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Efficiency of DCT-based filters for a wide-class of images is investigated. The study is carried out for additive white Gaussian noise 
(AWGN) case with several intensity levels. Local DCT-based filter is used as basic denoising technique. Nonlocal BM3D filter 
known as the state-of-the-art technique for AWGN removal is also exploited. A precise prediction method of denoising efficiency for 
several quality metrics is proposed. It is shown that statistics of DCT coefficients provides useful information. Regression models for 
analyzed filters and metrics are presented. The obtained dependence approximations of quality metrics on DCT statistics have high 
goodness of fit. One-parameter and multi-parameter fitting cases are considered. The most valuable DCT statistics are found. 
 

Introduction 
 

Noise is the one of the most destructive factors that 
affects visual quality of images [1]. Loss of visual qual-
ity can decrease performance of image processing ap-
plications significantly. For instance, quality of images 
delivered via Internet and networks could be reduced by 
noise that has appeared at image acquisition stage. 
Hence, to provide better performance for such applica-
tions of noisy images, some image pre-filtering proce-
dure is often needed. 

Furthermore, it can be important to assess visual 
quality of analyzed images. Such knowledge can be 
helpful for answering the following question: is some 
filtering needed for image enhancement and can it be 
beneficial for a given image? If degradation due to pre-
sent noise is evident in original image and this noise 
can be eliminated from the image or its region, the an-
swer would be positive. If not, i.e. noise removal leads 
to loss of image features and visual quality or at least 
does not result in image enhancement, the answer 
would be negative. The paper is devoted to answering 
these questions by analyzing prediction of denoising ef-
ficiency using simple statistics.  

Quite many efficient image denoising techniques 
have been proposed in the last decade. Among these 
techniques, orthogonal transform based filters [2] stand 
out by their relatively high efficiency. Such filters use 
some transform to represent signal by its spectrum. 
Wavelets, discrete cosine (DCT) or other orthogonal 
transforms are exploited frequently for this purpose. 
Sparseness and compactness of spectrum representation 
of a signal allow removing “noisy” spectrum compo-
nents. High denoising efficiency has been demonstrated 
by the DCT filter in [3].  

Several efficient nonlocal denoising techniques have 
been proposed recently as well. Nonlocal filters use in-

formation redundancy of similar image patches (blocks) 
collected together and perform collaborative denoising. 
To our best knowledge, BM3D filter [4] is the state-of-
the-art nonlocal technique for AWGN (additive white 
Gaussian noise) removal. Note that, in addition to simi-
lar patch collecting, the BM3D uses DCT as the basis 
for joint processing of data in patch sets. 

It is obvious that image characteristics influence de-
noising efficiency. In [5], attention was paid to de-
noising of texture images. For this case, efficiency of 
the DCT-based filters is low and denoising can some-
times even lead to evident distortions. Meanwhile, such 
filters can effectively process less complex images. On 
this basis, it is desirable to have some image character-
istics or quantitative parameters in order to carry out 
rough prediction of denoising efficiency.  

Currently, some quality assessments without refer-
ence image [6] and efficiency bounds have been pro-
posed [7]. Degradation of locally distributed image fea-
tures (e.g. decomposition of local image gradient matrix 
[6]) under noise conditions is one criterion that can be 
used. Statistics of entire image is used rarely for this 
purpose. Disadvantage of such an approach is the com-
putational burden which is even higher than filtering it-
self. Thus, significant requirement arises clearly. As-
sessment (prediction) of denoising efficiency should 
have less computational cost than filtering. Certainly, 
requirement of precise prediction of denoising efficien-
cy should be consistent with computational cost. 

The paper is organized as follows. The Section 
“Brief theory” considers efficient DCT based filter and 
the proposed prediction method. The next Section “Ef-
ficiency prediction method for DCT-based filters” pre-
sents some informative graphics to provide better un-
derstanding of how the method works. The Section 
“Preliminaries” describes test database of images and 
modeling process. Sections “One-parameter fitting” and 
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“Multi-parameter fitting” show the method performance 
depending upon the number of DCT statistics used for 
prediction. ”Prediction performance improvement” sec-
tion presents final method with reduced computational 
burden.  

 

Brief theory 
 

In our study, two DCT-based denoising techniques 
were chosen, namely, the DCT filter (its basic version) 
[3] and the BM3D filter (block matching and 3D filter-
ing) [4]. The general denoising mechanism of these 
techniques lies in nonlinear block-wise processing of 
image local spectrum. Its basic task consists in remov-
ing “noisy” components. “Noisy” means that the pres-
ence of true signal in a certain spectrum component is 
inessential and noise has the main contribution. It is 
reasonable to “remove” such spectrum components in 
blocks and to replace them by zeros (if the so-called 
hard thresholding is applied) 
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where Bout is the filtered spectrum block, β is the adjust-
ing parameter, σ denotes AWGN standard deviation 
where Bin is “noisy” input image spectrum block, and 
indices for DCT components in each 8x8 block are k = 
0..7, l = 0..7. The optimal value of β for wide-class of 
images lies in the range 2,4…2,8 [8]. Decreasing of de-
noising efficiency due to non-optimal value setting in 
this range is insignificant. For simplicity, β value equal 
to 2,7 and fixed can be used. 

