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AN IMPROVED PREDICTION OF DCT-BASED IMAGE FILTERS
EFFICIENCY USING REGRESSION ANALYSIS

Oleksii S. Rubel, Volodymyr V. Lukin
National Aerospace University “KhAl”, Kharkiv, Ukirze

Efficiency of DCT-based filters for a wide-classiwfages is investigated. The study is carried auadditive white Gaussian noise
(AWGN) case with several intensity levels. Local Dlased filter is used as basic denoising technitjoalocal BM3D filter
known as the state-of-the-art technique for AWGNaweal is also exploited. A precise prediction mdtbbdenoising efficiency for
several quality metrids proposed. It is shown that statistics of DCTfficients provides useful information. Regressioodels for
analyzed filters and metrics are presented. Thairadtt dependence approximations of quality metmic®CT statistics have high
goodness of fit. One-parameter and multi-paranfiéieg cases are considered. The most valuable Bré@fistics are found.

Introduction formation redundancy of similar image patches (kdc
Noise is the one of the most destructive factoas thg.zllgﬁ:egeggfégs\z ea:jngde pgr;\fﬂo?:g f(ﬁ(t)(l,lf Fﬁrglrﬁ edset;m%s
affects visual quality of images [1]. Loss of visqaal- the-art nonlocal techni(,que for AWGN (additive white

ity can decrease performance of image processing Waussian noise) removal. Note that, in additiosinai-

plic_ations s_ignificantly. For instance, quality iefages lar patch collecting, the BM3D uses DCT as the $asi
delivered via Internet and networks could be redune for joint processing of data in patch sets.

r|j|(<)elrs1§e tr;gt P(?\z d:pbpeettagred e?ftorlrrr?:r?Se ?gﬁ:fétﬁog sltiage.lt is obvious that image characteristics influedee
tions o,f no?s iMages so?ne image pre-filterin Ap noising efficiency. In [5], attention was paid te-d
y ges, gep gcero noising of texture images. For this case, efficien€

dure is often needed. the DCT-based filters is low and denoising can some

Furthermore, it can be important to assess V'S%es even lead to evident distortions. Meanwlsleh

quality of analyzed images. Such knowledge can lﬁ?[ers can effectively process less complex imagas

e s S, Jueelo, 572 i basis, 11 desiae ( e Some imagecctr
9 9 tics or quantitative parameters in order to camy

beneficial for a given image? If degradation dugrie- rough prediction of denoising efficiency.

zzgtbr(]aOIeSIiemlifla?:e”(??rnc:n;nthc:a”?rlr?;lemc])??tes ?enc:otr?lieéo Currently, some quality assessments without refer-
swer would be positive. If not ige noise re?noléiids ence image [6] and efficiency bounds have been pro-
P ’ P posed [7]. Degradation of locally distributed imdga-

IjooleosssngI 'gigﬁ fier’]atili; ZS :ngnx':rl:(?érﬂgﬁlt'tytﬁgea:;s tures (e.g. decomposition of local image gradieatrix
. 9 . ’ ! g‘f) under noise conditions is one criterion thah de
would be negative. The paper is devoted to ansgeri

h i b 7i dicti f denaisi sed. Statistics of entire image is used rarelytliis
nese questions by analyzing prediction of deng purpose. Disadvantage of such an approach is time co
ficiency using simple statistics.

Quite many efficient image denoising technique utational burden which is even higher than fittgrit-

have been proposed in the last decade Amond th elf. Thus, significant requirement arises cleafsg-

. prop o 9 NeBsment (prediction) of denoising efficiency sHoul
techn|que§, orthqgon&la_nsform _based filters [.2] Standhave less computational cost than filtering. Calyai
out by their relatively high efﬂmgncy. Such fituse requirement of precisprediction of denoising efficien-
some transform to represent signal by its spectru should be consistent with computational cost
Wavelets, discrete cosine (DCT) or other orthogona The paper is organized as follows. The .Section
transforms are exploited frequently for this purpos.. rief theory” considers efficient DCT balsed filtand
Sparseness and compactness of spectrum repre&mntq e proposed prediction method. The next Sectidh “E
of a signal allow removing “noisy” spectrum compoz '

. L s ficiency prediction method for DCT-based filterstep
nents. High denoising efficiency has been demotestra . . . .
by the DCT filter in [3]. sents some informative graphics to provide better u

Several efficient nonlocal denoising techni ue&haderstanding of how the method works. The Section
g nique VPreliminaries” describes test database of images a
been proposed recently as well. Nonlocal filters ims

modeling process. Sections “One-parameter fitteugyl
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“Multi-parameter fitting” show the method perfornean especially in the sense of preserving true imagdailde
depending upon the number of DCT statistics used flm other words, there is a certain bound of effitie
prediction. "Prediction performance improvementt-se noise removal without distorting a true signal. $hit
tion presents final method with reduced computationcan be expected that DCT statistics determine dergpi
burden. efficiency of the analyzed filters. The necessitysoch
Brief theory bound assessment is evidgnt. . '
Statistics of DCT coefficients has been intensively
In our study, two DCT-based denoising techniquegudied. It has been established that probabiktysity
were chosen, namely, the DCT filter (its basic is function of DCT coefficients is not Gaussian andg ha
[3] and the BM3D filter (block matching and 3D @t heavy tails [9, 10]. Noise presence can signifigant
ing) [4]. The general denoising mechanism of thes#ange distribution of DCT coefficients compared to
techniques lies in nonlinear block-wise processifig noise-free statistics.
image local spectrum. Its basic task consists more In [11], it is shown that denoising efficiency tsist-
ing “noisy” components. “Noisy” means that the predy connected with probabilitieB,, andP, 7, . Here,P,,
ence of true signal in a certain spectrum comporgentdenotes value of probability that absolute DCT fioef
inessential and noise has the main contributionis It cient value does not exceed.ZThis parameter shows
reasonable to “remove” such spectrum componentsriough estimation of noise presence in image. Ireroth
blocks and to replace them by zeros (if the scedall words,P,, is average amount of noisy components with

