
24

ISSN 2312-4121, Information and Telecommunication Sciences, 2014, Volume 5, Number 1
© 2014, National Technical University of Ukraine “Kyiv Polytechnic Institute”

UDC 004.724.2

LOAD BALANCING ALGORITHM
FOR GRID TASK SCHEDULING IMPROVEMENT

Pavlo Svirin
Institute of Applied System Analysis, NTUU “KPI”, Kyiv, Ukraine

In order to satisfy the users' requirements for the productivity and efficiency of tasks implementation the grid-system should
implement the effective algorithm of tasks distribution between the computing resources accessible at the moment. The prima-
ry purpose of such load balancing in the grid-system is to reduce the time necessary for the user's task implementation. Moreo-
ver, it will provide efficient usage of the computing resources and eliminate such a situation that some resources stand idle
when the other are overloaded with users' tasks implementation.

Introduction

Despite the load balancing algorithms in computing
resources in Grid are being studied for a long time and
the availability of many ready algorithmic decisions as
well as software implementations, the intensive devel-
opment of Grid technologies and improvement of mid-
dleware makes the problem of load balancing and up-to
date and the interest towards research activities in this
area does not decrease. The main purpose of such load
balancing in Grid is to decrease the overall execution
time for the user’s task and ensure utilization efficiency
of the computing resources.

The main tasks that require Grid are the following:
• large number of tasks with low requirements

regarding the resources. Such tasks are execut-
ed over a short period of time;

• large number of tasks with high requirements
regarding the resources that are executed over a
long period of time.

Examples of such tasks are as follows:
• ALICE experiment data processing. Usually

such task requires 1 processor; the data are
transferred to the resource in the course of cal-
culation, maximum running time is 24 hours.
Number of such tasks can range up to hundreds
of thousands;

• Calculation of molecular dynamics tasks. This
category of tasks requires a big number of pro-
cessors, transfers a small amount of data for
calculation, maximum running time of such
tasks is up to months. Number of such tasks can
range up to thousands.

Hence, the use of a single strategy for distribution of
various categories tasks is not efficient. The solutions to
this problem are specialized Grid systems such as Al-
iEn Grid, WeNMR. However, the number of tasks cate-

gories is extremely important and it is not possible to
develop a system for each category of task.

General information

Task scheduling is a well-known problem for dis-
tributed computing. Extensive research on this problem
applied to Grid environments has been conducted by
Buyya [1], Foster [2], Heiss [3]. Nevertheless, every
specific Grid environment may require its specific bro-
ker algorithm according to the tasks being scheduled or
restrictions of the environment.

 The common form for the resource state evalua-
tion is (1):

 P = f (x1,x2,...,xn) (1)

where P is an evaluation rank for a computational
resource, f is some function which implements a
resource evaluation algorithm of a broker, х1..xn are
computational resource parameters.

 Thus, the task of finding an optimal resource
for task execution means finding an optimal resource
rank according to the algorithm used. This can be a
maximum or minimum value for some set of computa-
tional resources.

 If there are some parameters that can be omitted
white resource state evaluation, then (1) can be rewrit-
ten as (2):

 P = f (x
1
,x

2
,...,xn, y

1
, y

2
,...ym),

 (2)

where х1..xn are mandatory parameters for resource
state evaluation, y1…ym – not mandatory parameters.

Global task scheduling approaches
and problems

Global Grid segment architecture can be:
1) centralized – this approach has on central queue

for whole of the Grid segment. Grid users sub-
mit their tasks to this queue and they are distrib-

P. SVIRIN: LOAD BALANCING ALGORITHM FOR GRID TASK SCHEDULING IMPROVEMENT 25

uted among the computing resources. Although
this approach has more options for task execu-
tion control, the central queue can be a single
point which may cause failure for the whole
Grid segment. Example for this architecture is
gLite.

2) decentralized – in this approach there is no cen-
tral queue. Grid users pass tasks directly to the
queues of available computing resource. Such
architecture is more stable, nevertheless, it is
more complicated to control the resource load
and task scheduling. Example for this architec-
ture can be Nordugrid ARC.

The main problems for task scheduling are:
• tasks are being distributed to resources inappro-

priate for execution;
• broker does not take into account current status

of a resource;
• the task is being executed for too long time be-

cause of too slow resource and is dropped be-
cause of maximum execution time exceeded;

• Broker delivers tasks to a resource with long
task queue;

• Some of the resources stay without load after all
of the tasks have been dispatched, some stay
with long queue.

Problem definition for UNG

Ukrainian Grid infrastructure is made by the use of
ARC (Advanced Resource Connector) middleware also
known as project NorduGrid [4].