It is worth to note that the most efficient denoising is 
reached in the case of fully-overlapping image blocks. 
Values in a given pixel that are restored from overlap-
ping blocks containing this pixel are different. To get a 
joint (final filtered) value, these values are averaged. 

The BM3D filter exploits the above mentioned de-
noising mechanism. This mechanism is applied to a set 
of blocks collected into 3D array upon condition of 
their similarity. Therefore, the first procedure called 
“block matching” finds groups of similar blocks corre-
sponding to a reference one. Such 3D array has essen-
tial correlation along the third dimension. 

Collaborative denoising is performed on such data 
array. Along the third dimension, 1D transform is ap-
plied. Basically it is Haar transform. In this way, it is 
easy to eliminate noisy components from highly corre-
lated data. Thus, denoising efficiency on images con-
sisting of groups of similar blocks is usually high. Ag-
gregation of restored blocks into output image is per-
formed in the same way as in the DCT filter.  

Note that this denoising mechanism is also restricted 

especially in the sense of preserving true image details. 
In other words, there is a certain bound of efficient 
noise removal without distorting a true signal. Thus, it 
can be expected that DCT statistics determine denoising 
efficiency of the analyzed filters. The necessity of such 
bound assessment is evident. 

Statistics of DCT coefficients has been intensively 
studied. It has been established that probability density 
function of DCT coefficients is not Gaussian and has 
heavy tails [9, 10]. Noise presence can significantly 
change distribution of DCT coefficients compared to 
noise-free statistics.  

In [11], it is shown that denoising efficiency is strict-
ly connected with probabilities P2σ and P2,7σ . Here, P2σ 
denotes value of probability that absolute DCT coeffi-
cient value does not exceed 2σ. This parameter shows 
rough estimation of noise presence in image. In other 
words, P2σ is average amount of noisy components with 
weak signal constituent which can be missed. P2,7σ de-
fines probability that absolute DCT coefficient value 
exceeds the threshold 2,7σ. This parameter shows 
amount of kept components or components with strong 
signal constituent. Note that P2σ + P2,7σ < 1, thus, these 
probabilities are mutually dependent. 

Basically, mean values of P2σ and P2,7σ are used as 
characterization parameters of images. Based on them, 
a prediction technique using linear regression analysis 
was proposed in [12]. It implies one of two probabilities 
through the following expressions for predicting the ra-
tio MSEout/σ

2 (where MSE denotes output MSE of 
DCTF or BM3D filters and AWGN variance σ2 is as-
sumed a priori known): 

 
2 2

2σ 2σσ - 2,63 2,15 0,38,outDCTF est(MSE / ) = P + P +    (2) 
 
2 0,73

2,7σσ 1,86 ,outDCTF est(MSE / ) = P             (3) 

 
2 2

3 2σ 2σσ - 2,69 2,2 0,36,outBM D est(MSE / ) = P + P +   (4) 
 
2 0,79

3 2,7σσ 2,03 .outBM D est(MSE / ) = P            (5) 

 
These expressions have high goodness of fit 

R2=0,98 and 0,97 for P2σ and R2=0,94 both for P2,7σ, 
where R2 denotes coefficient of determination [13]. It 
ranges from 0 to 1 where R2>0,9 means that most of the 
variation in the response variable (denoising efficiency) 
can be explained by modeled variable (P2σ or P2,7σ).  

Due to availability of dependences (2)-(5) obtained 
in advance, one can estimate P2σ and P2,7σ for a given 
image before filtering and then to calculate MSEout/σ

2 
that characterizes predicted denoising efficiency for the 
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two considered filters. However, for the presented ap-
proximations (3) and (4), a limited number of test im-
ages (only eight) and noise levels (only three), was 
used. As a result, there is a lack of points that corre-
spond to the cases of low efficiency of filters (these are 
textural images and/or small values of AWGN standard 
deviation). It means that the cases that are “hard” for 
the DCT-based filter are considered and taken into ac-
count insufficiently. 

Afterwards, approximations for other quality metrics 
were obtained using the same probabilities in [14]. 
Three metrics were analyzed: MSE/σ2 as earlier in [12] 
and two new ones - improvement of PSNR (IPSNR) and 
improvement of PSNR-HVS-M [15] (IPSNR-HVS-M), 
both expressed in dB. The last one is the human vision 
system based metric that characterizes visual quality of 
analyzed image with rather high adequateness. The 
goodness of fit data for the two considered probabilities 
are presented in Table 1 Expressions for the obtained 
approximations for MSE/σ2, IPSNR and IPSNR-HVS-M  
for the DCT filter are the following: 

 
2 2

2σ 2σσ 1 45 0 45 0 96est(MSE/ ) = - , P + , P + , ,         (6) 
 

2 2
2 7σ 2 7σσ 1 4 2 25 0 13est , ,(MSE/ ) = - , P + , P + , ,        (7) 

 
2

2σ 1,92
100 exp ,

0,63est
P

IPSNR = -
 − 
 ∗     

         (8) 

 
2

2,7σ 0,81
100 exp ,

0,53est

P
IPSNR = * -

 + 
  
   

        (9) 

 
2

2σ 2,08
100 exp ,

0,67est
P

IPSNR-HVS-M = * -
 − 
     

 (10) 

 
2

2,7σ 0,98
100 exp .