hard thresholding is applied) weak signal constituent which can be misded, de-
fines probability that absolute DCT coefficient wal
B (kl) — B,(kl)> L&, exceeds the threshold 2,7 This parameter shows
Bout (K.I) :{ 0. B (K)<pH (1)  amount of kept components or components with strong
- N\ /= '

signal constituent. Note th&, + P,z < 1, thus, these

probabilities are mutually dependent.
whereBy, is the filtered spectrum blocR,is the adjust- Basically, mean values d¥,, and P, are used as
ing parameterc denotes AWGN standard deviationcharacterization parameters of images. Based an, the
where By, is “noisy” input image spectrum block, andy prediction technique using linear regression yaisl
indices for DCT components in each 8xf_3 blocklare \yas proposed in [12]. It implies one of two protisibs
0..7,1 = 0..7. The optimal value df for wide-class of through the following expressions for predicting #fa-
images lies in the range 2,4...2,8 [8]. Decreasindesf tjg MSE,/6° (where MSE denotes output MSE of

noising efficiency due to non-optimal value setting pCTE or BM3D filters and AWGN variance® is as-
this range is insignificant. For simplicitp, value equal sumed a priori known):

to 2,7 and fixed can be used.

It is worth to note that the most efficient denoggis
reached in the case of fully-overlapping image kdoc
Values in a given pixel that are restored from tager
ping blocks containing this pixel are different. et a (MSEupcrr /0% Jeg= 1.86P2 52, ©)
joint (final filtered) value, these values are agad.

The BM3D filter exploits the above mentioned de- ’ 5
noising mechanism. This mechanism is applied teta s (MSEouemap /0 Jest= - 2,65+ 2, P+ 0,36 (4)
of blocks collected into 3D array upon condition of
their similarity. Therefore, the first procedurelled (MSE,iam3p /02 et = 2,03320'779_ (5)
“block matching” finds groups of similar blocks cer e
sponding to a reference one. Such 3D array hasn-esse
tial correlation along the third dimension.

Collaborative denoising is performed on such da
array. Along the third dimension, 1D transform & a
plied. Basically it is Haar transform. In this way,s
easy to eliminate noisy components from highly eorr
lated data. Thus, denoising efficiency on images- co
sisting of groups of similar blocks is usually higkg-
gregation of restored blocks into output image és-p
formed in the same way as in the DCT filter.

Note that this denoising mechanism is also restiict

(MSEqupere /67 ey = -2,6P5+ 2,185+ 0,3¢ (2)

These expressions have high goodness of fit
=0,98 and 0,97 foP,, and R°=0,94 both forP, s,
where R? denotes coefficient of determination [13]. It
ranges from 0 to 1 whef®>0,9 means that most of the
variation in the response variable (denoising &fficy)

can be explained by modeled variali®g, (or P, 7).

Due to availability of dependences (2)-(5) obtained
in advance, one can estimag and P, for a given
image before filtering and then to calculSE,/o”
that characterizes predicted denoising efficieroytiie
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two considered filters. However, for the preserapd Table 1) Meanwhile, the obtained approximations for
proximations (3) and (4), a limited number of test IPSNR-HVS-M are fitted with considerably small&’.
ages (only eight) and noise levels (only three)s wahis means that it is desirable to provide a béitigmg.
used. As a result, there is a lack of points tlatez Note thatMSE/c® and IPSNR have the same nature
spond to the cases of low efficiency of filterse@h are (they are strictly interconnected):

textural images and/or small values of AWGN staddar

deviation). It means that the cases that are “hipd" IPSNR=10l0g; (©2/ MSE). (12)
the DCT-based filter are considered and taken acto

COlxlfit;?\/svgf::j(;egtly.roximations for other quality medric Thus, further we will analyze only t¥SNR and
» app 9 Y PSNR-HVS-M dependencies dPy, andP; 7.

were obtalned using the same mebab'“.t'es.' in [14] Let us consider the estimatesRf or P, 7, obtained
Three metrics were analyzelSE/c” as earlier in [12] . .
. for all image blocks. They can be represented st®-i
and two new ones - improvement of PSNRS\R) and grams of distributions, two examples of which are-p
improvement of PSNR-HVS-M [15]IRSNR-HVSM), sented in Fig. 1. These distributions have beeaiobd

both expressed in dB. The last one is the humaanvis for two test images taken from the database TID2013

