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Background. Modern queuing theory is used in many fields and in telecommunications it plays an important 

role. Today, the modern way to implement queuing systems is a cloud environment. And the main problem of 
queuing system is to ensure the quality of service. 

Objective. The purpose of the paper is to study the indicators of service quality of queuing systems with 
different initial characteristics, to analyse the service quality characteristics when comparing quantitative 
characteristics of different parameters of queuing systems to identify features of queuing system with self-similarity. 

Methods. Analyse the theory of QoS, types of distribution, such as Poisson and Weibull, as well as the 
properties of self-similar traffic. Compare the values of the main parameters that provide the desired quality of 
service at different inputs and different Hearst parameters. 

Results. The importance of taking into account the self-similarity factor for the accuracy of the values of the 
parameters in the calculation that ensure the quality of service in the QMS. 

Conclusions. Research of the influence of self-similar traffic on the quality of service in queuing systems. 
Keywords: queuing system; quality of service; Poisson distribution; Weibull distribution; self-similarity. 

 
Introduction 
Queuing system - a system that performs the 

maintenance of the requirements that come to it. 
Maintenance requirements in the queuing system 
are performed by service devices. Classic queuing 
systems contain from one to an infinite number of 
devices. It is usually assumed that the input flow is 
Poisson [1]. 

Today, the rapid growth of traffic users, 
changes in its nature and structure, a significant 
increase in bandwidth can contribute to possible 
congestion of network objects, their buffer devices 
and, consequently, lead to delays and packet loss. 
Therefore, when servicing packet traffic, special 
attention is paid to maintaining the characteristics 
of the quality of service (QoS) [2], [3]. 

To obtain functional dependencies and 
assess the performance of the network, the cloud 
environment is considered as a set of queuing 
networks consisting of queuing systems. 

A new trend in the modelling of queuing 
systems in recent years has been the study of 
systems not with independent flow of applications 
(as in the traditional Poisson model), but with the 
assumption of correlation of flows in total traffic. 
This case is classified as traffic self-similarity. 

Self-similar processes are characterized by 
the presence of consequences: the probability of 
occurrence of another event depends not only on 
time but also on previous events. This means that 
the number of current events may depend on the 
number of previous events in the remote time. 

Despite the long period of studying the self-
similarity of teletraffic, a significant class of tasks 
remains unsolved: 

1) in fact, there is no strict theoretical basis 
that would replace the classical theory of 
teletraffic in the design of modern mobile 
networks that use self-similar traffic; 

2) there is no single generally accepted model 
of self-similar traffic; 

3) there is no reliable and recognized method 
of calculating the quality characteristics of QoS 
for systems and networks serving self-similar 
traffic; 

4) there are no mechanisms and algorithms 
that ensure the quality of service in terms of self-
similar traffic [4]. 

 
Problem statement 
To analyse the parameters of service in a 

cloud environment, a queuing system with Poisson 
distribution and Weibull distribution, which 
describes self-similarity, is used. To determine the 
degree of self-similarity the Hurst parameter is 
used, which may be in the range 0 <H <1. 

The closer the Hurst parameter is to one, the 
more the properties of self-similarity are 
manifested, but limited strictly in the range of 0.5 
<H <1. With a Hurst parameter equal to H = 0.5, 
this corresponds to the case of lack of self-
similarity. So each queuing system is described by 
a given type of request flow, service duration, 
number of service channels and service discipline. 
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An important feature of the Poisson 
(simplest) flow of events is that the time between 
two consecutive events is a random variable 
distributed according to the exponential law [5], 
[6]. 
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where λ> 0 is the flow intensity. 
And the functional characteristic is the load 

factor ρ: 
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where λ - the intensity of applications in queuing 
systems, 
t - duration of service applications in the queuing 
system. 

Let's define indicators of quality of service 
for a case of Poisson's stream of applications and 
their service. 

The obtained value of the load factor allows 
determining the main functional characteristics of 
the queuing system, using the known formulas of 
Little [7]: 
- average number of Q applications in queuing 

systems (for service and in the queue): 
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- the average length of the queue, ie 
applications pending service: 
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- the average length of stay Wsystem application 
in the system:  
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- the average waiting time in the queue Vwaiting, 
which is determined by the delay of the 
application in the queue and depends on the 
number of applications in the queue:  
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In the case when time-dependent 
(correlated) applications arrive in the cloud 
environment, it is advisable to use the appropriate 
model with input flow. Corresponding to the 
Weibull distribution. 