In ARC both 0.8 version and new ARC 2.0 version
use full maximum decentralization as the main principle
therefore the personal broker is installed on every
workbench of the Grid network user. The broker’s func-
tion is to opt for the best resource to execute the user’s
task in the Grid network.

Currently in UNG the random selection of the re-
source is used, however it does not take into account the
current state of the existing resources. For more effi-
cient distribution of load among the resources personal
brokers which take into account both the current state of
the resources and the load balancing policy should be
developed. Nordugrid ARC package contains the sim-
plest policies therefore the suggested methods can be
used not only in UNG but also for other segments and
virtual organizations having specific and general tasks.

The specifics of Ukrainian Grid infrastructure are
the following:

• 38 clusters with low computational perfor-
mance [5];

• Only 2 high computational performance re-
sources are available;

• All resources are managed by ARC;
• Various calculation subjects: molecular dynam-

ics, physics, chemistry, astronomy etc., a high
number of virtual organizations.

Specifics of brokers in Nordugrid ARC:

• Availability of only simplified policies for tasks
distribution

• The system is targeted at ATLAS [6-9] experi-
ment data processing with prevailing short
tasks having small amounts of data. The broker
that draws a conclusion regarding the target re-
source taking into account the amount of re-
quired data in the computational resource cache
was developed specifically for this experiment.
In such way it decreases the data transfer time.

Therefore Ukrainian segment lacks brokers suitable
for efficient distribution of tasks of all categories.

In reality the tasks that require 10-30 processors are
sent to the cluster of the Cybernetics institute and they
await for days in a queue to be executed. Shorter tasks
can also be directed there and also wait in queue.

Hence the goal of the optimal broker for UNG is:
• submit shorter tasks to weaker resources;
• submit longer tasks to more powerful re-

sources;
• choose the resources with the earliest start time

for the task.

Methods for resource brokers design
for Nordugrid ARC

General sequence of stages in the process of task
submission is the following (Fig. 1):

Fig. 1 Steps performed while submitting to a computational
resource.

26 INFORMATION AND TELECOMMUNICATION SCIENCES VOLUME 5 NUMBER 1 JANUARY ─ JUNE 2014

1. Task is being parsed, checks for description
correctness are performed;

2. Information system is queried for a list of avail-
able computational resources is discovered;

3. The algorithm queries external data sources for
additional information about the available re-
sources from the list fetched on step 2.

4. The algorithm performs checks for computa-
tional resources and filters out those which do
not satisfy task requirements or other re-
strictions.

5. Resource integral characteristics evaluation –
the algorithms performs rank calculation, then
the resource list is sorted according to this rank.

6. Task submission – the task description together
with its data is passed to the selected computa-
tional resource for execution.

Steps 3-5 are to be implemented in order to develop
a personal broker algorithm.

The following is required to design an efficient bro-
ker:

• To define the task area and environment re-
quirements for which the broker can carry out
efficient distribution between the resources;

• To ensure information receipt from the infor-
mation system;

• To define the criteria for rejection of the re-
source candidate;

• To define the set of characteristics to be used
for load evaluation of the computational cluster;

• To develop the sequence of steps for ranking
the clusters list and rejection of clusters not
suitable for task requirements.

• To develop the procedure for tasks sending se-
quence in case of need to simultaneously dis-
tribute few tasks.

There are two methods of resources ranking:
• Consecutive evaluation and rejection of re-

sources based on each criteria;
• Calculation of integral characteristic for each

resource and further ranking according to this
characteristic.

The second approach has already been discussed in
few articles, in particular [10], in which authors have
developed an integral characteristics of the resource
based on its specific capacity, memory space, number
of processors, processors loading during the preceding
minute and the rate of network load for the resource.

In Nordugrid ARC resource broker is located on the
client side because this platform uses decentralized ap-
proach. Thus, every Grid client can use its own broker
implementation (Fig. 2)

Nordugrid ARC 2.0 platform enables use of web
services for implementation of special purpose services.
Therefore, it is possible to implement a service that will
return an extended information about the resource.
Monitoring systems such as Nagios etc. can also be an-
other source of extended information. The article [11]
reviews the option of the broker development for
Ukrainian Grid segment [12]. The brokers suggested in
current article do not require installation of services be-
yond the platform Nordugrid ARC.

