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Background. The common purpose of modeling and using minimum spanning trees is to ensure efficient coverage. In 

many tasks of designing efficient telecommunication networks, the number of network nodes is usually limited. In terms of 
rational allocation, there are more possible locations than factually active tools to be settled to those locations. 

Objective. Given an initial set of planar nodes, the problem is to build a minimum spanning tree connecting a given 
number of the nodes, which can be less than the cardinality of the initial set. The root node is primarily assigned, but it can be 
changed if needed. 

Methods. To obtain a set of edges, a Delaunay triangulation is performed over the initial set of nodes. Distances between 
every pair of the nodes in respective edges are calculated. These distances being the lengths of the respective edges are used as 
graph weights, and a minimum spanning tree is built over this graph. 

Results. The problem always has a solution if the desired number of nodes (the number of available recipient nodes) is 
equal to the number of initially given nodes. If the desired number is lesser, the maximal edge length is found and the edges of 
the maximal length are excluded while the number of minimum spanning tree nodes is greater than the desired number of 
nodes. 

Conclusions. To build a minimum spanning tree by a limited number of nodes, it is suggested using the Delaunay 
triangulation and an iterative procedure in order to meet the desired number of nodes. Planar nodes of an initial set are 
triangulated, whereupon the edge lengths are used as weights of a graph. The iterations to reduce nodes are done only if there 
are redundant nodes. When failed, the root node must be changed before the desired number of nodes is changed. 
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1. Introduction 
 

One of the primal practical uses of minimum 
spanning trees was an efficient electrical coverage [1]. 
Spread out quickly since, minimum spanning trees have 
been successfully applied to design computer, 
broadcasting, telecommunication, and transportation 
networks [2], [3]. The latter include as natural resources 
supply networks, as well as electrical power supply 
grids [4], [5].  

Given a set of nodes connected with edges, the 
purpose of the minimum spanning tree is to connect all 
the nodes by minimizing the cost of the connection. 
Basically, a minimum spanning tree is a subset of the 
edges of an undirected graph that connects all the nodes 
without any cycles and with the minimum possible total 
edge weight [6], [7].  

Along with the very first approach [1], another two 
commonly used algorithms for finding a minimum 
spanning tree are the Prim’s algorithm and Kruskal’s 
algorithm. The Prim’s algorithm performs by building 
such a tree, at each step adding the cheapest possible 
connection from the currently built tree to another node 
[8], [9]. The Kruskal’s algorithm performs by adding at 
each step the next lowest-weight edge that will not form 
a cycle to the minimum spanning forest [10], [11]. At 

the termination of the algorithm, the forest forms a 
minimum spanning forest of the graph. For the 
connected graph, the forest has a single component and 
forms a minimum spanning tree.  

Whereas the Prim’s algorithm is commonly said to 
perform better on dense graphs [12], the Kruskal’s 
algorithm is believed to perform acceptably on sparser 
graphs [2], [6], [7]. However, the efficiency of the 
Prim’s algorithm on sparse graphs still has not been 
denied [13]. Both the algorithms have nearly the same 
asymptotic time complexity varying from linear to 
polynomial [14]. 

 

2. Problem statement 
 

Given a set of N  planar points (nodes), the problem 
is to build a minimum spanning tree connecting a given 
number M  of the points, where . The root node 
is assigned as well. This problem relates to tasks of 
designing efficient telecommunication networks, where 
the number of network nodes is usually limited. For 
example, the task is to build a network of mobile base 
stations, connected in a mesh on a given set of possible 
locations, with the minimum possible total distance to 
ensure efficient maintenance and signal level. Another 
example is to build a network of electrical power 
converters in order to supply the desired voltage to 
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industrial and individual customers from electrical 
power stations. In both examples, just like in others 
similar, the number of minimum spanning tree nodes is 
limited and usually less than the number of all possible 
locations. 

