2 11 ( ) 1 ( )
2

0

8 ( , ) / [( 2 ) ]l m l p
p m

m

A B I p m d d
∞

− − − +

=
= π − γ∑ ,  (13) 

where 
/4

2 2 1
/2

( , ) sin[ ( ) ]cos[ ( )( / 2)]dI p m l m l p
π

γ

= φ φ − γ φ∫ . 

Having equated (12) and (13), we obtain the system 
of equations 

2 21 ( ) 1 ( )
1 2

0 0

( , ) ( , )l m l m
m m

m m

B I p m d B I p m d
∞ ∞

− − − −

= =
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[ ]21 ( )
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∞
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Simplifying the expressions (14) yields the result 

1
0

( , ) 0m
m

B F p m
∞

=
=∑ , 0,1,2,...p = ,           (15) 

where [ ]21 ( )
1 1 2( , ) ( , ) ( , )l mF p m d I p m I p m− −= − . 

Next, we multiply left and right parts of the equation 
(10) by the system of functions 2sin[ ( ) ]l q φ , 

0,1,2,...q =  and integrate the obtained relation at the 
interval [0;  / 2]γ . As a result, we get 

21 ( )
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=∑ ,               (16) 

where 
/2

3 2 2
0
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γ

= φ φ φ∫ . 

Simplifying the expression (16) yields the following 
result: 

2
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B F q m
∞

=
=∑ , 0,1,2,...q =             (17) 

where 21 ( )
2 3( , ) ( , ) l mF q m I q m d − −= . 

Combining the systems of equations (15), (17) and 
limiting the number of partial modes in the region II, 
we obtain the following homogeneous system of linear 
algebraic equations (SLAE) with unknown partial 
modes amplitudes mB : 

 

1

1
0

1

2
0
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At the fixed number of partial modes M , we define 
the number of equations of the first type by the angular 
widths ratio of the regions I and II (Fig. 3) [27] as 

[ ]int ( 2 ) /P M= π − γ π , where integer part is rounded 

up or down. 
The system of linear algebraic equations (18) can be 

rewritten in the matrix form: 

0,0 0, 1 0

1,0 1, 1 1

0

0

M

M M M M

F F B

F F B

−

− − − −
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The elements of the matrix [ ]F  are determined by 
the following relation 

1

2
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( , )

(( ), ),   ,  ( 1),..., ( 1)

F i j i P
F i j

F i P j i P P M

= −
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. 

The condition of nontrivial solution of the homoge-
neous SLAE (19) is the equality to zero of the matrix 
[ ]F  determinant. This condition is satisfied, because 
the row of the matrix [ ]F  determinant with the index 
P  is zero: 

21 ( )
2 3( , ) (0, ) (0, ) l jF P j F j I j d − −= = =  

2

/2
1 ( )
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While solving the homogeneous SLAE (19), the row 
with the index P  must be excluded from the matrix 
[ ]F . 

To solve the homogeneous SLAE (19), let us as-
sume that 0 1B = . Then, we get: 
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By using these systems of equations, we define all 

partial mode amplitudes mB . Then, the partial mode 

amplitudes pA  are determined by formulas (12) or (13). 

Further, we find distributions of electric field compo-
nents in regions I and II (Fig. 3) by the formulas 
(1)─(4). Electric field components in the whole cross 
section of CQRW are determined using the EFD sym-
metry properties of TEM mode. The components of the 
TEM mode magnetic field can be defined by the formu-
las: ( , ) ( , ) /rH r E r Zφ φ = φ , ( , ) ( , ) /rH r E r Zφφ = − φ , 

where a a/Z = µ ε  is the mode impedance depending 

on the CQRW homogeneous filling parameters 
а

µ , 
а
ε  

only. 

TE modes antisymmetric relative to the plane 
2/π=ϕ  

The TE eigenmodes designations introduced in this 
section coincide with the ones given above for the TEM 
mode, but they refer only to the TE modes. In the re-
gions I and II (Fig. 2) we represent the fields zH  and 

ϕE  in the form of infinite sums of the partial modes 

with unknown amplitudes and cutoff wave numbers, 
each of which satisfies the Maxwell equations in the cy-
lindrical coordinate system and boundary conditions at 
the magnetic, electric walls and at the perfectly con-
ducting surfaces of CQRW (see Fig. 2): 