From the architectural point of view the brokers for
Nordugrid ARC can be divided into:

• constant – modules compiled into the program
• variable – such modules can be changed with-

out recompilation of the entire code of client’s
software. For instance it is possible to occa-
sionally download broker updates within the
frameworks of a certain project. The algorithm
code in this case is written in scripting language
Python. During running the program of task
submission the list of candidates-resources is
submitted to the present script and the script re-
turns the ranked resources lists at the output.

From the algorithm point of view brokers can be di-
vided as follows:

• brokers calculating overall estimation coefficient
for a resource. It may take into account both stat-
ic and dynamic resource characteristics as well
as static task requirements for the resource
which enables balancing the load between the
resources according to a certain policy;

• brokers using table method – resources ranking
is carried out in accordance with already accu-
mulated data regarding the duration of certain
types of tasks existing in the project.

Main information sources about Nordugrid ARC re-
sources are:

• AREX – service controlling the tasks execu-
tion. Returns the list of static and dynamic
characteristics described by GLUE 2 schema;

• Infosys – information system Nordugrid ARC
for version 0.8 and lower. It is based on
OpenLDAP and contains the list of registered
computing resources and their current state for
static and dynamic characteristics;

• ISIS – represents a registry of services that ena-
ble obtaining the information about the re-
sources.

Possible additional sources are:
• Additional services of Nordugrid Arc platform.
• Monitoring systems Network Weather Service,

Ganglia and others;
• Other sources.

P. SVIRIN: LOAD BALANCING ALGORITHM FOR GRID TASK SCHEDULING IMPROVEMENT 27

Fig.2 Nordugrid ARC architecture

For example, the widely used in the Grid environ-
ments information system Ganglia provides the fol-
lowing data:

• the number of operating resource nodes at the
current time;

• resource network status;
• recent cluster load.

Simulation overview

In order to simulate the possible enhancements for
Nordugrid ARC broker we performed a set of simula-
tions in order to research the efficiency of different ap-
proaches. We used Alea3 and metacenter.mwf task file
for broker simulation with 1000 tasks to process.

Random

This is a default static algorithm in Nordugrid ARC
which is used in UNG. This approach selects randomly
an available resource and then passes the task to it.

While using this approach the set of tasks has been
processed in more than 400 days with unbalanced load
(some resources are overloaded for a certain period of
time, some remain free and have no incoming tasks in
the queue) (Fig. 3).

Fig.3 Resource load for Random policy

Best suitable

This broker algorithm uses productivity rank from
the information system for making a decision. Availa-
ble computing resources are ranked by this parameter
and the resource with the best productivity rank re-
ceives the task.

Fig.4 Resource load for Best Suitable policy

The set of tasks has been processed in about 55 days
(Fig. 4), which shows much better efficiency than Ran-
dom algorithm, although this approach is still static and
does not take into account current state of the resource.

Earliest Start time prediction

This dynamic broker uses execution time estima-
tions from task registry service, which stores task exe-
cution time evaluations for every task type in the do-
main of tasks and also a task tracker service which
tracks execution percentages for every task.

28 INFORMATION AND TELECOMMUNICATION SCIENCES VOLUME 5 NUMBER 1 JANUARY ─ JUNE 2014

Fig.5 Resource load for Earliest Start policy

The earliest start time on a certain resource is evalu-
ated by (3):

��� � ∑ ������1
 ���
�
��� (3)

where TLj – estimated time left until tasks that were
submitted to the j-th resource will be accomplished, n –
number of tasks delivered to the resource, l(t i) – a func-
tion which estimates the length of the task i, pi – com-
pleted percentage for the task i.

The simulation showed considerable improvement
in productivity comparing to the previous one together
with more balanced load across the computing re-
sources. The set of tasks has been processed in 47 days
(Fig. 5). Nevertheless, this approach needs additional
software and task evaluations for different CPU types.
However, it can be used for the sets of tasks where most
of the task types are known and thus their execution
times are already evaluated.

Resource load for Earliest Start policy
with rescheduling

This is an extension for the algorithm described in
previous section.

This broker uses execution time estimations from
task registry together with task transfer to free resources
from the long queue of another resources.

The rescheduling approach uses server-requested
policy, when a server which has no load asks its neigh-
bor resources for task which stand in a long queue and,
thus, have to wait for a long time before their execution
starts. If there is such task – it is transferred to a free re-
source which starts its execution immediately [13].

The simulation showed further improvements for
productivity: the same set of tasks has been processed
in 43 days (Fig. 6) which gives another 10% boost.

Fig.6 Resource load for Earliest Start policy with rescheduling

The rescheduling feature uses the first free resource
available. In order to extend this approach it is possible
to evaluate the free resource to find a free resource with
the best productivity. This improvement gives decreases
task set processing time to 41.8 days (3% boost com-
paring to the previous approach). (Fig. 7)

Fig.7 Resource load for Earliest Start policy with reschedul-
ing to a resource with the best productivity.