 

3. Delaunay triangulation 
 

Let  

     1 1
NN

i i ii ix y P  (1) 

be a set of planar nodes, on which a minimum spanning 
tree is to be built having maximum M  nodes, . 
First of all, in order to obtain a set of edges, a Delaunay 
triangulation is performed over set (1). For further 
consideration, denote the set of edges after the 
triangulation of set (1) by 
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Q Q
q q qq q

E j k
 
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where edge qE  is determined by nodes 
qj

P  and 
qkP  

connected by this edge for  1,qj N ,  1,qk N , 

q qj k , and Q  is the total number of edges. Although 
the Delaunay triangulation does not maximize the edge-
length of the triangles, it maximizes the minimum of all 
the angles of the triangles in the triangulation [15], [16]. 
This allows to mostly exclude creating sliver triangles 
[17]. For instance, a set of 17 nodes issuing a set of 289 
edges (Fig. 1) is triangulated and thus a set of only 38 
edges is formed (Fig. 2), over which a minimum 
spanning tree can be potentially built. 

 

 
Fig. 1. A set of 17 planar nodes connected pairwise  

with a set of 289 edges 

 
Fig. 2. The triangulated planar nodes from Fig. 1  

and a set of the respective 38 edges 

 
It is worth noting that the number of edges 

connecting planar nodes after they are triangulated is 
not necessarily the same for a given N . In a case with 
17 planar nodes, it can vary between 36 and 44. As the 
number of nodes increases, the variation becomes 
wider. For instance, it is 93 to 104 edges for 37 nodes 
(Fig. 3, 4), 204 to 217 edges for 75 nodes (Fig. 5, 6), 
280 to 292 edges for 100 nodes (Fig. 7, 8), although the 
result depends on the shape of planar data. 

 

 
Fig. 3. A minimum of 93 edges for a set  
of 37 planar nodes after triangulation 
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Fig. 4. A maximum of 104 edges for another set  

of 37 planar nodes after triangulation 
 

 
Fig. 5. A minimum of 204 edges for a set  

of 75 planar nodes after triangulation 
 

 
Fig. 6. A maximum of 217 edges for another set  

of 75 planar nodes after triangulation 

 
Fig. 7. A minimum of 280 edges for a set  
of 100 planar nodes after triangulation 

 

 
Fig. 8. A maximum of 292 edges for another set  

of 100 planar nodes after triangulation 
 
It is seen from Fig. 3 — 8 that the minimum of 

edges is typical for a circular-shaped node sets. As the 
convex hull of the node set becomes more square-
shaped (or, more generally, polygon-shaped), the 
number of edges increases. 

 

4. Minimum spanning tree iterations 
 

To obtain weights for the graph edges, the distances 
between every pair of the nodes in edges (2), being the 
lengths of these edges, are calculated as 
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  for 1,q Q . (3) 

Then a minimum spanning tree is found for the graph 
with edges (2) and their respective weights (3). The 
problem is solved if M N . Otherwise, when M N , 
then  

*N N , *Q Q ,  
*

* *
1

Q
q q

E E


 E ,  

 for *1,q Q ,  

and the following routine is executed while the number 
of nodes connected by edges in the minimum spanning 
tree is greater than M  (i. e., while *N M ).  

First, the edges whose length is maximal are 
excluded from set *E : 

*(obs) *E E ,  * *(obs) *\ h h H
E E


 E   

 by . (4) 

Second, the respective distances are excluded from the 
set of distances  

  (5) 

by 
*(obs) *Q Q ,  * *(obs)1, \Q Q H , 

whence a new set  of distances (edge 

lengths or weights, in other words) is formed. Then a 
minimum spanning tree is found for the graph with new 
edges (4) and their respective weights (5). 

Generally speaking, this routine cannot ensure that 
the eventual number of nodes in the minimum spanning 
tree be equal to M . In other words, equality *N M  
does not always hold as the while condition is broken 
and the algorithm stops returning a minimum spanning 
tree connecting *N  nodes. An example is presented in 
Fig. 9, where the task is to build a minimum spanning 
tree connecting 98 nodes out of 100 nodes. In this 
particular example, the minimum spanning tree 
connects 97 nodes — a node less than desired. A 
noticeable spot is the separated triangle of three nodes. 
The triangle became separated after cutting off too 
lengthy edges. The vertices of the triangle are those 
three nodes, one of which is desired to be in a minimum 
spanning tree. However, another problem with 100 
nodes, where only one node is redundant (in terms of 
building a tree with a limited number of nodes), is 
solved successfully (Fig. 10). 