0,58est

P
IPSNR-HVS-M = * -

 + 
  
   

(11) 

 

Table 1. Goodness of fit (R2) of the obtained approximations 
Metric P2σ P2,7σ 
MSE/σ2 0,978 0,955 
IPSNR 0,962 0,935 

IPSNR-HVS-M 0,82 0,78 
 

Efficiency prediction method for DCT-based  
filters 

 

Prediction methods in [12, 14] show high goodness 
of fitting for metrics MSE/σ2 and IPSNR (see data in 

Table 1) Meanwhile, the obtained approximations for 
IPSNR-HVS-M are fitted with considerably smaller R2. 
This means that it is desirable to provide a better fitting. 
Note that MSE/σ2 and IPSNR have the same nature 
(they are strictly interconnected):  

 
2

1010 (σ / ).IPSNR= log MSE               (12) 
 

Thus, further we will analyze only the IPSNR and 
IPSNR-HVS-M dependencies on P2σ and P2,7σ. 

Let us consider the estimates of P2σ or P2,7σ obtained 
for all image blocks. They can be represented as histo-
grams of distributions, two examples of which are pre-
sented in Fig. 1. These distributions have been obtained 
for two test images taken from the database TID2013 
[16] (test images №5 and 18) corrupted by AWGN with 
the same standard deviation (σ = 5). It is seen that 
shapes of the distributions are slightly different. 

 

 
(a) 

 
(b) 

 

Fig. 1 Examples of P2σ distributions 
 

Thus, a distribution of local estimates of P2σ or P2,7σ 
might contain useful information and such a distribution 
can be described by one or several statistical parame-
ters. To characterize a distribution, it is possible to em-
ploy distribution mean, median, mode, variance, skew-
ness, kurtosis, etc. These parameters are further denoted 
as M, Med, Mod, Var, S, and K, respectively. Values of 
these parameters for distribution of local estimates of 
P2σ are given in Table 2 for two analyzed images. 
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Table 2. Values of statistical parameters for P2σ 

Image M Mod Med Var S K 

№5 0,64 0,635 0,635 0,028 2,222 0,06 

№18 0,70 0,73 0,73 0,03 3,032 0,708 
 

Clearly, different distributions are characterized by 
different sets of basic statistical parameters. It is possi-
ble to characterize a distribution by different sets of sta-
tistical parameters and different number of parameters 
in a set. So, if we intend to use several statistical pa-
rameters for prediction, we should select a proper set 
and a proper number of parameters which are the most 
important (informative).  

From our previous studies [14], the exponential 
model (13) seems to be suitable for approximating de-
pendences of the metrics IPSNR and IPSNR-HVS-M on 
a considered statistical parameter of the distribution. 
Besides, such model is simple. This allows assuming 
that this model can be also exploited for multi-
parameter fitting with weighting:  

 

1
exp ( ) ,

n

est i i
i

Metric = a* b O P
=

 
 
 
∑                 (13) 

 
where a and bi are approximation factors, Oi is some pa-
rameter of distribution, n defines the number of such 
parameters. As Oi, the distribution mean, median, 
mode, variance, skewness and kurtosis could be chosen. 
Note that in [12, 14] only the mean of the distribution 
was used as single statistical parameter. The factors a 
and bi, i=1,…,n are to be in advance by multidimen-
sional (n-dimensional) regression. 

Such a regression is carried out as follows. There is 
a set of images corrupted by noise with a set of variance 
values. These noisy images are filtered with getting 
IPSNR and IPSNR-HVS-M. Simultaneously, a consid-
ered set of statistical parameters for a given noisy image 
is estimated. Then, this set of parameters and IPSNR (or 
IPSNR-HVS-M) form a multidimensional scatter-plot 
where statistical parameters serve as function argu-
ments. Having a set of test images and variance values, 
a set of points is collected. Having such a scatter-plot, 
an approximation model (13) is fitted and a set of its pa-
rameters is obtained. 

The choice of statistical parameter(s) is essential for 
denoising efficiency prediction. Comparison of predic-
tion performance foe different statistical parameters and 
their combinations will be studied later. 

 

Preliminaries 
 

The first task in n-dimensional regression is to select 
test images. Images with different content (textures, per-
centage of pixels that belong to homogenous regions) 

that have different statistics are needed for our purpose. 
Values of the considered statistics for the test images 
must be located over full ranges of possible variation of 
the considered statistical parameters. Furthermore, for 
precise approximation of denoising efficiency, a suffi-
cient number of samples (points of the scatterplot) is 
needed. Some test images are shown below in Fig. 2. 