I
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∞

=
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∞
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where 1( ) 2 / ( 2 )l n n= π π − γ ; 2( ) 2 1l m m= + ; 

c a c( , ) 2 i /Z f k f k= π µ ; nA , mB  are unknown amplitude 

coefficients; ( )lJ x , ( )lY x , ( )lJ x′ , ( )lY x′  are Bessel 
functions of the first and the second kinds and their de-
rivatives; ck  defines a cutoff mode number; i  denotes 

an imaginary unit; f  designates the frequency; aµ  is 

absolute permeability of CQRW inner medium. 
The boundary conditions at the interface between 

the regions I and II (Fig. 2) are as follows: 
 

II ( ,  [ / 2;  ( ) / 2])E r dφ = φ∈ γ π − γ =  
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I ( ,  [ / 2;  ( ) / 2])zH r d= = φ∈ γ π − γ .  (25) 

On the perfectly conducting surfaces of the ridges at 
r d=  and [0;  / 2] [( ) / 2;  / 2]φ∈ γ ∪ π − γ π , the follow-
ing condition is met: 

II ( ,  [0;  / 2] [( ) / 2;  / 2]) 0E r dφ = φ∈ γ ∪ π − γ π = . 

(26) 
Having substituted (20)─(23) in (24)─(26), we ob-

tain: 
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∞

=
′ ′φ =∑ ,  

[0;  / 2] [( ) / 2;  / 2]φ∈ γ ∪ π − γ π , (29) 
 

where ( , , ) ( ) ( ) ( ) ( )l l l lJ Y l x y J x Y y Y x J y′ ′ ′= − , 

( , , ) ( ) ( ) ( ) ( )l l l lJ Y l x y J x Y y Y x J y′ ′ ′ ′ ′ ′= − . 
Multiplying left and right parts of the equation (27) 

by the functions 1cos[ ( )( / 2)]l p φ − γ , 0,1,2,...p =  and 
integrating the result at the interval [ / 2;  ( ) / 2]γ π − γ , 
at which the system of these functions is orthogonal, we 
obtain: 
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whence the amplitude of the p -th partial mode in 
the region I (Fig. 2) is defined as follows 
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In the formulas (30), (31), the following designa-
tions are used: 

 

( )/2

1 2 1
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γ
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0pδ  is the Kronecker delta. 

In the same way, the amplitude of the p -th partial 
mode in the region I (Fig. 2) can be derived from the 
expression (28) 
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Having equated (31) and (32), one can obtain 
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By simplifying the expression (33), we obtain 
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Multiplying left and right parts of the equation (29) 
by the system of functions 2sin[ ( ) ]l q φ , 0,1,2,...q =  and 
integrating the resulting relation at the disjunction of in-
tervals [0;  / 2] [( ) / 2;  / 2]γ ∪ π − γ π , we get 
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Simplifying the expression (35) yields the following 
result: 
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where 2 2 2( , , , ) ( , ) [ ( ), , ]F q m y z I q m J Y l m y z′ ′= . 
Having united the systems of equations (34), (36) 

and limiting the number of partial modes in the region 
II, we obtain the following homogeneous SLAE with 
unknown partial mode amplitudes mB : 

 

1

1 c c c
0

1

2 c c
0

( , , , , ) 0, 0,1,...,( 1)

( , , , ) 0, 0,1,...,( 1)

M

m
m

M

m
m

B F p m k a k b k d p P

B F q m k b k d q M P

−

=
−

=


= = −



 = = − −


∑

∑

 (37) 

 

At fixed number of partial modes M , the number of 
equations of the first type is defined by the angular 
widths ratio of the regions I and II (Fig. 2) as 

int[ 2 ) / ]P M= π − γ π , where integer part is rounded up 
or down [27]. 

The SLAE (37) can be rewritten in the matrix form 
by the formula (19), but the matrix [ ]F  elements are 
different: 

 

1 c c c

2 c c

( , , , , ),              0,1,...,( 1)
( , )

(( ), , , ), ,( 1),...,( 1)

F i j k a k b k d i P
F i j

F i P j k b k d i P P M

= −
=  − = + −

. 

The condition of nontrivial solution of the homoge-
neous SLAE (37) is the equality to zero of the matrix 
[ ]F  determinant. This condition defines the cutoff 
mode numbers of TE modes. The cutoff wave numbers 
calculated are to be substituted in homogeneous SLAE 
(37). The further solution of the TE modes problem is 
the same as the one described hereinbefore for the TEM 
mode except for the calculation of electric and magnetic 
fields components distributions. The distributions of 
longitudinal component of magnetic field zH  in the re-
gions I and II (Fig. 2) can be defined by the formulas 
(20), (21). The magnetic field solution for the entire 
cross section of CQRW is found by using the symmetry 
or the antisymmetry properties of the TE modes. Trans-
versal components of magnetic and electric fields are 
defined by using the formulas (38)─(41) connecting 
longitudinal and transversal field components (in which 
for the TE modes 0zE ≡ ): 
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c
2