Fig. 11 shows the result for a set of 150 nodes, 
among which five nodes are redundant, wherein a node 
in the minimum spanning tree is missing like that one in 
Fig. 9. A separated set of four nodes is seen here (two 
triangles — one within another). Another two nodes are 
“turned off” in the upper left side of the planar data 
shape.  

 
Fig. 9. The triangulation (the left subplot) and a minimum spanning tree (the right subplot; set *E  is shown only)  

of 96 edges connecting 97 nodes over an initial set of 100 nodes ( 98M  ) 
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Fig. 10. The triangulation (the left subplot) and a minimum spanning tree (the right subplot; set *E  is shown only)  

of 98 edges connecting 99 nodes over an initial set of 100 nodes ( 99M  ) 

 
Fig. 11. The triangulation (the left subplot) and a minimum spanning tree (the right subplot; set *E  is shown only)  

of 143 edges connecting 144 nodes over an initial set of 150 nodes ( 145M  ) 
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A similar example is presented in Fig. 12 for a 
specific shape of the planar data. The shape resembles a 
circular arc. Aiming at building a minimum spanning 
tree connecting 147 nodes out of 150 ones, one node 
becomes “turned off”. This is the node at the bottom, 

whose missing makes an edge separated (this is the very 
edge at the bottom on the right subplot). Nevertheless, 
for another specific shape, resembling a denser circular 
arc, the tree is successfully built connecting 247 nodes 
out of 250 ones (Fig. 13). 

 
Fig. 12. The triangulation (the left subplot) and a minimum spanning tree (the right subplot; set *E  is shown only)  

of 145 edges connecting 146 nodes over an initial set of 150 nodes ( 147M  ) 

 
Fig. 13. The triangulation (the left subplot) and a minimum spanning tree (the right subplot; set *E  is shown only)  

of 246 edges connecting 247 nodes over an initial set of 250 nodes ( 247M  ) 
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An example of a total fail is presented in Fig. 14 for 
a semicircular shape of 250 nodes, where trying to 
exclude one to three nodes results in a tree with just 33 

nodes. The problem without reducing nodes is solved 
normally (Fig. 15), and all those too long edges are not 
included into the tree. 

 

 
Fig. 14. The triangulation (the left subplot) and a minimum spanning tree (the right subplot; set *E  is shown only)  

of just 32 edges connecting 33 nodes over an initial set of 250 nodes (  247, 248, 249M  ) 

 
Fig. 15. A minimum spanning tree of 249 edges 

connecting all 250 nodes from Fig. 14 ( 250M  ) 

A far more complicated case is shown in Fig. 16, 
where a minimum spanning tree is to be built over 248 
or 249 nodes out of 250 ones. The result is the same 
whether 248M   or 249M  : two nodes are “turned 
off”, which can be easily spotted in the lower left side 
of the planar data shape. If the number of desired nodes 
is decreased to 247, the problem does not have an exact 
solution. There exists only one minimum spanning tree 
of 211 edges connecting 212 nodes. If the number of 
desired nodes is decreased further, the result does not 
change until 212M   (Fig. 17). Thus, in this particular 
example, whichever the number of desired nodes is, 
being varied between 213 and 247, the result is the 
same, where 38 nodes are “turned off” from the initial 
set (Fig. 16), and the problem does not have an exact 
solution. Obviously, if 212M   then the problem does 
have an exact solution which is a minimum spanning 
tree of 211 edges shown in Fig. 17. 

The considered examples and their results visualized 
in Fig. 9 — 17 convince that thinner-shaped sets of 
nodes are more prone to have no solution if M N . 
So, it is better to select number M  warily. If the 
resulting tree has much fewer nodes, the root node must 
be changed selected from the missing nodes. 
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Fig. 16. The triangulation (the left subplot) and a minimum spanning tree (the right subplot; set *E  is shown only)  

of 247 edges connecting 248 nodes over an initial set of 250 nodes (  248, 249M  ) 

 
Fig. 17. A minimum spanning tree of 211 edges 

connecting 212 nodes from Fig. 16  
by 247M   down to 212M   (set *E  is shown only) 