 

  
(a)                                             (b) 

  
(c)                                             d) 

  
(e)                                           (f) 

  
(g)                                         (h) 

  
(i)                                         (j) 

 

Fig. 2 Some test images 
Various types of images could be taken from the da-

tabase TID2013 [16] (except the test image №25 which 
is artificial one), all of size 512x384 pixels (see exam-
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ples in Fig. 1, a-f). Besides, we have considered several 
textural test images (e.g., Baboon, Grass, Ground, and 
Straw, Fig. 1,g-k) were used, all of size 512x512 pixels. 
In aggregate, we had 34 test grayscale images. Among 
the test images, there are only real-world images. It is 
well seen that the used test images have different con-
tent. 

To meet the requirement of sufficient number of 
scatterplot points, a number of noise levels should be 
sufficient, too. The following AWGN levels character-
ized by noise standard deviation σ are used: 2, 3, 5, 8 
10, 15. As a result, there are 204 points that are defined 
on full axis range both for the metric and statistical pa-
rameters. 

 

One-parameter fitting 
 

In this section, the comparison of goodness of fit for 
different statistical parameters is presented. Goodness 
of fit R2 or so-called coefficient of determination (14) is 
used as criterion of prediction performance. This crite-
rion has been also used in previous studies [12, 14].  

There are several definitions of R2 which are only 
sometimes equivalent. One class of such cases includes 
that of simple linear regression. In this case, R2 is simp-
ly the square of the sample Pearson correlation coeffi-
cient between the outcomes and their predicted values. 

Besides, R2 is related to mean square error. It de-
scribes well performance of prediction using linear re-
gression models. The most general definition of the co-
efficient of determination is 

 
2 ,res totR = 1- SS SS                    (14) 

 
where SSres denotes the sum of squares of residuals, also 
called the residual sum of squares, SStot is the total sum 
of squares which is proportional to the sample variance. 
Thus, to our opinion, the usage of R2 will be enough to 
describe goodness of fit for the considered approxima-
tions. Prediction performance for single statistic param-
eter is shown below in Table 3 for P2σ and in Table 4 
for P2,7σ. The best one-parameter approximations are 
marked by bold. 

It is seen that for both probabilities (P2σ and P2,7σ) 
and for both filters the best approximations for IPSNR 
are those which use mean of distribution. For the 
IPSNR-HVS-M metric, the best approximations are ob-
served for median of distribution. Expressions for pre-
diction of the considered metrics are the following: 

 
( )1exp mean( ) ,estIPSNR = a* b P           (15) 

 
( )1exp median( ) .estIPSNR-HVS-M = a* b P    (16) 

Although median of distributions provides better ap-
proximation of IPSNR-HVS-M, the obtained results are 
still not good enough and are worth improving. We ex-
pect that this improvement can be gained due to multi-
dimensional regression.  

 

Table 3. Goodness of one-parameter fit for P2σ 

 

 DCT filter BM3D 
Statistical pa-

rameters 
IPSNR IPSNR-

HVS-M 
IPSNR IPSNR-

HVS-M 
M 0,963 0,767 0,95 0,76 

Med 0,946 0,848 0,932 0,845 
Mod 0,727 0,813 0,701 0,787 
Var 0,085 0,002 0,099 0,008 
S 0,145 0,413 0,415 0,395 
K 0,428 0,114 0,143 0,11 

 

Table 4. Goodness of one-parameter fit for P2,7σ 

 

 DCT filter BM3D 
Statistical pa-

rameters 
IPSNR IPSNR-

HVS-M 
IPSNR IPSNR-

HVS-M 
M 0,935 0,723 0,921 0,714 

Med 0,919 0,829 0,903 0,823 
Mod 0,619 0,762 0,592 0,721 
Var 0,166 0,027 0,187 0,041 
S 0,665 0,597 0,643 0,57 
K 0,452 0,354 0,44 0,339 

 

In Table 5, the estimated values of approximation 
factors are presented. The scatter-plots for dependencies 
of denoising efficiency on one statistical parameters and 
the fitted curves (approximations shown by solid lines) 
are represented in Figs 3-4 for single statistical parame-
ters which are the best for a given criterion and filter. 
Figs 3a-b and 4a-b show IPSNR dependencies on statis-
tical parameters, Figs 3c-d and 4c-d present IPSNR-
HVS-M dependencies. 