Zﬁsatle rzne(kj)aisrﬁg ge&'iihthgtﬁgfrﬁ?tﬁrlzzz V:f;{glr;[ggh 1e6] (test imaged\e5 and 18) corrupted by AWGN with
Y 9 9 q . thé same standard deviatioa € 5). It is seen that

goodness of fit data for the two considered prdiiss Co . .
are presented in Table 1 Expressions for the oehﬂainShapeS of the distributions are slightly different.

approximations foMSE/6?, IPSNR andIPSNR-HVS-M 8000
for the DCT filter are the following:
6000
(MSEfo? Jg= -L45P5+ Q455+ 096  (6) 4000/
(MSE/6? )= -L4PZ .+ 22F, 7+ 013 (7) 2000
2 % 02 04 06 08 I
P, —1,92 : : , ,
IPSNRy= 10000exp -| —22—"=1| |, 8 >
Rest ﬁ{ ( 0.63 j j 8) P,
(a)
8000 :
2
P, +0,81
IPINR 4= 100 exp -| ———— , 9 6000 f
Rest { ( 0.53 )
4000 |
2
IPSNR-HVSM o= 100 exp - P ~2,08 ,(10) 2000
0,67
0
0 02 04 06 08 1
B P, 7 +0,98)’ Pro
IPSNR-HVS-M = 100 ex - — o5 (11) )

Fig. 1 Examples oPy, distributions
Table 1. Goodness of fiRf) of the obtained approximations

Thus, a distribution of local estimatesf or P,

Metric P, P57 . ; . . -

MSE/o2 0 578 02555 might contain useful information and such a disttiitin

IPSNR 0;962 0:935 can be described by one or several statisticalnpara
IPSNR-HVSM 0,82 0,78 ters. To characterize a distribution, it is possitd em-

. o ploy distribution mean, median, mode, variancewske
Efficiency pred|Ct|0r_‘ method for DCT-based ness, kurtosis, etc. These parameters are furémerted
filters asM, Med, Mod, Var, S, andK, respectively. Values of

Prediction methods in [12, 14] show high goodneggese parameters for distribution of Ioca}l estimaié
of fitting for metrics MSE/o? and IPSNR (see data in P2 @re given in Table 2 for two analyzed images.
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Table 2. Values of statistical parametersRgr that have different statistics are needed for aupgse.
Image | M Mod | Med | Var S K Values of the considered statistics for the tesiges
N5 064 | 0635 0635 0028 2222 0.0 Must be located over full ranges of possible viariabf
: ' : ] — 1 the considered statistical parameters. Furthermfore,

Nel8 | 070] 0./3] 0.73 003 3,032 0.708 precise approximation of denoising efficiency, dfisu

Clearly, different distributions are characterizeg cient number of samples (points of the scatterpkt)
different sets of basic statistical parameterss fossi- needed. Some test images are shown below in Fig. 2.
ble to characterize a distribution by differentsset sta- S :
tistical parameters and different number of paranset
in a set. So, if we intend to use several statibt@-
rameters for prediction, we should select a progsr
and a proper number of parameters which are thé mo:
important (informative).

From our previous studies [14], the exponential
model (13) seems to be suitable for approximatieg d
pendences of the metritBSNR andIPSNR-HVS-M on
a considered statistical parameter of the distidbut
Besides, such model is simple. This allows assuming
that this model can be also exploited for multi-
parameter fitting with weighting:

Metricy= a* ex Zn:ho, (P)J , (13)
i=1

wherea andb; are approximation factorg); is some pa-
rameter of distributionn defines the number of such
parameters. AsQO;, the distribution mean, median,
mode, variance, skewness and kurtosis could beeohos
Note that in [12, 14] only the mean of the disttibo
was used as single statistical parameter. The riaato
and b, i=1,...n are to be in advance by multidimen-
sional f-dimensional) regression.

Such a regression is carried out as follows. There
a set of images corrupted by noise with a set oamae >
values. These noisy images are filtered with ggttin '
IPINR and IPSNR-HVS-M. Simultaneously, a consid-
ered set of statistical parameters for a givenynioisige
is estimated. Then, this set of parametersIBSNR (or
IPINR-HVS-M) form a multidimensional scatter-plot
where statistical parameters serve as function -argu
ments. Having a set of test images and varianagesal
a set of points is collected. Having such a scauit;
an approximation model (13) is fitted and a setopa-
rameters is obtained.

The choice of statistical parameter(s) is esseftral
denoising efficiency prediction. Comparison of peed
tion performance foe different statistical parametnd
their combinations will be studied later.

Preliminaries

Fig. 2 Some test images
The first task in n-dimensional regression is tecte Various types of images could be taken from the da-
test images. Images with different content (texduper- tabase TID2013 [16] (except the test ima@25 which
centage of pixels that belong to homogenous repioris artificial one), all of size 512x384 pixels (seeam-
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ples in Fig. 1, a-f). Besides, we have considemsaisl Although median of distributions provides better ap
textural test images (e.g., Baboon, Grass, Groand, proximation ofIPSNR-HVSM, the obtained results are
Straw, Fig. 1,9-k) were used, all of size 512x5iX&ls. still not good enough and are worth improving. We e
In aggregate, we had 34 test grayscale images. 4maquect that this improvement can be gained due tdi-mul
the test images, there are only real-world imagiels. dimensional regression.

well seen that the used test images have differemt Table 3. Goodness of one-parameter fit fgr P

tent.

