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BUILDING MINIMUM SPANNING TREES BY LIMITED NUMBER OF NODES
OVER TRIANGULATED SET OF INITIAL NODES

Vadim V. Romanuke

Vinnytsia Institute of Trade and Economics of State University of Trade and Economics, Ukraine

Background. The common purpose of modeling and using minimum spanning trees is to ensure efficient coverage. In
many tasks of designing efficient telecommunication networks, the number of network nodes is usually limited. In terms of
rational allocation, there are more possible locations than factually active tools to be settled to those locations.

Objective. Given an initial set of planar nodes, the problem is to build a minimum spanning tree connecting a given
number of the nodes, which can be less than the cardinality of the initial set. The root node is primarily assigned, but it can be

changed if needed.

Methods. To obtain a set of edges, a Delaunay triangulation is performed over the initial set of nodes. Distances between
every pair of the nodes in respective edges are calculated. These distances being the lengths of the respective edges are used as
graph weights, and a minimum spanning tree is built over this graph.

Results. The problem always has a solution if the desired number of nodes (the number of available recipient nodes) is
equal to the number of initially given nodes. If the desired number is lesser, the maximal edge length is found and the edges of
the maximal length are excluded while the number of minimum spanning tree nodes is greater than the desired number of

nodes.

Conclusions. To build a minimum spanning tree by a limited number of nodes, it is suggested using the Delaunay
triangulation and an iterative procedure in order to meet the desired number of nodes. Planar nodes of an initial set are
triangulated, whereupon the edge lengths are used as weights of a graph. The iterations to reduce nodes are done only if there
are redundant nodes. When failed, the root node must be changed before the desired number of nodes is changed.

Keywords: minimum spanning tree; triangulation, edge lengths; redundant nodes; root node.

1. Introduction

One of the primal practical uses of minimum
spanning trees was an efficient electrical coverage [1].
Spread out quickly since, minimum spanning trees have
been successfully applied to design computer,
broadcasting, telecommunication, and transportation
networks [2], [3]. The latter include as natural resources
supply networks, as well as electrical power supply
grids [4], [5].

Given a set of nodes connected with edges, the
purpose of the minimum spanning tree is to connect all
the nodes by minimizing the cost of the connection.
Basically, a minimum spanning tree is a subset of the
edges of an undirected graph that connects all the nodes
without any cycles and with the minimum possible total
edge weight [6], [7].

Along with the very first approach [1], another two
commonly used algorithms for finding a minimum
spanning tree are the Prim’s algorithm and Kruskal’s
algorithm. The Prim’s algorithm performs by building
such a tree, at each step adding the cheapest possible
connection from the currently built tree to another node
[8], [9]. The Kruskal’s algorithm performs by adding at
each step the next lowest-weight edge that will not form
a cycle to the minimum spanning forest [10], [11]. At

the termination of the algorithm, the forest forms a
minimum spanning forest of the graph. For the
connected graph, the forest has a single component and
forms a minimum spanning tree.

Whereas the Prim’s algorithm is commonly said to
perform better on dense graphs [12], the Kruskal’s
algorithm is believed to perform acceptably on sparser
graphs [2], [6], [7]. However, the efficiency of the
Prim’s algorithm on sparse graphs still has not been
denied [13]. Both the algorithms have nearly the same
asymptotic time complexity varying from linear to
polynomial [14].

2. Problem statement

Given a set of N planar points (nodes), the problem
is to build a minimum spanning tree connecting a given
number M of the points, where M < N . The root node
is assigned as well. This problem relates to tasks of
designing efficient telecommunication networks, where
the number of network nodes is usually limited. For
example, the task is to build a network of mobile base
stations, connected in a mesh on a given set of possible
locations, with the minimum possible total distance to
ensure efficient maintenance and signal level. Another
example is to build a network of electrical power
converters in order to supply the desired voltage to
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industrial and individual customers from electrical
power stations. In both examples, just like in others
similar, the number of minimum spanning tree nodes is
limited and usually less than the number of all possible
locations.