cc

( , )( , ) ( , )i
( , ) z z

r
Z f kE r H r

E r
r k rk

∂ φ ∂ φβφ = − −
∂ ∂φ

;  (38) 

c
2

cc

( , )( , ) ( , )i
( , ) z zZ f kE r H r

E r
k rk r

φ
∂ φ ∂ φβφ = − +

∂φ ∂
; (39) 

c
2

cc

( , )( , ) ( , )i
( , ) z z

r
Y f kH r E r

H r
r k rk

∂ φ ∂ φβφ = − +
∂ ∂φ

;  (40) 

c
2

cc

( , )( , ) ( , )i
( , ) z zY f kH r E r

H r
k rk r

φ
∂ φ ∂ φβφ = − −

∂φ ∂
,  (41) 

where cac /i2),( kfkfY επ= ; β  denotes the longitudi-

nal mode number of CQRW; i  designates an imaginary 
unit; f  is the operating frequency; aε  defines the ab-

solute permittivity of CQRW inner medium. 

TE modes symmetric relative to the plane 
2/π=ϕ  

In the regions I and II (Fig. 3), we represent the 
fields zH  and Eφ  in the form of infinite sums 

(20)─(23) of the partial modes with unknown ampli-
tudes and cutoff wave numbers. Each partial mode sat-
isfies the Maxwell equations in the cylindrical coordi-
nate system and boundary conditions at the two mag-
netic walls or at the magnetic and electric walls as well 
as at the perfectly conducting surfaces of CQRW, 
where 1( ) 4 / ( 2 )l n n= π π − γ , 2( ) 4 2l m m= +  for the TE 
modes with antisymmetric EFD relative to the plane 

/ 4φ = π  (for which this plane is the electric wall) or 

1( ) 2 (2 1) / ( 2 )l n n= π + π − γ , 2( ) 4 4l m m= +  for the TE 
modes with symmetric EFD relative to the plane 

/ 4φ = π  (for which this plane is the magnetic wall). 
The boundary conditions at the interface between 

the regions I and II (Fig. 3) are as follows: 
 

II ( ,  [ / 2; / 4])E r dφ = φ∈ γ π =  
I ( ,  [ / 2; / 4])E r dφ= = φ∈ γ π ; (42) 

II ( ,  [ / 2; / 4])zH r d= φ∈ γ π =  
I ( ,  [ / 2; / 4])zH r d= = φ∈ γ π . (43) 

 
Besides, there is the following relation at the per-

fectly conducting surface of the ridge at dr =  and 
]2/ ;0[ γ∈ϕ : 

 
II ( ,  [0;  / 2]) 0E r dφ = φ∈ γ = . (44) 

Substituting (20)─(23) in (42)─(44) yields the re-
sults: 

 

2 2 c c
0

sin[ ( ) ] [ ( ), , ]m
m

B l m J Y l m k b k d
∞

=
′ ′φ =∑  

1 1 c c
0

cos[ ( )( / 2)] [ ( ), , ]n
n

A l n J Y l n k a k d
∞

=
′ ′= φ − γ∑ , 

]4/ ;2/[ πγ∈ϕ ;  (45) 

2 2 c c
0

sin[ ( ) ] [ ( ), , ]m
m

B l m J Y l m k b k d
∞

=
′φ =∑  

1 1 c c
0

cos[ ( )( / 2)] [ ( ), , ]n
n

A l n J Y l n k a k d
∞

=
′= φ − γ∑ , 

]4/ ;2/[ πγ∈ϕ ; (46) 

2 2 c c
0

sin[ ( ) ] [ ( ), , ] 0m
m

B l m J Y l m k b k d
∞

=
′ ′φ =∑ , 

]2/ ;0[ γ∈ϕ . (47) 
 

Multiplying left and right parts of the equation (45) 
by the system of functions 1cos[ ( )( / 2)]l p φ − γ , 

0,1,2,...p =  and integrating the resulting relation at the 

interval ]4/ ;2/[ πγ , at which the system of these func-
tions is orthogonal, we obtain: 

 

1 2 c c
0

( , ) [ ( ), , ]m
m

B I p m J Y l m k b k d
∞

=
′ ′ =∑  

0 1 c c
2

(1 ) [ ( ), , ]
8p pA J Y l p k a k d

π − γ ′ ′= + δ  (48) 

 

for the TE modes with antisymmetric EFD relative 
to the plane / 4φ = π ; 

 

1 2 c c
0

( , ) [ ( ), , ]m
m

B I p m J Y l m k b k d
∞

=
′ ′ =∑  

1 c c
2

[ ( ), , ]
8pA J Y l p k a k d

π − γ ′ ′=  (49) 

 

for the TE modes with symmetric EFD relative to 
the plane / 4φ = π . 