To meet the requirement of sufficient number gf DCT filter BM3D
scatterplot points, a number of noise levels shdéld [~Statistical pa-| IPSNR | IPSNR- | IPSNR | IPSNR-
sufficient, too. The following AWGN levels characte rameters HVSM HVSM
ized by noise standard deviationare used: 2, 3, 5, 8 M 0,963 0,767 0,95 0,76
10, 15. As a result, there are 204 points thatlefmed Med 0,946 0,848 0,932 | 0,845
on full axis range both for the metric and statatipa- Mod 0,727 0,813 | 0,701 0,787
rameters. Var 0,085 0,002 0,099 0,008

s S 0,145 0,413 0,415 0,395
One-parameter fitting K 0428 | 0114 | 0143 011

In this section, the comparison of goodness dbfit Table 4. Goodness of one-parameter fit fof, P
different statistical parameters is presented. @Gessl
of fit R? or so-called coefficient of determination (14) i$ DCT filter BM3D
used as criterion of prediction performance. Thigee | Statistical pa-| IPSNR | IPSNR- | IPSNR | IPSNR-
rion has been also used in previous studies [1]2, 14 rameters HVSM HVSM

There are several definitions & which are only M 0,935 0,723 | 0921 | 0,714
sometimes equivalent. One class of such caseslEglu Med 0919 | 0829 | 0,903 | 0,823
that ofsimple linear regressiomn this casef is simp- Mod 0619 | 0,762 | 0592 0,721
ly the square of the sample Pearsorrelation coeffi- Var 0,166 0,027 0,187 0,041
cientbetween the outcomes and their predicted values. S 0,665 0,597 0,643 0,57

Besides,R is related to mean square errtirde- K 0,452 0,354 0.44 0,339
scribes well performance of prediction using lineay In Table 5, the estimated values of approximation
gression modelsThe most general definition of the co-factors are presented. The scatter-plots for degenies
efficient of determination is of denoising efficiency on one statistical paramsetnd

the fitted curves (approximations shown by solitb$)
R%= 1- SSies/ St (14) are represented in Figs 3-4 for single statispeabhme-

ters which are the best for a given criterion aitterf

whereSS« denotes the sum of squares of residuals, aIE@S 3a-b and 4a-b sholWSNR dependencies on statis-

called the residual sum of squar€Sy is the total sum tical parameters, Flgs 3c-d and 4c-d pres@ENR-
of squares which is proportional to the samplearare. HVSM dependencies.

Thus, to our opinion, the usage R will be enough to Table 5. Approximations coefficients values of dtta ap-
describe goodness of fit for the considered appraxi Pproximations foP,,

tions. Prediction performance for single statigizam- . _
eter is shown below in Table 3 fé%, and in Table 4 |_Filter Metric a by
for P,7. The best one-parameter approximations are DCT IPSNR 0,048 5,606

filter [ IPSNR-HVSM 0,006 7,271
marked by bold. IPS\NR 0,038 5,899
It is seen that for both probabilitie®, andP2%) | BM3D [ [PSNRHVSM 0.002 841

and for both filters the best approximations fBENR . _
are those which use mean of distribution. For the AS it can be seen from Figs 3a-b and 4a-b, the ap-
IPSNR-HVS-M metric, the best approximations are obProximations forlPSNR metric are well fitted for both
served for median of distribution. Expressions fice- filters. Goodness of fit for these cases is expliyte
diction of the considered metrics are the following ~ high (see data in Tables 3 and 4). For fR@\NR-HVS-
M metric, the approximations are fitted not so wile
IPSNR, = a* exp(bl meanp ) (15) R values do not exceed 0,85 but the reason is ttat d
are not clustered so well. Such deviation IBENR-

) HVSM values from can be made up by some addition
IPSNR-HVS-M = a* exp(by, median® ) (16)  gtatistical parameter.
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In Table 5, the estimated values of approximation Table 6. SROCC between statistical parametersfor P
factors are presented. The scatter-plots for degpemnes

of denoising efficiency on one statistical parameisd M Var | Med | Mod S K

the fitted curves (approximations shown by solike$) M - 0268 0988 0906 0666 0569
are reprgsented in Figs 3-4 for s_lngle ;tatlgmhme- Var | 0268 - 0203 0045 0078 -0552
ters, which are the best for a given criterion &dr. ‘
Figs 3a-b and 4a-b sholwS\R dependencies on statis{_Med | 0,988| -0,203 - 0,928 0,697 0,569
tical parameters, Figs 3c-d and 4c-d pred&8\R- Mod | 0,906 -0,045 0,928 - 0,625 0,431
HVSM dependencies. S | 0,666| -0,078 0,697 0625 - 0,794
Table 5. Approximations coefficients values of of¢a ap- K 0,569| -0,5520 0,569 0,431 0,794 -

imati forP,, . . .
proximations 1o A high absolute value of SROCC approaching unity

Filter Metric a by means strong connection between statistical pasamet
DCT IPSNR 0,048 5.606 Thus, joint usage of some statistical parameteatate
filter IPSNR-HVS-M 0,006 7,271 strictly connected is not expected to provide etislen

IPSNR 0,038 5,899 improvement. The use of parameters with weak connec
BM3D | IPSNR-HVSM 0,002 8,41 tion can be helpful but not necessarily.