The software required to run this broker is the same
as for the previous approach, however the tracker has to
track the task URI change after the rescheduling has
been completed. The data schema for services is shown
on Fig.8. TaskTypes table stores the task types list to-
gether with the function which estimates execution
time. Such functions can be written in some interpreted
language like Lua, which can be interpreted via C API
interface and can represent a function calculating the
task time using input parameters or just returning a con-
stant number. Task table tracks the URI change for a
task and its completed percentage.

P. SVIRIN: LOAD BALANCING ALGORITHM FOR GRID TASK SCHEDULING IMPROVEMENT 29

Fig.8 Database schema for the service that stores data about
rescheduled tasks

The process of task result retrieving now has two
stages:

• the user contacts the computing resource
where the task had been initially submitted to;

• the resource returns the new URI where the
task has been transfered to and executed;

• the user contacts the computing resource us-
ing this new URI and retrieves the task re-
sults.

Conclusions

This article reviews the principles of resource bro-
kers design for Nordugrid ARC as well as review of
possible information sources for ranking the resources
list by broker. The options for implementation of the
load distribution algorithm are presented.

The simulation results show that every broker has its
own advantages and disadvantages. For example, more
effective ones need additional software and complex
structure which may be inacceptable in certain situa-
tions.

Obtained results enable making the choice of
sources that allow appropriate evaluation for the re-
source current state and choose the best broker algo-
rithm or its architecture according to the conditions of
computing environment or virtual organization re-
quirements.

The approaches shown in this article also allow to
develop other implementations or using other additional
sources of information.

References

1. Buyya R., Abramson D., Giddy J. Nimrod/G: An archi-
tecture for a resource management and scheduling sys-
tem in a global computational grid // Fourth Internatio-
nal Conference on High Performance Computing in
Asia. – China: Pacific Region(HPC Asia 2000) Beijing,
– 2000. – P. 283–289.

2. Foster I., Kesselman C., Tuecke S. The anatomy of the
grid: Enabling scalable virtual organizations // Cluster
Computing and the Grid, IEEE International Symposi-
um on. – Los Alamitos, CA, USA: IEEE Computer
Society, 2001 – Vol.15, No.3 – p. 200-222.

3. Heiss H.-U., Schmitz M. Decentralized dynamic load
balancing: The particles approach // Information Sci-
ences – 1995 – № 84. – P. 115–128.

4. Nordugrid ARC website. http://www.nordugrid.org
5. Grid Monitor website. http://gridmon.bitp.kiev.ua/
6. A. Read, A. Taga, F. Ould-Saada, K. Pajchel, B. H.

Samset, D. Cameron. Complete Distributed Computing
Environment for a HEP Experiment: Experience with
ARC-Connected Infrastructure for ATLAS.
http://www.nordugrid.org/documents/chep07-atlas.pdf

7. Kennedy J. ATLAS Production System.
http://www.etp.physik.uni-muenchen.de
/dokumente/talks/jkennedy_dpg07.pdf

8. Werner J. Grid computing in High Energy Physics us-
ing LCG: the BaBar experience.
http://www.gridpp.ac.uk/papers/ahm06_werner.pdf

9. L. Boyanov, P. Nenkova. On the employment of LCG
Grid middleware. http://ecet.ecs.ru.acad.bg/
cst05/Docs/cp/SII/II.11.pdf

10. Chao-Tung Y., Sung-Yi C., Tsui-Ting C. A Grid Re-
source Broker with Network Bandwidth-Aware Job
Scheduling for Computational Grids. // Advances in
Grid and Pervasive Computing. – 2007 - Vol. 4459. -
pp.1 - 12.

11. Petrenko A., Svіstunov S., Svіrіn P. Grid site load
evaluation algorithm // Proceedings of «System Analy-
sis And Information Technologies», May 23-28 2011,
Kyiv, Ukraine – p. 388. [in Ukrainian]

12. Zagorodniy, A., Zinovyev, G., Martynov, E.,
Svistunov, S. Ukrainskiy akademicheskiy Grid.
Ukrayins'ko makedons'kiy naukoviy zbirnyk – 2009 –
4 - pp. 140-150. [in Ukrainian]

13. Livny M., Melman M. Load Balancing in
Homogeneous Broadcast Distributed Systems // Proc.
ACM Computer Network Performance Symposium
(April 1982) - pp. 47-55.

Received in final form November 11, 2013