Consider a queuing system of the form Wb / 
M / 1 / ∞ (queuing system serves the flow of 
applications, which is described by the Weibull 
distribution (Wb), the service time has an 
exponential distribution (M), queuing system 
single-line with infinite queue), i.e. Weibull 
distribution, given by the differential distribution 
function [5, 8]: 
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where α  is the shape parameter of the distribution 
curve, 0 < α < 1;  
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H  Hurst parameter, 0,5 < H < 1,  
 

� � �λ ∙ Г �1 � 1
���

�
 (9) 

 

β  distribution parameter, β > 0,  
λ   the intensity of service packets in the queuing 
system, 
Г(k)  Euler's gamma function. 

It is known that for the queuing system 
WB/M/1/ the probability that the application 
received in the queuing system will find n service 
requests is defined as: 
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where �  the root of the equation 0 ≤ � < 1: 
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where F  Laplace-Stieltjes transformation,  
µ intensity of service of packages in queuing 
systems [applications / hour, packages / second] 
[8].  
- the average waiting time of the application in 

the queue: 
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- the average time spent in the application 
system: 
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- average number of applications Q: 
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where ρ  load factor of queuing systems; 
- the average queue length L of applications is:  
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Proving the values of the parameters that at 
H = 0.5 it will be the simplest flow of events or 
Poisson's distribution, we will calculate the 
indicator � according to formulas (7) - (11): 
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So we get:  
 �

1 � � � � 

 

Solution  
To compare the parameters of the Poisson 

version of traffic (H = 0.5) and self-similar input 
flow (H = 0.6 and H = 0.7), the calculated values 
according to relations (3) - (6) and (12) - (15) are 
summarized to Table 1. 
 

 

Table 1. Estimated values for comparing parameters. 
The load 

factor of the 
queuing 

system, ρ 

0.8 0.7 0.64 0,6 0.5 0.49 0.48 0.47 0.46 0.45 

The average time the application is in the system, Wsystem 
Н = 0,5 6.67 3.33 2.22 1.67 1 0.87 0.769 0.686 0.617 0.56 
Н = 0,6 9.403 3.131 1.544 0.91 0.348 0.265 0.207 0.165 0.134 0.111 
Н = 0,7 14.99 5.024 2.481 1.479 0.575 0.436 0.341 0.273 0.224 0.185 

Average delay time, Wwaiting 
Н = 0,5 5.33 2.33 1.42 1 0.5 0.43 0.37 0.33 0.228 0.225 
Н = 0,6 7.052 3.132 1.930 1.366 0.696 0.594 0.517 0.457 0.409 0.372 
Н = 0,7 11.245 5.024 3.102 2.219 1.150 0.980 0.854 0.755 0.679 0.616 

Average number of applications, Q 
Н = 0,5 4 2.33 1.78 1.5 1 0.96 0.92 0.9 0.87 0.86 
Н = 0,6 5.642 2.192 1.235 0.819 0.348 0.291 0.248 0.214 0.188 0.167 
Н = 0,7 8.996 3.517 1.985 1.331 0.575 0.48 0.409 0.355 0.313 0.277 

The length of the application queue, L 
Н = 0,5 3.2 1.63 1.137 0.9 0.5 0.47 0.44 0.42 0.39 0.37 
Н = 0,6 4.231 2.193 1.544 1.229 0.696 0.655 0.621 0.591 0.565 0.543 
Н = 0,7 6.747 3.517 2.482 1.997 1.15 1.08 1.023 0.976 0.938 0.901 

 

According to the data from table 1, graphs 
were constructed to compare the average residence 
time of the application in the system and the 
average number of applications at different values 
of the Hearst parameter. 
 

 
Fig. 1. The average residence time of the application in 
the system at different values of the Hearst parameter 

 

Consider the first of the dependences - the 
average residence time of the application in the 
system Wsystem, as a function of the intensity of 
the input flow (load factor of the queuing system) 

ρ, depending on the degree of self-similarity of 
traffic. 

The nature of the dependence is such that 
the discrepancy in the indicators increases with 
increasing intensity of the input flow and, at the 
same time, the self-similarity factor. 