From Table 6, it is seen that mean, median and mode
Pave the highest SROCC and joint use of these maram
ters would give rather low contribution to predicti
Skewness and kurtosis parameters have intermediate
values of SROCC and, probably, can provide some ad-
ditional information. Variance has lower absolutue
of SROCC than other parameters have. Some combina-

As it can be seen from Figs 3a-b and 4a-b, the
proximations forlPSNR metric are well fitted for both
filters. Goodness of fit for these cases is expmlygte
high (see data in Tables 3 and 4). For fR&NR-HVS
M metric, the approximations are fitted not so wiile
R values do not exceed 0,85 but the reason is ttat d

are not clustered so well. tions of variance with other parameters can beblgt

In addition, 't.Sh.OUIq be stressed thaF statistfu In Table 7, the best combinations for different rum
rameters ofP,, distributions are more suitable than OBers of statistical parameters are presented

P, 7 distributions. Onwards, only the statistical pagam _ .
ters ofP,, distribution will be used. Both for the sense 'able 7. Goodness of the best multi-parameteofit%
of behavior and clos& values presented approxima

. . . . . . Filter Metric Statistical parameters R
tions are consistent with previously obtained agipro
. . M 0,963
mations [14]. Note that, in contrast to [14], a gien M Var 0971
approximation model with less number of coefficient IPSNR M. Var, Mod 0.974
is used in this study. M. Var, Mod, K 0,976
M ulti-parameter fitting ECT M, Var, Med, Mod, S 0,977
iiter Med 0,848
It has been shown, that mean or mediafPgfare M, Var 0,923
quite good for one-parameter fitting. However, tise IPSNR- M, Var, Med 0,926
of only one parameter can be insufficient fBISNR- HVSM M, Var, Med, S 0,927
HVSM prediction. M, Var, Med, Mod, S 0,928
As it has been said, it is possible that the josg of M 0,95
some combinations of the considered statisticalrpar M, Var 0,955
ters is able to improve prediction. For examplés tan IPS\NR M, Var, Mod 0,959
be done by including in a set the best statispeahime- M, Var, Mod, S 0,961
ter obtained for one-parameter fitting and somei—aijM3D M, Var, Med, Mod, S 0,961
tional statistical parameters. On one hand, we evoul MMfld g’ggg
like to have less number of statistical parametesed  Var :
. . . IPSNR- M, Var, S 0,905
in regression. On the other hand, regression shoeld HVS-M M. Var, S K 0.909
Lrgr;;oved considerably compared to single parameter M. Var, Med, S K 0917

To assess mutual connection between analyzed pa-Note that we have analyzed all combinations of dif-
rameters, Spearman rank order correlation coefficieferent number of parameters. Note that for the sed
(SROCC) values have been estimated for all possilsigponential approximation model, the order of paam
pairs of statistical parameters (see data in T@ple



ALEKSEY S. RUBEL, VLADIMIR V. LUKIN: AN IMPROVED PREOCTION OF DCT-BASED IMAGE FILTERS 37

ters is not important. It was found that the corabion
of all analyzed parameters is inefficient.

From the presented data, it is obvious that multi-
parameter fitting has larger goodness of fit thae-o

parameter fitting. Mean and variance of distribagio

I//,/II/,,;II/,llI/,IIII/,II seem to be the most suitable combination of sitzdist
"" '{g /{;I parameters (see the expression (17). These paramete
- I///'I/' serve as the best combination if two different paga
= /z',:,,,'g", , i ters are used:
Zé Z %‘3‘:::@« Z Metrice= a* exp(b, mean®,, ¥b, var, ) (17)
Adding other parameters does not provide essential
improvement of prediction performance. Therefone, t
combination of mean and variance B, distribution
seems to be the most suitable approximation foh bot
metrics and both filters.
"“' Scatter-plots (black circles) of denoising effiagn
dependencies on statistical paramete®,gpfare shown
8 """"""'[""""N """""""'"'/‘df{"*» in Fig 5. The obtained approximations are fittedsas
b 6 ' 'l' """ ""'h "v't',",' hy faces. It can be seen that samples of actual datscat-
&4 'Jlfl:,,l ' '“‘ "I"I" %%1 tered over the larger parts of the considered rafhge-
T ""/""'":"" Mf; b § guments. The used parameters are informative and al
= 2 ? 2% 4?3?(‘ 890, low predicting the denoising efficiency well enough
L 0L The approximation coefficients for all cases are-pr
R sented in Table 8:
0.02 0.4 Table 8. Approximations coefficients values of tigained
Var of P 0.2 Mean of P approximations foPy,
(b) Filter Metric a b, b,
/Il '/Il i III DCT IPSNR 0,023 , 6,338| 7,459
"I;"';III"";II""';/II"'/III,,, filter IPSITII:F){éI;II\éSM 2,2023;1)0 160,58911 367él44c
Il ll I ] ) il N
3 10 Y. %ZJZ:”%%I;”:M"\ BM3D | IPSNRHVSM | 5,324*10° | 12,42 | 41,36
I , Gy
£ s i 2 éfl?@f{%’ﬁ Prediction performance improvement
& KTH;%;’Z"Z« o In previous sections, two probabilitidz, andP; 7,
0 % ;f have been used. The threshold optiows ahd 2,0
0,06 have been selected empirically based on values ofte
exploited in the basic DCT denoising mechanism (1).
. 2 02 %4 M hile, it has b h b tRaf i
Var of P,_ ) Mean of P,_ eanwhile, it has been shown above af is more
suitable for prediction thaP; 7.
© In fact, the proposed method of denoising efficienc
""""“N'""""”'I prediction assesses amount of noisy components that
S8 "'"""'""""' ""' ""'!MJ are small and do not exceed the threshaldl@is men-
S 6 I'l'l’l“/b“)l),";' tioned above that noisy DCT components are often
@ 4 h.l'),»/'""‘[:(? ’I"l"l '0 weaker than true signal components. In some cases
T ",,",,fi 'I;,"i,l/' 'I i ¢ when there is no signal in some DCT component the
£ 2 2 & ) component value is very small and fully noisy. Thus
%2 0L some component classification is possible. It isyea