3. Delaunay triangulation
Let

Py ={lx ¥l (1)

be a set of planar nodes, on which a minimum spanning
tree is to be built having maximum M nodes, M < N .
First of all, in order to obtain a set of edges, a Delaunay
triangulation is performed over set (1). For further
consideration, denote the set of edges after the
triangulation of set (1) by

E= {Eq}qQ:1 - {[jq kq :I}qQ:I ’ &)

where edge E, is determined by nodes P, and P,

ted by this edge for j e{I, N}, k ellLN
connected by s edge Tor J, € { ’ N} > e{ ’ }’ Fig. 2. The triangulated planar nodes from Fig. 1

J, #k,,and O is the total number of edges. Although and a set of the respective 38 edges

the Delaunay triangulation does not maximize the edge-

length of the triangles, it maximizes the minimum of all It is worth noting that the number of edges
the angles of the triangles in the triangulation [15], [16].  connecting planar nodes after they are triangulated is
This allows to mostly exclude creating sliver triangles not necessarily the same for a given N . In a case with
[17]. For instance, a set of 17 nodes issuing a set of 289 17 planar nodes, it can vary between 36 and 44. As the
edges (Fig. 1) is triangulated and thus a set of only 38 pymber of nodes increases, the variation becomes
edges is formed (Fig. 2), over which a minimum wider. For instance, it is 93 to 104 edges for 37 nodes
spanning tree can be potentially built. (Fig. 3, 4), 204 to 217 edges for 75 nodes (Fig. 5, 6),
280 to 292 edges for 100 nodes (Fig. 7, 8), although the
result depends on the shape of planar data.
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Fig. 1. A set of 17 planar nodes connected pairwise
with a set of 289 edges

Fig. 3. A minimum of 93 edges for a set
of 37 planar nodes after triangulation
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It is seen from Fig. 3 — 8 that the minimum of
edges is typical for a circular-shaped node sets. As the
convex hull of the node set becomes more square-
shaped (or, more generally, polygon-shaped), the
number of edges increases.

4. Minimum spanning tree iterations

To obtain weights for the graph edges, the distances
Fig. 6. A maximum of 217 edges for another set between every pair of the nodes in edges (2), being the
i i lengths of these edges, are calculated as
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(B ) =[x, ) (v, ) =
=1, (E,) for ¢=1,0. 3)

Then a minimum spanning tree is found for the graph
with edges (2) and their respective weights (3). The
problem is solved if M =N . Otherwise, when M <N,
then
* * * * Q'
N'=N,0Q'=0.E ={E| =E,

l;{z(Eq):lRZ (Eq) for q:E,

and the following routine is executed while the number
of nodes connected by edges in the minimum spanning

tree is greater than M (i. e., while N* > M).
First, the edges whose length is maximal are
excluded from set £ :

E*(obs) _ E* , E* — E*(Obs) \{EZ}/,EH
by H =arg m%l];z (E: ) . 4)
q=1,

Second, the respective distances are excluded from the
set of distances

(L (B ©)
by
0" =0, 0" =[[L.O"™ |1

2

*

q

whence a new set {ZI;Z (E )}qul of distances (edge

lengths or weights, in other words) is formed. Then a
minimum spanning tree is found for the graph with new
edges (4) and their respective weights (5).

Generally speaking, this routine cannot ensure that
the eventual number of nodes in the minimum spanning
tree be equal to M . In other words, equality N* =M
does not always hold as the while condition is broken
and the algorithm stops returning a minimum spanning
tree connecting N* nodes. An example is presented in
Fig. 9, where the task is to build a minimum spanning
tree connecting 98 nodes out of 100 nodes. In this
particular example, the minimum spanning tree
connects 97 nodes — a node less than desired. A
noticeable spot is the separated triangle of three nodes.
The triangle became separated after cutting off too
lengthy edges. The vertices of the triangle are those
three nodes, one of which is desired to be in a minimum
spanning tree. However, another problem with 100
nodes, where only one node is redundant (in terms of
building a tree with a limited number of nodes), is
solved successfully (Fig. 10).

Fig. 11 shows the result for a set of 150 nodes,
among which five nodes are redundant, wherein a node
in the minimum spanning tree is missing like that one in
Fig. 9. A separated set of four nodes is seen here (two
triangles — one within another). Another two nodes are
“turned off” in the upper left side of the planar data
shape.

of 96 edges connecting 97 nodes over an initial set of 100 nodes (1 =98)
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A similar example is presented in Fig. 12 for a whose missing makes an edge separated (this is the very
specific shape of the planar data. The shape resembles a  edge at the bottom on the right subplot). Nevertheless,
circular arc. Aiming at building a minimum spanning for another specific shape, resembling a denser circular
tree connecting 147 nodes out of 150 ones, one node arc, the tree is successfully built connecting 247 nodes
becomes “turned off”. This is the node at the bottom, out of 250 ones (Fig. 13).
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Fig. 12. The triangulation (the left subplot) and a minimum spanning tree (the right subplot; set £~ is shown only)
of 145 edges connecting 146 nodes over an initial set of 150 nodes (M =147)
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Fig. 13. The triangulation (the left subplot) and a minimum spanning tree (the right subplot; set £~ is shown only)
of 246 edges connecting 247 nodes over an initial set of 250 nodes (M =247)
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An example of a total fail is presented in Fig. 14 for nodes. The problem without reducing nodes is solved
a semicircular shape of 250 nodes, where trying to normally (Fig. 15), and all those too long edges are not
exclude one to three nodes results in a tree with just 33 included into the tree.