 

Table 5. Approximations coefficients values of obtained ap-
proximations for P2σ 

 
Filter Metric a b1 

DCT 
filter 

IPSNR 0,048 5,606 
IPSNR-HVS-M 0,006 7,271 

 
BM3D 

IPSNR 0,038 5,899 
IPSNR-HVS-M 0,002 8,41 

 

As it can be seen from Figs 3a-b and 4a-b, the ap-
proximations for IPSNR metric are well fitted for both 
filters. Goodness of fit for these cases is expectedly 
high (see data in Tables 3 and 4). For the IPSNR-HVS-
M metric, the approximations are fitted not so well; the 
R2 values do not exceed 0,85 but the reason is that data 
are not clustered so well. Such deviation of IPSNR-
HVS-M values from can be made up by some addition 
statistical parameter. 
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(a) 

 

(b) 

 
(c) 

 
(d) 

 

Fig. 3 Scatterplots of DCT filter efficiency on P2σ and P2,7σ 
and fitted lines for IPSNR and IPSNR-HVS-M 

 
 

 
(a) 

 

(b) 

 
(c) 

 
(d) 

 

Fig. 4 Scatterplots of BM3D efficiency on P2σ and P2,7σ and 
the fitted lines for IPSNR and IPSNR-HVS-M 
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In Table 5, the estimated values of approximation 
factors are presented. The scatter-plots for dependencies 
of denoising efficiency on one statistical parameter and 
the fitted curves (approximations shown by solid lines) 
are represented in Figs 3-4 for single statistical parame-
ters, which are the best for a given criterion and filter. 
Figs 3a-b and 4a-b show IPSNR dependencies on statis-
tical parameters, Figs 3c-d and 4c-d present IPSNR-
HVS-M dependencies. 

 

Table 5. Approximations coefficients values of obtained ap-
proximations for P2σ 

 
Filter Metric a b1 

DCT 
filter 

IPSNR 0,048 5,606 
IPSNR-HVS-M 0,006 7,271 

 
BM3D 

IPSNR 0,038 5,899 
IPSNR-HVS-M 0,002 8,41 

 

As it can be seen from Figs 3a-b and 4a-b, the ap-
proximations for IPSNR metric are well fitted for both 
filters. Goodness of fit for these cases is expectedly 
high (see data in Tables 3 and 4). For the IPSNR-HVS-
M metric, the approximations are fitted not so well; the 
R2 values do not exceed 0,85 but the reason is that data 
are not clustered so well.  

In addition, it should be stressed that statistical pa-
rameters of P2σ distributions are more suitable than of 
P2,7σ distributions. Onwards, only the statistical parame-
ters of P2σ distribution will be used. Both for the sense 
of behavior and close R2 values presented approxima-
tions are consistent with previously obtained approxi-
mations [14]. Note that, in contrast to [14], a simpler 
approximation model with less number of coefficients 
is used in this study. 

 

Multi-parameter fitting 
 

It has been shown, that mean or median of P2σ are 
quite good for one-parameter fitting. However, the use 
of only one parameter can be insufficient for IPSNR-
HVS-M prediction. 

As it has been said, it is possible that the joint use of 
some combinations of the considered statistical parame-
ters is able to improve prediction. For example, this can 
be done by including in a set the best statistical parame-
ter obtained for one-parameter fitting and some addi-
tional statistical parameters. On one hand, we would 
like to have less number of statistical parameters used 
in regression. On the other hand, regression should be 
improved considerably compared to single parameter 
case. 

To assess mutual connection between analyzed pa-
rameters, Spearman rank order correlation coefficient 
(SROCC) values have been estimated for all possible 
pairs of statistical parameters (see data in Table 6). 

 

Table 6. SROCC between statistical parameters for P2σ 

 

 M Var Med Mod S K 

M - -0,268 0,988 0,906 0,666 0,569 

Var -0,268 - -0,203 -0,045 -0,078 -0,552 

Med 0,988 -0,203 - 0,928 0,697 0,569 

Mod 0,906 -0,045 0,928 - 0,625 0,431 

S 0,666 -0,078 0,697 0,625 - 0,794 

K 0,569 -0,552 0,569 0,431 0,794 - 
 

A high absolute value of SROCC approaching unity 
means strong connection between statistical parameters. 
Thus, joint usage of some statistical parameters that are 
strictly connected is not expected to provide essential 
improvement. The use of parameters with weak connec-
tion can be helpful but not necessarily. 

From Table 6, it is seen that mean, median and mode 
have the highest SROCC and joint use of these parame-
ters would give rather low contribution to prediction. 
Skewness and kurtosis parameters have intermediate 
values of SROCC and, probably, can provide some ad-
ditional information. Variance has lower absolute value 
of SROCC than other parameters have. Some combina-
tions of variance with other parameters can be suitable.  

In Table 7, the best combinations for different num-
bers of statistical parameters are presented. 