distinguish fully noisy (with signal absence) orake

0,04 00 - 06 - components, fully-signal (true signal with respesly
5 02 low noise level) or strong components, and inteiated
Var of F ) Mean of P i i i
o 772 components. In practice, intermediate componenis ha

(d)

Fig. 5 Scatterplots of DCTF (a, b) and BM3D (ceffjcien-
cy in Py, and fitted surface fdAPSNR andIPSNR-HVSM

amplitudes close to the used threshold valuesar2d
2,70.
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Having the tendency that prediction is better f'et  In Table 9, SROCC between all statistical parame-
threshold & than for 2,6, one can expect that a pa+ters of Py s distribution are given. It is well seen that
rameter that mainly characterizes percentage df-ful absolute value of SROCC is high for all pairs aofgpa:
noisy or weak components can work well. This stimweters. Prediction performance described by goodoiess
lated our interest to selecting paramétewhich is used fit for a set of the most interesting cases is gmésd in
in threshold setting g3o for determining the probabil- Table 10 forP, i, distribution.

ity that DCT coefficient amplitudes do not excebtst  1,c 9. SROCC between statistical parameterBer

threshold. .

Goodness of fit dependencies fpfor the DCT filter M Var | Med | Mod S K
and BM3D are presented in Fig. 6. Approximation ex- m - 0,891 | 0,96 | 0,965 -0,96 -0,911
pression (17) was used in two-parameter fittindidSo [\ 5891 _ 087 | 0831 -0805 -08d7
lines for both filters denote dependenciedRSNR ap- ’ ’ : : ’
proximations; dashed lines depict dependencies oMed | 0,96 | 087 - 0915 -092¢4 -0.892
IPSNR-HVS-M approxima‘[ions_ Mod | 0,965 | 0,831| 0,915 - -0,952 -0,892

0.98 S -0,96 |-0,805| -0,924 -0,952 - 0,948
K 1]-0,911 | -0,887| -0,892 -0,892 0,943 -
0.9 Table 10. Goodness of the best multi-parametéoffiB, ;.
0,94 |
Filter Metric Statistical parameters R
0,92 M 0,987
A M, Var 0,989
0,9 IPSNR M, Var, Mod 0,99
M, Var, Mod, S 0,991
0,887 DCT M, Var, Med, Mod, S 0,991
filter M 0,817
0,86 M, Var 0,944
IPSNR- M, Var, S 0,963
HVSM M, Var, Mod, S 0,963
M, Var, Med, Mod, S 0,963
M 0,976
M, Var 0,978
IPSNR M, Var, Mod 0,978
M, Var, Mod, S 0,978
M, Var, Med, Mod, S 0,978
BM3D M 0,812
M, Var 0,936
o IPSNR- M, Var, S 0,947
= HVSM M, Var, Mod, S 0,947
M, Var, Med, Mod, S 0,948
0,88 ¢ 1 Goodness of fit for the considered approximations
0.86 ™, | are higher than for previously analyzed caségf It
’ should be noted that combinations of statisticae-
0,84 ‘ ters are similar to thé,, case. The combination of
05 1 L5 2 2,5 mean and variance &%y, distribution is still the effi-
p cient suitable for all cases.
() Using the threshold Ogl only the fully-noisy com-
Fig. 6 Goodness of fit depending upPrfor the DCT based ponents are exploited for prediction. To add weigk s
filter (a) and BM3D (b) in denoising efficiency lietion nal DCT components into consideration for predictio

purpose, it is possible to use thed®tBreshold. The use
of such a threshold almost does not decrease gesdne
of fit. SROCC for pairs of statistical parametef$gs,

is given in Table 11. Goodness of fit data are mjiire
Table 12.

It is seen that maximal values i&f are observed for
p ranging from 0,1 to 0,5. Goodness of fit improveme
is essential fop within the range from 0,1 to 0,5 com-
pared to earlier analyzgt2 orp=2,7.
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Table 11. SROCC between distribution charactesisticPy s,