Fig. 14. The triangulation (the left subplot) and a minimum spanning
of just 32 edges connecting 33 nodes over an initial set of 250 nodes (M € {247, 248, 249})

A far more complicated case is shown in Fig. 16,
where a minimum spanning tree is to be built over 248
or 249 nodes out of 250 ones. The result is the same
whether M =248 or M =249: two nodes are “turned
off”, which can be easily spotted in the lower left side
of the planar data shape. If the number of desired nodes
is decreased to 247, the problem does not have an exact
solution. There exists only one minimum spanning tree
of 211 edges connecting 212 nodes. If the number of
desired nodes is decreased further, the result does not
change until M =212 (Fig. 17). Thus, in this particular
example, whichever the number of desired nodes is,
being varied between 213 and 247, the result is the
same, where 38 nodes are “turned off” from the initial
set (Fig. 16), and the problem does not have an exact
solution. Obviously, if M =212 then the problem does
have an exact solution which is a minimum spanning
tree of 211 edges shown in Fig. 17.

The considered examples and their results visualized
in Fig. 9 — 17 convince that thinner-shaped sets of
nodes are more prone to have no solution if M <N .
So, it is better to select number M warily. If the
Fig. 15. A minimum spanning tree of 249 edges resulting tree has much fewer nodes, the root node must
connecting all 250 nodes from Fig. 14 (M =250) be changed selected from the missing nodes.
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Fig. 16. The triangulation (the left subplot) and a minimum spanning tree (the right subplot; set £~ is shown only)
of 247 edges connecting 248 nodes over an initial set of 250 nodes (M € {248, 249})

5. Discussion

The time complexity of the suggested approach
comprises the time complexity of the Delaunay
triangulation and the algorithm of building a minimum
spanning tree, whether it is the Prim’s or Kruskal’s
algorithm (although the Prim’s algorithm is preferable).
In the case of a few redundant nodes (i.e., when
M < N), the iterations during which the distances
(lengths of edges) are compared with the currently
maximal edge length may slow down the solution
process. However, as the number of desired nodes is
decreased, and the number of redundant nodes
correspondingly decreases, it does not necessarily lead
to a significant slowdown. The reason is the number of
the minimum spanning tree edges may drop abruptly as
the number of desired nodes is decreased by 1 (just like
in the example in Fig. 16, 17). In such cases, it is
reasonable to build a few trees for a few distant values
of number M and see how the tree coverage changes.
Then, if possible, number M is corrected (adjusted) so
" that the number of the minimum spanning tree edges be

the closest to M. If it is impossible to correct number

Fig. 17. A minimum spanning tree of 211 edges M, or the resulting tree covers too fewer nodes,

connecting 212 nodes from Fig. 16 changing the root node selected from the missing nodes
by M =247 down to M =212 (set £ is shown only) may help. Otherwise, the problem has no solution.
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6. Conclusion

To build a minimum spanning tree by a limited
number of nodes, it is suggested using the Delaunay
triangulation and an iterative procedure in order to meet
the desired number of nodes (recipients). Given an
initial set of planar nodes, they are triangulated,
whereupon the distances between every pair of the
nodes in respective edges are calculated. These
distances being the lengths of the respective edges are
used as graph weights. The problem always has a
solution if the desired number of nodes (being
commonly equal to the number of available recipient
nodes) is equal to the number of initially given nodes. If
the desired number is lesser, the maximal edge length is
found and the edges of the maximal length are excluded
while the number of minimum spanning tree nodes is
greater than the desired number of nodes. When this
problem is not solved to an exact desired number of
nodes, the eventual number of tree nodes is less than
desired. While it is so, the root node must be changed
by selecting it from the missing nodes, but it does not
ensure the exact solution. After all the missing nodes
are tried and still the problem is not solved, the desired
number of nodes must be changed by the least possible
value [18]. A further research must be focused on such
an adjustment.
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Pomanrwx B.B.