By using relations (48), (49), the amplitude of the  
p -th partial mode in the region I (Fig. 3) can be ob-

tained: 

1 2 c c
0

0 1 c c

8 ( , ) [ ( ), , ]

( 2 )(1 ) [ ( ), , ]

m
m

p
p

B I p m J Y l m k b k d
A

J Y l p k a k d

∞

=
′ ′

=
′ ′π − γ + δ

∑
, (50) 

 

for the TE modes with antisymmetric EFD relative 
to the plane / 4φ = π ; 
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1 2 c c
0

1 c c

8 ( , ) [ ( ), , ]

( 2 ) [ ( ), , ]

m
m

p

B I p m J Y l m k b k d

A
J Y l p k a k d

∞

=
′ ′

=
′ ′π − γ

∑
. (51) 

 

for the TE modes with symmetric EFD relative to 
the plane / 4φ = π . 

In the formulas (48)─(51), we have believed that 
 

/4

1 2 1
/2

( , ) sin[ ( ) ]cos[ ( )( / 2)]dI p m l m l p
π

γ

= φ φ − γ φ∫ . 

 

In the same way, the amplitude of the p -th partial 
mode in the region I (Fig. 3) can be derived from (46): 

 

1 2 c c
0

0 1 c c

8 ( , ) [ ( ), , ]

( 2 )(1 ) [ ( ), , ]

m
m

p
p

B I p m J Y l m k b k d
A

J Y l p k a k d

∞

=
′

=
′π − γ + δ

∑
 (52) 

 

for the TE modes with antisymmetric EFD relative 
to the plane / 4φ = π ; 

 

1 2 c c
0

1 c c

8 ( , ) [ ( ), , ]

( 2 ) [ ( ), , ]

m
m

p

B I p m J Y l m k b k d

A
J Y l p k a k d

∞

=
′

=
′π − γ

∑
 (53) 

 

for the TE modes with symmetric EFD relative to 
the plane / 4φ = π . 

Having equated (50) to (52) or (51) to (53) one can 
obtain (33) and (34) received in the previous section. 

Next we multiply left and right parts of the equation 
(47) by the system of functions 2sin[ ( ) ]l q φ , 0,1,2...q =
, and integrate the resulting relation at the interval 
[0;  / 2]γ . As a result, we obtain (35), where 

 

/2

2 2 2
0

( , ) sin[ ( ) ]sin[ ( ) ]dI q m l m l q
γ

= φ φ φ∫ . 

 

The further course of solving the problem is the 
same as that described in the previous section. 

TM modes antisymmetric relative to 
the plane 2/π=ϕ  

The TM eigenmodes designations introduced in this 
section coincide with the ones given above for the TEM 
mode and the TE modes. In the regions I and II (Fig. 2), 
we represent the fields zE  and Hφ  in the form of infi-

nite sums of the partial modes with unknown ampli-
tudes and cutoff wave numbers, each of which satisfies 
the Maxwell equations in the cylindrical coordinate sys-
tem and boundary conditions at the magnetic, electric 
walls as well as at the perfectly conducting surfaces of 
CQRW (see Fig. 2): 

 

I
1

0

( , ) sin[ ( )( / 2)]z n
n

E r A l n
∞

=
φ = φ − γ ×∑  

1 1 1 1( ) c ( ) c ( ) c ( ) c[ ( ) ( ) ( ) ( )]l n l n l n l nJ k a Y k r Y k a J k r× − ; (54) 

II
2

0

( , ) cos[ ( ) ]z m
m

E r B l m
∞

=
φ = φ ×∑  

2 2 2 2( ) c ( ) c ( ) c ( ) c[ ( ) ( ) ( ) ( )]l m l m l m l mJ k b Y k r Y k b J k r× − ;(55) 

I
c 1

0

( , ) ( , ) sin[ ( )( / 2)]n
n

H r Y f k A l n
∞

φ
=

φ = φ − γ ×∑  

1 1 1 1( ) c ( ) c ( ) c ( ) c[ ( ) ( ) ( ) ( )]l n l n l n l nJ k a Y k r Y k a J k r′ ′× − ; (56) 

II
c 2

0

( , ) ( , ) cos[ ( ) ]m
m

H r Y f k B l m
∞

φ
=

φ = φ ×∑  

2 2 2 2( ) c ( ) c ( ) c ( ) c[ ( ) ( ) ( ) ( )]l m l m l m l mJ k b Y k r Y k b J k r′ ′× − , (57) 
 

where 1( ) 2 ( 1) / ( 2 )l n n= π + π − γ ; 2( ) 2 1l m m= + ; nA  

and mB  are unknown amplitude coefficients, ( )lJ x , 

( )lY x , ( )lJ x′ , ( )lY x′  are Bessel functions of the first 

and the second kind and their derivatives, ck  is a cutoff 
wave number. 