M | Var | Med | Mod | S K 10
M - 10,207 | 0,995| 0,97| -0,652 -0,212 I
Var (0,207 | - | 0,214 0,21| -0,149 -0,792 x5 98 ',;,j';:,,,',,,,,
Med | 0995 | 0214| - | 0978 -0,64 -0213 & *
Mod | 0,970 | 0,21 | 0,978] - | -0,627 -0,214 0 &
s |-0652]|-0149 -064] 0627 - | o0u4sr 15
K |-0,212|-0,782| -0,213 -0,214 0,487 -
Table 12. Goodness of the best multi-parametéoifiP, s, Var quO’SU
Filter Metric Statistical parameters R N'l h '
M 0,986 " "N'l,"im,o,&,: W,:
M, Var 0,989 S 6 ’,' ,, ,' ,'W
IPS\R M, S K 0,989 = ""a'} il ':' ,;;
M, Med, S, K 0,989 24 " ,,, ',",,
DCT M, Var, Med, Mod, S 0,99 T, i ':;":;!:;,,
filter Mod 0,844 = s
M, Var 0,944 S
IPSNR- M, Var, Mod 0,949 15
HVSM M, Var, Mod, S 0,951
M, Var, Med, Mod, S 0,952 A 0,1
M 0,975 Var OfP()’j(; *10 Mean OfPO,SG
M, Var 0,977 (b)
IPSNR M, Var, S 0,978
M, Var, Med, S 0,978
M, Var, Med, Mod, S 0,978
BM3D Mod 0,852 ]
M, Var 0,935 <
IPSNR- M, Var, Mod 0,939 = -y
HVSM M, Var, Mod, S 0,041 S s
M, Var, Med, Mod, S 0,941

It is seen that goodness of fit for approximatiofs
Poss parameters is almost as high as for Bye, case.
The differences betwed®f for both probabilities cases  Var of Py s
are not essential. Note that two-parameter fittiog |
IPSNR-HVS-M case essentially gain goodness of fit is
using new specified threshold. For theSNR case,

IO
"""'!3"3!"'4"'1':"4:313""'

goodness of fit parameter reaches almost 0,99ctrat %3{ ' N

be interpreted as full metric determination. Alsoten = ""i ",\
that R? for the DCT filter approximations is higher than < w vm "’ ‘ "
for the corresponding BM3D approximations. The ap- E w""o"o'" 3' Q g’ ':, ':,

. . . . . 4:) .},", ,o‘;’ o,o,ol 9
proximation (17) coefficients are given in Table. 13 & "'.'.:,,,;:;:;,,m
Scatterplots of denoising dependencies and thedfitt &
2D approximations are presented in Fig 7. 10
Table 13. Approximation factor values of the ob¢ginap- ) 0,1
proximations foiPy s, Varof P s *107 eanof £y,

Filter Metric a b, b, (d)

DCT IPSNR 0,168 10,8 19,28 Fig. 7 Scatterplots of the DCT based filter (aabyl BM3D

filter | IPSNR-HVSM 0,01 15,66 | 144.3| (c, d) efficiency for statistical parametersRyfs, and the fit-
IPSNR 0,148 11,33 17,7 ted surfaces foiPSNR andIPSNR-HVS-M

BM3D | IPSNR-HVSM 0,004 18,25 161,7
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The final version of the proposed method can kees. Such blocks can be chosen arbitrary or agugrd
now fully described. The proposed method predicts some rule. A simplest option was chosen in our
DCT-based denoising efficiency using eithBBNR or study. 500 randomly chosen and non-overlapping
IPSNR-HVS-M metric or both. Based on such a predidlocks were used in prediction.
tion, it is possible to decide whether to perforome In Fig 8, the scatter-plots ¢PSNR-HVSM depend-
denoising procedure or not. For instance, somereése encies on two statistical parameters used in afipesx
tion can be got from obtained scatterplots andditip- tion (17) are shown: mean & s (Fig. 8a) and vari-
proximation surface into it. There is no reasoffilter  ance ofP, s, (Fig. 8b). Data of the method that exploits
image if the mean o5, does not exceed 0,2. Vari-full-overlapping blocks are shown as white circlés.
ance ofPy 5; additionally specifies the predicted metridurn, data that are obtained for sparse image sagnpl
value. using non-overlapping blocks are depicted as bteek

The prediction procedure (original version) inclsdeangles.
the following operations. Full-overlapping blocksea
used to get DCT statistics. Estimates of used fititya
in blocks are obtained by simple thresholding ofiena
and one obtains probability distribution (set afdbes-
timates). Afterwards, some statistical parametefrs o
probability distribution are estimated (for example
mean and variance). These parameters are sulititute
into expression (17) with predetermined factors tha
have tabulated. Finally, a predicted metric vakieal-
culated and analyzed. I %V

As we mentioned, the prediction procedure must be
as computationally simple. It must be computatilynal 4';?% v 0'3 0.4
easier than the DCT filter or BM3D. Thus, it is ded © Mean o ’ ’

. . ean of P
to reduce the method complexity without performance ‘
degradation. Some ways to do it will be considered. @)

It is important to determine what computational op-
erations are used and how complex they are. The pro
posed method uses four operations: 2D DCT in 8x8
blocks, thresholding to estimate probability forclea
block, statistic data collecting and estimatiorstattisti-
cal parameters of these data, and substitutiomexfet
parameters into the obtained approximations. Tke la
one is the simplest. Conversely, first two operatiare
the most complicated. The third operation compjexit
depends of number of blocks. 1+ dﬁ'