 

Table 7. Goodness of the best multi-parameter fit for P2σ 

 

Filter Metric Statistical parameters R2 

 
 
 
 

DCT 
filter 

 
 

IPSNR 

M 0,963 
M, Var 0,971 

M, Var, Mod 0,974 
M, Var, Mod, K 0,976 

M, Var, Med, Mod, S 0,977 
 
 

IPSNR-
HVS-M 

Med 0,848 
M, Var 0,923 

M, Var, Med 0,926 
M, Var, Med, S 0,927 

M, Var, Med, Mod, S 0,928 
 
 
 
 
 

BM3D 

 
 

IPSNR 

M 0,95 
M, Var 0,955 

M, Var, Mod 0,959 
M, Var, Mod, S 0,961 

M, Var, Med, Mod, S 0,961 
 
 

IPSNR-
HVS-M 

Med 0,845 
M, Var 0,905 

M, Var, S 0,905 
M, Var, S, K 0,909 

M, Var, Med, S, K 0,917 
 

Note that we have analyzed all combinations of dif-
ferent number of parameters. Note that for the proposed 
exponential approximation model, the order of parame-
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ters is not important. It was found that the combination 
of all analyzed parameters is inefficient. 

 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5 Scatterplots of DCTF (a, b) and BM3D (c, d) efficien-
cy in P2σ and fitted surface for IPSNR and IPSNR-HVS-M 

From the presented data, it is obvious that multi-
parameter fitting has larger goodness of fit than one-
parameter fitting. Mean and variance of distributions 
seem to be the most suitable combination of statistical 
parameters (see the expression (17). These parameters 
serve as the best combination if two different parame-
ters are used: 

 

( )1 2σ 2 2σexp mean( ) var( ) .estMetric = a* b P b P+  (17) 
 

Adding other parameters does not provide essential 
improvement of prediction performance. Therefore, the 
combination of mean and variance of P2σ distribution 
seems to be the most suitable approximation for both 
metrics and both filters. 

Scatter-plots (black circles) of denoising efficiency 
dependencies on statistical parameters of P2σ are shown 
in Fig 5. The obtained approximations are fitted as sur-
faces. It can be seen that samples of actual data are scat-
tered over the larger parts of the considered range of ar-
guments. The used parameters are informative and al-
low predicting the denoising efficiency well enough. 
The approximation coefficients for all cases are pre-
sented in Table 8: 

 

Table 8. Approximations coefficients values of the obtained 
approximations for P2σ 
 

Filter Metric a b1 b2 

DCT 
filter 

IPSNR 0,023 6,338 7,459 
IPSNR-HVS-M 2,225*10-4 10,81 37,14 

 
BM3D 

IPSNR 0,019 6,591 6,849 
IPSNR-HVS-M 5,324*10-5 12,42 41,36 

 

Prediction performance improvement 
 

In previous sections, two probabilities, P2σ and P2,7σ, 
have been used. The threshold options 2σ and 2,7σ 
have been selected empirically based on values often 
exploited in the basic DCT denoising mechanism (1). 
Meanwhile, it has been shown above that P2σ is more 
suitable for prediction than P2,7σ. 

In fact, the proposed method of denoising efficiency 
prediction assesses amount of noisy components that 
are small and do not exceed the threshold 2σ. It is men-
tioned above that noisy DCT components are often 
weaker than true signal components. In some cases 
when there is no signal in some DCT component the 
component value is very small and fully noisy. Thus, 
some component classification is possible. It is easy to 
distinguish fully noisy (with signal absence) or weak 
components, fully-signal (true signal with respectively 
low noise level) or strong components, and intermediate 
components. In practice, intermediate components have 
amplitudes close to the used threshold values, 2σ and 
2,7σ.  
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Having the tendency that prediction is better for the 
threshold 2σ than for 2,7σ, one can expect that a pa-
rameter that mainly characterizes percentage of fully-
noisy or weak components can work well. This stimu-
lated our interest to selecting parameter β, which is used 
in threshold setting as βσ for determining the probabil-
ity that DCT coefficient amplitudes do not exceed this 
threshold. . 

Goodness of fit dependencies on β for the DCT filter 
and BM3D are presented in Fig. 6. Approximation ex-
pression (17) was used in two-parameter fitting. Solid 
lines for both filters denote dependencies of IPSNR ap-
proximations; dashed lines depict dependencies of 
IPSNR-HVS-M approximations. 

 

 
(a) 

 
(b) 

 

Fig. 6 Goodness of fit depending upon β for the DCT based 
filter (a) and BM3D (b) in denoising efficiency prediction 

 

It is seen that maximal values of R2 are observed for 
β ranging from 0,1 to 0,5. Goodness of fit improvement 
is essential for β within the range from 0,1 to 0,5 com-
pared to earlier analyzed β=2 or β=2,7. 

In Table 9, SROCC between all statistical parame-
ters of P0,1σ distribution are given. It is well seen that 
absolute value of SROCC is high for all pairs of param-
eters. Prediction performance described by goodness of 
fit for a set of the most interesting cases is presented in 
Table 10 for P0,1σ distribution. 