The boundary conditions at the interface between 
the regions I and II (Fig. 2) are as follows: 

 

II ( ,  [ / 2;  ( ) / 2])zE r d= φ∈ γ π − γ =  
I ( ,  [ / 2;  ( ) / 2])zE r d= = φ∈ γ π − γ ;  (58) 

II ( ,  [ / 2;  ( ) / 2])H r dφ = φ∈ γ π − γ =  
I ( ,  [ / 2;  ( ) / 2])H r dφ= = φ∈ γ π − γ . (59) 

 

Besides, at the perfectly conducting surfaces of 
ridges at r d=  and [0;  / 2] [( ) / 2;  / 2]φ∈ γ ∪ π − γ π : 

 

II ( ,  [0;  / 2] [( ) / 2;  / 2]) 0zE r d= φ∈ γ ∪ π − γ π = . (60) 
 

Substituting (54)–(57) in (58)–(60), we obtain 
 

2 2 c c
0

cos[ ( ) ] [ ( ), , ]m
m

B l m JY l m k b k d
∞

=
φ =∑  

1 1 c c
0

sin[ ( )( / 2)] [ ( ), , ]n
n

A l n JY l n k a k d
∞

=
= φ − γ∑ , 

[ / 2;  ( ) / 2]φ∈ γ π − γ ;  (61) 

2 2 c c
0

cos[ ( ) ] [ ( ), , ]m
m

B l m JY l m k b k d
∞

=
′φ =∑  

1 1 c c
0

sin[ ( )( / 2)] [ ( ), , ]n
n

A l n JY l n k a k d
∞

=
′= φ − γ∑ , 

[ / 2;  ( ) / 2]φ∈ γ π − γ ; (62) 
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2 2 c c
0

cos[ ( ) ] [ ( ), , ] 0m
m

B l m JY l m k b k d
∞

=
φ =∑ , 

[0;  / 2] [( ) / 2;  / 2]φ∈ γ ∪ π − γ π , (63) 
 

where ( , , ) ( ) ( ) ( ) ( )l l l lJY l x y J x Y y Y x J y= − , 

( , , ) ( ) ( ) ( ) ( )l l l lJY l x y J x Y y Y x J y′ ′ ′= − . 
Multiplying left and right parts of the equation (61) 

by the system of functions 1sin[ ( )( / 2)]l p φ − γ , 
0,1,2,...p =  and integrating the result at the interval 

[ / 2;  ( ) / 2]γ π − γ , at which the system of these func-
tions is orthogonal, we obtain 

 

1 2 c c
0

( , ) [ ( ), , ]m
m

B I p m JY l m k b k d
∞

=
=∑  

1 c c
2

( ( ), , )
4pA JY l p k a k d

π − γ= , (64) 

 

whence it follows, that the amplitude of the p -th 
partial mode in the region I (Fig. 2) is expressed as 

 

1 2 c c
0

1 c c

4 ( , ) [ ( ), , ]

( 2 ) [ ( ), , ]

m
m

p

B I p m JY l m k b k d

A
JY l p k a k d

∞

==
π − γ

∑
. (65) 

 

In the formulas (64), (65), the following designation 
is assumed 

 

( )/2

1 2 1
/2

( , ) cos[ ( ) ]sin[ ( )( / 2)]dI p m l m l p
π−γ

γ

= φ φ − γ φ∫ . 

 

In the same way, the amplitude of the p -th partial 
mode in the region I (Fig. 2) can be obtained from (62). 
As a result, we get 

 

1 2 c c
0

1 c c

4 ( , ) [ ( ), , ]

( 2 ) [ ( ), , ]

m
m

p

B I p m JY l m k b k d

A
JY l p k a k d

∞

=
′

=
′π − γ

∑
. (66) 

 

Having equated (65) to (66), one can easily obtain 
 

2 c c
1

0 1 c c

[ ( ), , ]
( , ){

[ ( ), , ]m
m

JY l m k b k d
B I p m

JY l p k a k d

∞

=
−∑  

2 c c

1 c c

[ ( ), , ]
} 0

[ ( ), , ]

JY l m k b k d

JY l p k a k d

′
− =

′
. (67) 

 

Let us introduce the following designation: 
 

2
1 1

1

[ ( ), , ]
( , , , , ) ( , ){

[ ( ), , ]

JY l m y z
F p m x y z I p m

JY l p x z
= −  

2

1

[ ( ), , ]
}

[ ( ), , ]

JY l m y z

JY l p x z

′
−

′
. 