Using full-overlapping blocks in image produces a e W a .
large number of blocks that must be processed. For 0,005 0,01 0,015
each block DCT, which is the most complicated opera Var pr()i
tion in the method, should be done. Thus, it isoea- (b) -0
ble to reduce the number of processed blocks. s a
sult, amount of DCTs and probability estimation@pe rig g Data scatterplots for standard method (ses full-
tions will be reduced, too. Eventua"y, estimatioh overlapping blocks) and its sparse version (thataits 500
some statistical parameters for local estimate(sesn randomly chosen non-overlapping blocks)

and variance of distribution as in (17)) on prodiidata It is seen that the scatter-plots for both versiohs

will be simpler as well. . )
As it has been mentioned above in the Section TBrittahe proposed method are practically the same. Biffe

theory”, the considered prediction method assunata donees between Qata samplt_e_s of bqth cases areeslmall
o ) this means practical possibility of significant dessing
processing in all fully overlapping blocks. Let csn- . . )
. . : of computations. According to our experiments, 500
sider one possible way to reduce computations. Sup- . X
- . andomly chosen non-overlapping blocks are sufiicie
pose that it is possible to process less numbewof

. ; ) for efficient prediction of the considered metrics.
overlapping or partly overlapping blocks of entine-
age to get local estimates of the considered pithab

7
6
5
4r v
3
2

IPSNR-HVS-M, dB

o9

0,5¢

w ov

IPSNR-HVS-M, dB
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Conclusions 5. Image Filtering: Potential efficiency and currenbip-

. . ) lems / V. Lukin, S. Abramov, N. Ponomarenko, K. &gi-

The improved method that provides improved préian, J. Astola // Proceedings of ICASSP. — May 201 P.

diction of DCT-based image denoising efficiency i1433-1436.

proposed. Prediction relates to two types of S§lter 6. Zhu, X. Automatic parameter selection for denoising

namely standard DCT based filter with full overlaqgp algorithms using a no-reference measure of imageeod /

of the blocks and hard thresholding and the BM3D fiX. Zhu, P. Milanfar // IEEE Transactions on image-p

ter. Two metrics that describe denoising efficiency c€ssing. — Vol. 19, No. 12. — December 2010. — 163
IPSNR and IPSNR-HVS-M — have been analyzed. It ig3132.

. : . " 7. Chatterjee, P. Practical Bounds on Image Denoising:
showrj that the f|rst metric can be predicted L!gh From estimation to information / P. ChatterjeeMHanfar //
even if one estimates mean values of one, the mest

. o IEEE Transactions on Image Processing. — May 26:nl.
formative local statistic aB,; or P, 7 where the former 20 no. 5. - p. 1221-1233.

statistic is better. Moreover, it is shown thatestprob- 8. Fevralev, D. Efficiency analysis of DCT-based fifte
abilities asPy s, Or Pg 15 can serve the goal of predictionfor color image database / D. Fevralev, V. Lukin,
even better thaR,, or P, 7. N. Ponomarenko, S. Abramov, K. Egiazarian, J. Ast6l

The situation is worse with predicting the metri(°roceedings of SPIE Conference Image Processingp-Al
IPSNR-HVS-M. Mean, median or mode of any probabil-”t%nlsl a\?dl 7g7y§temlsz VIl,  San  Francisco, USA.
ity discussed above taken alone does not provitlegi -~ Vol L

ter R | th 09 In thi i 9. Lam, E. A Mathematical analysis of the DCT coeffi-
parameter arger an 9,9. In IS case, Mulll-ciant distributions for images / E. Y. Lam, J. Wod@man //

parameter prediction can be employed. - _ IEEE Transactions on Image Processing. — 20001.-9yao.

It has been shown that two-parameter fitting usinig. — p. 1661-1666.
mean and variance of local probability estimatethés 10.Zoran, D. Scale invariance and noise in naturabisa
most suitable combination. It produces considerablyD. Zoran, Y. Weiss // IEEE {2nternational Conference on
better fitting than any one-parameter fitting. Ntult Computer Vision. — September 2009. — P. 2209-2216.
parameter fitting is able to provide even bettesutts 11.Pogrebnyak, O. Wiener DCT Based Image Filtering /

but the observed improvements are usually negégibl O. Pogrebnyak, V. Lukin // Journal of Electronicalging. —

Although prediction procedure needs less calcuiati2012- — No.4. — 14 p.
gnp h 12.Prediction of Filtering efficiency for DCT-based 4m

than DCT-based filtering and is much faster thar

. o age Denoising / S. Abramov, S. Krivenko, A. Roenko,
BM3D denoising, prediction can be further acceledat Lukin, 1. Djurovic, M. Chobanu // 2-nd MediterrigDonfer-

For this purpose, it is possible to use a limitethher once on Embedded Computing MECO. — June 201397-P.
of processed blocks (500 or more) which are noiqgg.
overlapping. Practically no decrease in prediciocou- 13.An R-squared measure of goodness of fit for some
racy is observed. common nonlinear regression models / C. Cameron, A.
Future work will be devoted to obtaining predictiorWindmeijer, A. G. Frank, H. Gramajo, D. E. CaneKBosla
approximation for other metrics of image visual lgua // Journal of Econometrics. — 1997. — vol. 77,6~ 16 p.
ty. More attention will be paid to denoising eféicicy 14.Rut_)el, A.S. Prediction of filtering eff|C|er_1(_:y_ fatis-
prediction for multichannel images and other nois%n?gegof”les”agﬁ‘;’é;“ \t/)"i‘/seﬁUL‘?rr]"(/’)’allQ;Jioag?étc';’gmg
models. computer systems. — 2013Ne4 (63). — P. 35-45. [in Rus-
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