 

Table 9. SROCC between statistical parameters for P0,1σ 
 

 M Var Med Mod S K 

M - 0,891 0,96 0,965 -0,96 -0,911 

Var 0,891 - 0,87 0,831 -0,805 -0,887 

Med 0,96 0,87 - 0,915 -0,924 -0,892 

Mod 0,965 0,831 0,915 - -0,952 -0,892 

S -0,96 -0,805 -0,924 -0,952 - 0,943 

K -0,911 -0,887 -0,892 -0,892 0,943 - 
 

Table 10. Goodness of the best multi-parameter fit for P0,1σ 

 

Filter Metric Statistical parameters R2 

 
 
 
 

DCT 
filter 

 
 

IPSNR 

M 0,987 
M, Var 0,989 

M, Var, Mod 0,99 
M, Var, Mod, S 0,991 

M, Var, Med, Mod, S 0,991 
 
 

IPSNR-
HVS-M 

M 0,817 
M, Var 0,944 

M, Var, S 0,963 
M, Var, Mod, S 0,963 

M, Var, Med, Mod, S 0,963 
 
 
 
 
 

BM3D 

 
 

IPSNR 

M 0,976 
M, Var 0,978 

M, Var, Mod 0,978 
M, Var, Mod, S 0,978 

M, Var, Med, Mod, S 0,978 
 
 

IPSNR-
HVS-M 

M 0,812 
M, Var 0,936 

M, Var, S 0,947 
M, Var, Mod, S 0,947 

M, Var, Med, Mod, S 0,948 
 

Goodness of fit for the considered approximations 
are higher than for previously analyzed case of P2σ. It 
should be noted that combinations of statistical parame-
ters are similar to the P2σ case. The combination of 
mean and variance of P0,1σ distribution is still the effi-
cient suitable for all cases.  

Using the threshold 0,1σ, only the fully-noisy com-
ponents are exploited for prediction. To add weak sig-
nal DCT components into consideration for prediction 
purpose, it is possible to use the 0,5σ threshold. The use 
of such a threshold almost does not decrease goodness 
of fit. SROCC for pairs of statistical parameters of P0,5σ 
is given in Table 11. Goodness of fit data are given in 
Table 12. 
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Table 11. SROCC between distribution characteristics for P0,5σ 

 

 M Var Med Mod S K 

M - 0,207 0,995 0,97 -0,652 -0,212 

Var 0,207 - 0,214 0,21 -0,149 -0,782 

Med 0,995 0,214 - 0,978 -0,64 -0,213 

Mod 0,970 0,21 0,978 - -0,627 -0,214 

S -0,652 -0,149 -0,64 -0,627 - 0,487 

K -0,212 -0,782 -0,213 -0,214 0,487 - 
 

Table 12. Goodness of the best multi-parameter fit for P0,5σ 

 

Filter Metric Statistical parameters R2 

 
 
 
 

DCT 
filter 

 
 

IPSNR 

M 0,986 
M, Var 0,989 
M, S, K 0,989 

M, Med, S, K 0,989 
M, Var, Med, Mod, S 0,99 

 
 

IPSNR-
HVS-M 

Mod 0,844 
M, Var 0,944 

M, Var, Mod 0,949 
M, Var, Mod, S 0,951 

M, Var, Med, Mod, S 0,952 
 
 
 
 
 

BM3D 

 
 

IPSNR 

M 0,975 
M, Var 0,977 

M, Var, S 0,978 
M, Var, Med, S 0,978 

M, Var, Med, Mod, S 0,978 
 
 

IPSNR-
HVS-M 

Mod 0,852 
M, Var 0,935 

M, Var, Mod 0,939 
M, Var, Mod, S 0,941 

M, Var, Med, Mod, S 0,941 
 

It is seen that goodness of fit for approximations of 
P0,5σ parameters is almost as high as for the P0,1σ case. 
The differences between R2 for both probabilities cases 
are not essential. Note that two-parameter fitting for 
IPSNR-HVS-M case essentially gain goodness of fit is 
using new specified threshold. For the IPSNR case, 
goodness of fit parameter reaches almost 0,99 that can 
be interpreted as full metric determination. Also note 
that R2 for the DCT filter approximations is higher than 
for the corresponding BM3D approximations. The ap-
proximation (17) coefficients are given in Table 13. 
Scatterplots of denoising dependencies and the fitted 
2D approximations are presented in Fig 7. 

 

Table 13. Approximation factor values of the obtained ap-
proximations for P0,5σ 
 

Filter Metric a b1 b2 

DCT 
filter 

IPSNR 0,168 10,8 19,28 
IPSNR-HVS-M 0,01 15,66 144,3 

 
BM3D 

IPSNR 0,148 11,33 17,7 
IPSNR-HVS-M 0,004 18,25 161,7 

 

 
(a) 

 

(b) 

 
(c) 

 
(d) 

 

Fig. 7 Scatterplots of the DCT based filter (a, b) and BM3D 
(c, d) efficiency for statistical parameters of P0,5σ and the fit-
ted surfaces for IPSNR and IPSNR-HVS-M 
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The final version of the proposed method can be 
now fully described. The proposed method predicts 
DCT-based denoising efficiency using either IPSNR or 
IPSNR-HVS-M metric or both. Based on such a predic-
tion, it is possible to decide whether to perform some 
denoising procedure or not. For instance, some observa-
tion can be got from obtained scatterplots and fitted ap-
proximation surface into it. There is no reason to filter 
image if the mean of P0,5σ does not exceed 0,2. Vari-
ance of P0,5σ additionally specifies the predicted metric 
value. 