Using this designation, the relation (67) can be re-
written by the formula (34). 

Next, we multiply left and right parts of the equation 
(63) by the system of functions 2cos[ ( ) ]l q φ , 

0,1,2,...q =  and integrate the result at the disjunction of 
intervals [0;  / 2] [( ) / 2;  / 2]γ ∪ π − γ π . In the issue, we 
obtain 

 

2 2 c c
0

( , ) [ ( ), , ] 0m
m

B I q m JY l m k b k d
∞

=
=∑ ,  (68) 

 

where 
/2

2 2 2
0

( , ) cos[ ( ) ]cos[ ( ) ]dI q m l m l q
γ

= φ φ φ +∫  

/2

2 2
( )/2

cos[ ( ) ]cos[ ( ) ]dl m l q
π

π−γ

φ φ φ∫ . 

 

Introducing the designation 2( , , , )F q m y z =  

2 2( , ) [ ( ), , ]I q m JY l m y z= , we can rewrite (68) by the 
formula (36). The further way of solving the problem is 
the same as that described hereinbefore for the TE 
eigenmodes. 

TM modes symmetric relative to 
the plane 2/π=ϕ  

In the regions I and II (Fig. 3), we represent the 
fields zE  and Hφ  in the form of infinite sums (54)–

(57) of the partial modes with unknown amplitudes and 
cutoff wave numbers, each of which satisfies the Max-
well equations in the cylindrical coordinate system as 
well as boundary conditions at the two magnetic walls 
or at the magnetic and electric walls and at the perfectly 
conducting surfaces of CQRW, where 

1( ) 4 ( 1) / ( 2 )l n n= π + π − γ , 2( ) 4 2l m m= +  for the TM 
modes with antisymmetric EFD relative to the plane 

/ 4φ = π  (for them this plane is the electric wall) or 

1( ) 2 (2 1) / ( 2 )l n n= π + π − γ , 2( ) 4l m m=  for the TM 
modes with symmetric EFD relative to the plane 

/ 4φ = π  (for them this plane is the magnetic wall). 
The boundary conditions at the interface between 

the regions I and II (Fig. 3) are as follows: 
 

II ( ,  [ / 2;  / 4])zE r d= φ∈ γ π =  
I ( ,  [ / 2;  / 4])zE r d= = φ∈ γ π ; (69) 

II ( ,  [ / 2;  / 4])H r dφ = φ∈ γ π =  
I ( ,  [ / 2;  / 4])H r dφ= = φ∈ γ π .  (70) 

 

Besides, at the perfectly conducting surface of the 
ridge at r d=  and [0;  / 2]φ∈ γ  we have: 

II ( ,  [0;  / 2]) 0zE r d= φ∈ γ = . (71) 
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Having substituted (54)–(57) in (69)–(71), we ob-
tain: 

 

2 2 c c
0

cos[ ( ) ] [ ( ), , ]m
m

B l m JY l m k b k d
∞

=
φ =∑  

1 1 c c
0

sin[ ( )( / 2)] [ ( ), , ]n
n

A l n JY l n k a k d
∞

=
= φ − γ∑ , 

[ / 2;  / 4]φ∈ γ π ;  (72) 

2 2 c c
0

cos[ ( ) ] [ ( ), , ]m
m

B l m JY l m k b k d
∞

=
′φ =∑  

1 1 c c
0

sin[ ( )( / 2)] [ ( ), , ]n
n

A l n JY l n k a k d
∞

=
′= φ − γ∑ , 

[ / 2;  / 4]φ∈ γ π ; (73) 

2 2 c c
0

cos[ ( ) ] [ ( ), , ] 0m
m

B l m JY l m k b k d
∞

=
φ =∑ , 

[0;  / 2]φ∈ γ . (74) 
 
Multiplying left and right parts of the equation (72) 

by the system of functions 1sin[ ( )( / 2)]l p φ − γ , 
0,1,2,...p =  and integrating the result at the interval 

[ / 2;  / 4]γ π , at which the system of these functions is 
orthogonal, we obtain 

 

1 2 c c
0

( , ) [ ( ), , ]m
m

B I p m JY l m k b k d
∞

=
=∑  

1 c c
2

[ ( ), , ]
4pA JY l p k a k d

π − γ= , (75) 

 
whence it follows that the amplitude of the p -th 

partial mode in the region I (Fig. 3) can be found as 
 

1 2 c c
0

1 c c

4 ( , ) [ ( ), , ]

( 2 ) [ ( ), , ]

m
m

p

B I p m JY l m k b k d

A
JY l p k a k d

∞

==
π − γ

∑
. (76) 

 
It is assumed that in the formulas (75), (76) 

/4

1 2 1
/2

( , ) cos[ ( ) ]sin[ ( )( / 2)]dI p m l m l p
π

γ

= φ φ − γ φ∫ . 