5. Discussion 
 

The time complexity of the suggested approach 
comprises the time complexity of the Delaunay 
triangulation and the algorithm of building a minimum 
spanning tree, whether it is the Prim’s or Kruskal’s 
algorithm (although the Prim’s algorithm is preferable). 
In the case of a few redundant nodes (i. e., when 
M N ), the iterations during which the distances 
(lengths of edges) are compared with the currently 
maximal edge length may slow down the solution 
process. However, as the number of desired nodes is 
decreased, and the number of redundant nodes 
correspondingly decreases, it does not necessarily lead 
to a significant slowdown. The reason is the number of 
the minimum spanning tree edges may drop abruptly as 
the number of desired nodes is decreased by 1 (just like 
in the example in Fig. 16, 17). In such cases, it is 
reasonable to build a few trees for a few distant values 
of number M  and see how the tree coverage changes. 
Then, if possible, number M  is corrected (adjusted) so 
that the number of the minimum spanning tree edges be 
the closest to M . If it is impossible to correct number 
M , or the resulting tree covers too fewer nodes, 
changing the root node selected from the missing nodes 
may help. Otherwise, the problem has no solution. 
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6. Conclusion 
 

To build a minimum spanning tree by a limited 
number of nodes, it is suggested using the Delaunay 
triangulation and an iterative procedure in order to meet 
the desired number of nodes (recipients). Given an 
initial set of planar nodes, they are triangulated, 
whereupon the distances between every pair of the 
nodes in respective edges are calculated. These 
distances being the lengths of the respective edges are 
used as graph weights. The problem always has a 
solution if the desired number of nodes (being 
commonly equal to the number of available recipient 
nodes) is equal to the number of initially given nodes. If 
the desired number is lesser, the maximal edge length is 
found and the edges of the maximal length are excluded 
while the number of minimum spanning tree nodes is 
greater than the desired number of nodes. When this 
problem is not solved to an exact desired number of 
nodes, the eventual number of tree nodes is less than 
desired. While it is so, the root node must be changed 
by selecting it from the missing nodes, but it does not 
ensure the exact solution. After all the missing nodes 
are tried and still the problem is not solved, the desired 
number of nodes must be changed by the least possible 
value [18]. A further research must be focused on such 
an adjustment. 
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Романюк В.В. 
Побудова мінімальних сполучних дерев за обмеженої кількості вузлів на триангульованій 

множині початкових вузлів 
Проблематика. Загальна мета моделювання та використання мінімальних сполучних дерев полягає у забезпеченні 

ефективного покриття. У багатьох завданнях проєктування ефективних телекомунікаційних мереж кількість вузлів 
мережі зазвичай є обмеженою. У термінах раціонального розміщення це означає, що фактично існує більше 
потенційних місць розташування, ніж наявних засобів для їх розміщення у цих місцях. 

Мета дослідження. Для даної початкової множини вузлів на площині задача полягає у побудові мінімального 
сполучного дерева, що поєднує задану кількість вузлів, котра може бути меншою за кількість елементів початкової 
множини. Кореневий вузол першопочатково задається, однак за необхідності він може бути змінений. 

Методика реалізації. Для отримання множини ребер виконується триангуляція Делоне на початковій множині 
вузлів. Обчислюються відстані між кожною парою вузлів у відповідних ребрах. Ці відстані, котрі є довжинами 
відповідних ребер, використовуються як ваги для графа, і на цьому графі будується мінімальне сполучне дерево. 

Результати дослідження. Дана задача завжди має розв’язок за умови, якщо бажана кількість вузлів (кількість 
доступних вузлів-приймачів) рівна кількості початково даних вузлів. Якщо бажана кількість є меншою, знаходиться 
максимальна довжина ребра, й усі ребра максимальної довжини виключаються доки кількість вузлів мінімального 
сполучного дерева є більшою за бажану кількість вузлів. 

Висновки. Для побудови мінімального сполучного дерева за обмеженої кількості вузлів запропоновано 
використовувати триангуляцію Делоне та ітеративну процедуру задля досягнення бажаної кількості вузлів. 
Виконується триангуляція вузлів з початкової множини на площині, після чого довжини ребер використовуються як 
ваги графа. Ітерації задля скорочення вузлів виконуються лише за наявності зайвих вузлів. У випадку відсутності 
розв’язку мусить бути змінений кореневий вузол перед тим, як змінювати бажану кількість вузлів. 

Ключові слова: мінімальне сполучне дерево; триангуляція; довжини ребер; зайві вузли; кореневий вузол. 
 