When the value of ρ = 0.8 and H = 0.7, the 
discrepancy in the value of Wsystem reaches  230%. 

Quantitatively, this is equivalent to errors in 
determining the performance of the queuing 
system using traditional, Poisson models. 

Therefore, in the case of using traditional 
models of queuing systems to predict the quality of 
service in queuing systems with signs of self-
similarity of traffic, the error can reach significant 
values! 
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Fig. 2. The average number of applications for different 

values of the Hearst parameter 
 

When the value of ρ = 0.8 and H = 0.7, the 
difference in the value of the average number of 
applications Q reaches 225%. 
 

 
Fig. 3 - Average waiting time of the application at 

different values of the Hearst parameter 
 

Analysing the obtained graph of the average 
waiting time of the application in the queue, we 
can observe a faster growth of the graphs of the 
average delay time with the property of self-
similarity compared to the simplest flow. 

When the value of ρ = 0.8 and H = 0.7, the 
difference in the value of the average waiting time 
for applications Wwaiting reaches 211%. 
 

 
Fig. 4 - The length of the application queue at different 

values of the Hearst parameter 
 

When the value of ρ = 0.8 and H = 0.7, the 
discrepancy in the value of the length of the queue 
of applications L reaches 211%. 

Therefore, having received graphs, it is 
possible to draw the general conclusion that. if we 
do not take into account the quantitative 
characteristics of the degree of self-similarity of 
traffic, i.e. the Hirst H parameter, it is impossible 
to adequately represent the characteristics to meet 
the quality of service in a cloud environment [9]. 

 
Conclusions. In the report of the method of 

finding the values of service quality parameters in 
queuing systems is investigated using the formulas 
of Little, who is one of the founders of queuing 
theory. 

An important point for the analysis of 
parameters to ensure the quality of service in 
queuing systems is the use of self-similarity, which 
determines more accurate values of indicators 
compared to the analysis of parameters in the 
simplest flow of events. 

To analyse the parameters of service in a 
cloud environment, a queuing system with Poisson 
distribution and Weibull distribution is used, which 
describes self-similarity at different Hirst (H) 
parameters, as this parameter determines the 
degree of self-similarity. 

The Hearst parameter is considered in the 
range of values from 0.5 to one. The closer H is to 
unity, the more the property of self-similarity is 
manifested. 

The mathematical model with Weibull 
distribution asymptotically tends to the Poisson 
distribution with a Hearst coefficient H = 0.5. 

As the Hearst parameter increases, the 
values of the considered service quality indicators 
increase, namely: the average time spent by 
applications in the system and the average number 
of applications in queuing systems. 
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Therefore, if the self-similarity factor is 
ignored, the system will not meet the expected 
parameters, which can lead to a significant error in 
determining the quantitative values of the 
characteristics of queuing systems needed to 
ensure the desired quality of customer service. 
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Уривський Л.О., Криклива А.В. 
Аналіз відмінностей в характеристиках систем обслуговування з динамікою самоподібності 

вхідних потоків  
Проблематика. Сучасна теорія масового обслуговування використовується в багатьох сферах діяльності 

і в сфері телекомунікацій теорія масового обслуговування займає важливу роль. На сьогоднішній день 
сучасним способом реалізації систем масового обслуговування є хмарне середовище. І головною проблемою 
СМО є забезпечення якості обслуговування. 

Мета дослідження. Дослідити показники якості обслуговування СМО з різними вихідними 
характеристиками, аналіз характеристик якості обслуговування при порівнянні кількісних характеристик 
при різних параметрах СМО задля виявлення особливостей СМО із властивістю самоподібності. 

Методика реалізації. Проаналізувати теорію СМО, види розподілу, такі як Пуассона і Вейбулла, а також 
властивості самоподібного трафіку. Порівняти значення основних параметрів, що забезпечують потрібну 
якість обслуговування при різних вхідних показниках і різних параметрах Херста. 

Результати дослідження. Важливість урахування фактору самоподібності для точності значень 
параметрів при розрахунку, що забезпечують якість обслуговування в СМО. 

Висновки. Дослідження впливу самоподібного трафіку на якість обслуговування в системах масового 
обслуговування. 

Ключові слова: система масового обслуговування, якість обслуговування, розподіл Пуассона, розподіл 
Вейбулла, самоподібність. 