In the same way, the amplitude of the p -th partial 
mode in the region I (Fig. 3) can be obtained from the 
expression (73) 

1 2 c c
0

1 c c

4 ( , ) [ ( ), , ]

( 2 ) [ ( ), , ]

m
m

p

B I p m JY l m k b k d

A
JY l p k a k d

∞

=
′

=
′π − γ

∑
. (77) 

Having equated (76) to (77), one can easily obtain 
(67) and (34). 

Next, multiplying left and right parts of the equation 
(74) by the system of functions 2cos[ ( ) ]l q φ , 

0,1,2,...q =  and integrating the result at the interval 
[0;  / 2]γ , we obtain (68), where 

/2

2 2 2
0

( , ) cos[ ( ) ]cos[ ( ) ]dI q m l m l q
γ

= φ φ φ∫ . 

The further way of solving the problem is the same 
as that described in the previous section. 

Convergence of cutoff wave number solutions 

In this section we carry out the convergence analysis 
of cutoff wave number solutions depending on the 
number of partial modes M  limiting the sums in (18), 
(37). The calculations have been performed for the both 
CQRW configurations depicted in Fig. 1. As can be 
seen in this Figure, for both configurations of CQRW 
the regions I and III are bounded by the three perfectly 
conducting surfaces of CQRW and by the interface of 
regions. The region II is bounded by two magnetic 
walls, by four perfectly conducting surfaces of CQRW 
and by two interfaces between the regions. Therefore, 
all formulas remain the same for both configurations. 

For the CQRW with ridges on inner cylinder we set 
the ridges angle and dimensions ratios as follows:   γ  = 

10°, 30°, 50°, ba /  = 0.5, bdb /)( −  = 0.1, and for the 
CQRW with ridges on outer cylinder: γ  = 10°, 30°, 

50°, ab /  = 0.5, abd /)( −  = 0.1. Residual errors δ  (

%100)30(/)]30()([ ccc ×−=δ kkMk ) plots for cutoff 

wave numbers of the first three TE modes and the first 
TM mode of CQRW versus the number of partial 
modes M  are shown in Fig. 4–6. Herewith residual er-
rors for the first, the second, the third TE modes and for 
the first TM mode are shown by solid, dashed, dash-
dotted and dotted lines respectively. The results for the 
CQRW with ridges on inner cylinder are shown in Fig. 
4а–6a, and the ones for the CQRW with ridges on outer 
cylinder are depicted in Fig. 4b–6b. The residual errors 
are calculated relative to the cutoff wave numbers ob-
tained at M = 30. 

As can be seen in Figures 4–6, the residual errors for 
cutoff wave numbers decrease as the ridges angle γ  in-
creases. Having compared Fig. 4а–6a with Fig. 4b–6b, 
one can see that the residual errors of cutoff wave num-
bers of the first three TE modes for the CQRW with 
ridges on outer cylinder are less than the ones for the 
CQRW with ridges on inner cylinder for the same rela-
tive value of the gaps between ridges and perfectly con-
ducting circular cylinder. For the first TM mode these 
residual errors are almost the same for both CQRW 
configurations. 
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As one can see in Fig. 4–6, taking into account 27 par-
tial modes provides the residual errors of cutoff wave 
numbers of the first three TE modes and the first TM 
mode less than 0.1 % comparatively with the values of 
cutoff wave numbers obtained in the case of 30 partial 
modes. Consequently, it is enough to use 27 partial modes 
for the calculation of the CQRW cutoff wave numbers for 
both configurations by the transverse field-matching tech-
nique with the residual error less than 0.1%. 