The prediction procedure (original version) includes 
the following operations. Full-overlapping blocks are 
used to get DCT statistics. Estimates of used probability 
in blocks are obtained by simple thresholding operation 
and one obtains probability distribution (set of local es-
timates). Afterwards, some statistical parameters of 
probability distribution are estimated (for example, 
mean and variance). These parameters are substituted 
into expression (17) with predetermined factors that we 
have tabulated. Finally, a predicted metric value is cal-
culated and analyzed. 

As we mentioned, the prediction procedure must be 
as computationally simple. It must be computationally 
easier than the DCT filter or BM3D. Thus, it is needed 
to reduce the method complexity without performance 
degradation. Some ways to do it will be considered. 

It is important to determine what computational op-
erations are used and how complex they are. The pro-
posed method uses four operations: 2D DCT in 8x8 
blocks, thresholding to estimate probability for each 
block, statistic data collecting and estimation of statisti-
cal parameters of these data, and substitution of these 
parameters into the obtained approximations. The last 
one is the simplest. Conversely, first two operations are 
the most complicated. The third operation complexity 
depends of number of blocks. 

Using full-overlapping blocks in image produces a 
large number of blocks that must be processed. For 
each block DCT, which is the most complicated opera-
tion in the method, should be done. Thus, it is reasona-
ble to reduce the number of processed blocks. As a re-
sult, amount of DCTs and probability estimation opera-
tions will be reduced, too. Eventually, estimation of 
some statistical parameters for local estimate sets (mean 
and variance of distribution as in (17)) on produced data 
will be simpler as well. 

As it has been mentioned above in the Section “Brief 
theory”, the considered prediction method assumed data 
processing in all fully overlapping blocks. Let us con-
sider one possible way to reduce computations. Sup-
pose that it is possible to process less number of non-
overlapping or partly overlapping blocks of entire im-
age to get local estimates of the considered probabili-

ties. Such blocks can be chosen arbitrary or according 
to some rule. A simplest option was chosen in our 
study. 500 randomly chosen and non-overlapping 
blocks were used in prediction. 

In Fig 8, the scatter-plots of IPSNR-HVS-M depend-
encies on two statistical parameters used in approxima-
tion (17) are shown: mean of P0,5σ (Fig. 8a) and vari-
ance of P0,5σ (Fig. 8b). Data of the method that exploits 
full-overlapping blocks are shown as white circles. In 
turn, data that are obtained for sparse image sampling 
using non-overlapping blocks are depicted as black tri-
angles. 

 
 

 
(a) 

 

 
(b) 

 
 

Fig. 8. Data scatterplots for standard method (that uses full-
overlapping blocks) and its sparse version (that exploits 500 
randomly chosen non-overlapping blocks) 

 

It is seen that the scatter-plots for both versions of 
the proposed method are practically the same. Differ-
ences between data samples of both cases are small and 
this means practical possibility of significant decreasing 
of computations. According to our experiments, 500 
randomly chosen non-overlapping blocks are sufficient 
for efficient prediction of the considered metrics.  
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Conclusions 
 

The improved method that provides improved pre-
diction of DCT-based image denoising efficiency is 
proposed. Prediction relates to two types of filters, 
namely standard DCT based filter with full overlapping 
of the blocks and hard thresholding and the BM3D fil-
ter. Two metrics that describe denoising efficiency - 
IPSNR and IPSNR-HVS-M – have been analyzed. It is 
shown that the first metric can be predicted well enough 
even if one estimates mean values of one, the most in-
formative local statistic as P2σ or P2,7σ where the former 
statistic is better. Moreover, it is shown that other prob-
abilities as P0,5σ or P0,1σ can serve the goal of prediction 
even better than P2σ or P2,7σ. 

The situation is worse with predicting the metric 
IPSNR-HVS-M. Mean, median or mode of any probabil-
ity discussed above taken alone does not provide fitting 
parameter R2 larger than 0,9. In this case, multi-
parameter prediction can be employed. 

It has been shown that two-parameter fitting using 
mean and variance of local probability estimates is the 
most suitable combination. It produces considerably 
better fitting than any one-parameter fitting. Multi-
parameter fitting is able to provide even better results 
but the observed improvements are usually negligible.  

Although prediction procedure needs less calculation 
than DCT-based filtering and is much faster than 
BM3D denoising, prediction can be further accelerated. 
For this purpose, it is possible to use a limited number 
of processed blocks (500 or more) which are non-
overlapping. Practically no decrease in prediction accu-
racy is observed. 

Future work will be devoted to obtaining prediction 
approximation for other metrics of image visual quali-
ty. More attention will be paid to denoising efficiency 
prediction for multichannel images and other noise 
models. 
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