Ilo6ynoBa MiHIMATBHHUX CMIOJIYYHHX JepeB 32 00MeKeHOol KiJIbKOCTi By3.1iB Ha TPHAHTYJILOBaHI
MHO’KHHI TOYaTKOBUX BY3JiB

ITpo6aemaTuka. 3aranbHa MeTa MOJICTIOBAHHS T4 BUKOPHCTAHHS MIHIMAIBHUX CIIOJTYyYHHUX JIEPEB MOJISrae y 3a0e3neyeHH1
e(eKTHBHOTO TOKPHUTTS. Y 0araTbox 3aBOaHHSX MPOEKTYBAHHS CPEKTHBHHUX TEICKOMYHIKAI[IHHUX MEPEeX KUTBbKICTH BY3IiB
Mepexi 3a3BHYail € OOMEKeHOW. Y TepMiHaX palioHaJbHOTO PO3MIIICHHS IIe O3Havae, mo (aKTHIHO ICHYe OiibpIne
TMOTEHIIIHAX MICIh PO3TAITyBaHHs, HiK HaSBHUX 3aC00IB JJIS IX PO3MIMICHHS Y IINX MICIISIX.

Mera jpocuimkennst. [lis 1aHoT 1oYaTKoBOT MHOXKMHK BY3JIB Ha IUIOLIMHI 33jlaua I0JIArac y moOya0Bi MiHIMAIbHOTO
CIIOJIyYHOTO JIepeBa, IO MOEAHYE 3a/aHy KUIBKICTh BY3IIB, KOTpa MOXKe OYTH MEHILOIO 3a KUIBbKICTh €IE€MEHTIB MOYaTKOBOI
MHOXUHHU. KopeHeBHii By3011 IEpLIONOYaTKOBO 33/1a€ThCsI, OJTHAK 32 HEOOX1THOCTI BIH MOXKEe OyTH 3MiHEHHIA.

Metoauka peanizauii. s oTpuMaHHS MHOXXHHH peOep BUKOHYEThCS TPUAHTYJILis JlesoHe Ha MOoyaTKoBid MHOXKHHI
By3/1iB. OOYHCIIOIOTBCS BIACTaHI MK KOXKHOIO MApol0 By3NiB Yy BiamoBinHux peOpax. Li BigcraHi, KOTpi € JOBKHHAMH
BIIMOBIHUX pebep, BUKOPHCTOBYIOTHCS SIK Bard JUist rpada, i Ha [iboMy rpadi OyayeThest MiHIMalIbHE CIIOJIyYHE JIEPEBO.

PesyabraTn gociikenns. Jlana 3amavya 3aBKIM Mae po3B’SA30K 32 YMOBH, SIKIIO OakaHa KiUTBKICT BY3JIB (KUIBKICTH
JOCTYITHHUX BY3JIiB-TIPUAIIMaYiB) piBHA KUTHKOCTI MOYATKOBO JAHUX BY3IIB. SIKIIO Oa’kaHa KUTBKICTh € MEHIIOI, 3HAXOIUTHCS
MaKCHMalbHa JOBKHHA pedpa, i yci pebpa MakCHMaTbHOI NOBXHHU BHKIIOYAIOTHCS JOKU KiTBKICTh BY3JiB MiHIMATBHOTO
CIIOITYYHOTO JepeBa € OUIBIIO 32 Oa)kaHy KUTbKICTh BY3IiB.

BucnoBkn. {11 moOymoBM MIiHIMAIBHOTO CIONYYHOTO JepeBa 3a OOMEKEHOI KiTBKOCTI BY3IIB 3alpOIIOHOBAHO
BHUKOPHCTOBYBAaTH TPHAHTYIAMiI0 JlenmoHe Ta iTepaTHBHY TpOLEAYpY 3a[iisi OOCATHEHHS OaKaHOi KUTBKOCTI BY3IIB.
BukoHyeTbcs TpUAHTYJIALIS BY3/IiB 3 I0YaTKOBOI MHOKMHM Ha IUIOLIMHI, ITiCJISA YOTO JOBXKHHH pedep BUKOPHUCTOBYIOTBCS SIK
Bard rpada. Itepanii 3am1s CKOPOUYCHHS BY3IIiB BHKOHYIOTHCS JIMILIC 33 HASBHOCTI 3aiiBUX BY3MiB. Y BHIIAAKY BiJCYyTHOCTI
PO3B’SI3KY MyCUTh OYTH 3MIHEHHI KOPEHEBHH By30J1 IIEpe]] THM, SIK 3MIHIOBAaTH Oa)kKaHy KiJIbKICTb BY3JIIB.

Kniouosi cnosa: minivanvue cnonyune 0epeso;, mpuaneyiayis; 008xcuHu pedep; 3aisi 6y3iu; KopeHesuil Y301,