Convergence of electric field solutions 

Now we analyze solutions convergence of EFD for 
the TEM mode and the first TE mode depending on the 
number of partial modes M  limiting the sums in (18), 
(37). The calculations have been performed for both 
CQRW configurations depicted in Fig. 1 with the same 
dimensions ratios as the ones that were set during the 
solutions convergence analysis for cutoff wave numbers 
and the angle γ  = 30°. The TEM mode’s EFD are 
shown in Fig. 7, 8, and EFD of the first TE mode are 
depicted in Fig. 9, 10. The electric field radial compo-
nent’s distributions ]) ;0[ ,( π∈ϕ= drE r  computed at 
the interface between the regions I, II and III (see Fig. 
1) are presented in Fig. 7, 9, and the distributions for 
the azimuthal one ]) ;0[ ,( π∈ϕ=ϕ drE  are shown in 

Fig. 8, 10. In Fig. 7–10 the results obtained utilizing 10, 
20, 30 partial modes are shown by dotted, dashed and 
solid lines respectively. 

  

(a) 

 

(b) 

Fig. 4. Cutoff wave numbers residual errors versus the num-
ber of partial modes for coaxial quad-ridged waveguides with 
ridges: (a) on inner conducting circular cylinder; (b) on outer 
conducting circular cylinder. 

 

(a) 

  

(b) 

Fig. 5. Cutoff wave numbers residual errors versus the num-
ber of partial modes for coaxial quad-ridged waveguides with 
ridges: (a) on inner conducting circular cylinder; (b) on outer 
conducting circular cylinder. 

  

(a) 
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(b) 

Fig. 6. Cutoff wave numbers residual errors versus the num-
ber of partial modes for coaxial quad-ridged waveguides with 
ridges: (a) on inner conducting circular cylinder; (b) on outer 
conducting circular cylinder. 

 
As one can see in Fig. 7–10, the EFD becomes more 

narrow and sharp in the vicinity of the peak values as 
the number of partial modes M  increases. These sharp 
rises of electric field are caused by the singularity of the 
field’s behavior at the ridge. The more partial modes 
are used in the EFD computing, the more accurate their 
sum approximates this singularity. The field behavior in 
the vicinity of the ridges’ edges and in the gaps between 
the ridges and circular cylinders of CQRW for both 
configurations is in good agreement with the behavior 
of electric field of the fundamental TE mode of sectoral 
coaxial ridged waveguides [26]. 

 

 

(a) 

 

(b) 
Fig. 7. TEM mode electric field radial component distribution 
for coaxial quad-ridged waveguides with ridges: (a) on inner 
conducting circular cylinder; (b) on outer conducting circular 
cylinder (parameter is a number of partial modes M). 

 

(a) 

 

(b) 

Fig. 8. TEM mode electric field azimuthal component distri-
bution for coaxial quad-ridged waveguides with ridges: (a) 
on inner conducting circular cylinder; (b) on outer conducting 
circular cylinder (parameter is a number of partial modes M). 
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As one can see in Fig. 9, 10, for the first TE mode in 
CQRW the electric field components distributions con-
verge sufficiently fast and depend on the number of 
used partial modes weakly. The different situation is 
observed for the EFD of the TEM mode (see Fig. 7, 8). 
In the case of using of 10 or 20 partial modes the distri-
bution of the radial electric field component rE  of the 
TEM mode in the vicinity of the gap between the ridge 
and the circular cylinder of CQRW is not as uniform as 
in the case of utilizing of 30 partial modes. This distri-
bution should be close to the uniform one, because the 
behavior of the radial electric field component in the 
gap between the ridge and the cylindrical surface is the 
same as for the fundamental TE mode of sectoral coaxi-
al ridged waveguides [26]. Consequently, for the cor-
rect calculation of CQRW modes’ field distributions by 
transverse field-matching technique one should utilize 
more than 30 partial modes. 

 

(a) 

 

(b) 
Fig. 9. The first TE mode electric field radial component dis-
tribution for coaxial quad-ridged waveguides with ridges: (a) 
on inner conducting circular cylinder; (b) on outer conducting 
circular cylinder (parameter is a number of partial modes M). 

 

(a) 

 

(b) 
Fig. 10. The first TE mode electric field azimuthal compo-
nent distribution for coaxial quad-ridged waveguides with 
ridges: (a) on inner conducting circular cylinder; (b) on outer 
conducting circular cylinder (parameter is a number of partial 
modes M). 

Conclusion 

The boundary problem for eigenmodes in coaxial 
quad-ridged waveguides has been solved by transverse 
field-matching technique. The formulas obtained pro-
vide possibilities to compute cutoff wave numbers and 
electric and magnetic fields distributions for the TEM, 
the TE and the TM modes in the presence of the ridges 
either on the inner or on the outer perfectly conducting 
cylinder. It has been shown that for the calculation of 
cutoff wave numbers by transverse field-matching 
technique with residual error less than 0.1 % it is 
enough to utilize 27 partial modes, and for the correct 
calculation of the field distributions one should utilize 
more than 30 partial modes. 
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