44

UDC 004.434

THE PROGRAMMING LANGUAGE FOR EMBEDDED REAL-TIME
DEVICES WITH REDUCING ERRORS AND WITHOUT REDUCING
THE PERFORMANCE OF PROGRAMS

Oleksii Shmalko, Pavlo Rehida, Artem Volokyta, Heorhii Loutskii

Department of Computer Engineering of National Technical University of Ukraine
“Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine

Vu Duc Thinh
Faculty of Information Technology of Ho Chi Minh City University of Food Industry
Ho Chi Minh, Vietnam

Background. C or C ++ languages are most commonly used for programming of embedded systems. The main drawbacks
are: lack of updates, difficulty in use, limited backward compatibility and potentially a large number of possible programmer
errors. Therefore, it is important to provide developers of low-level software of embedded systems, operating systems and system
utilities with fast, productive, reliable and stable language on the basis of modern programming theory.

Objective. The aim of the paper is to create a new productive and reliable programming language for embedded systems using

the principles and approaches of modern programming theory.

Methods. Analyzing well-known publications devoted to programming languages used for embedded systems allowed
identifying their main advantages and disadvantages. Comparing of modern approaches to the implementation of programming
languages allowed determining the requirements for the developed language.

Results. A new programming language for embedded devices has been developed. The following compiler modules are
described: lexer, parser, semantic analyzer, intermediate code generator. A detailed description of the developed programming

language is presented.

Conclusions. In this paper, we propose to use a new programming language for embedded devices. An analysis of existing
programming languages and typical developer errors was performed to ensure the reliability of the proposed language.
Keywords: programming languages; embedded systems; real-time systems.

I. INTRODUCTION

Nowadays, C [1] is the most widely used language for
programming embedded systems. It is known for its
complexity and makes it difficult to fix mistakes with high risk.
The most common standard is the C99, released in 1999. This
means that the language practically stopped its evolution and
hasn’t received significant improvement over the last 18 years.
Language C ++, by contrast, actively developed and published
for regular updates every three years. This language is limited
by backward compatibility. This fact does not allow fixing
most of the bugs that have been inherited from the language C.
C ++ is difficult to use. Also, it does not have protection from a
large class of errors. The authors do not know the modern
language that fully satisfies their needs now. The aim of the
paper is to develop a programming language designed for low-
level programming: embedded systems, real-time systems,
operating systems, system utilities. It should include
achievements of the modern theory of programming languages,
to be productive, fast and safe to use.

II. RECENT RESEARCH AND PUBLICATIONS ANALYSIS

A. Clanguage

The latest standard (C11) was released in 2011. It provides
direct memory access, almost complete control over memory
and execution flow has no garbage collector or any runtime
library. C language is the de facto standard for writing
embedded systems. It has shown itself to be the best in the
class of embedded systems. One of the major problems of C is
typing. C has a weak static typing. This means that all types are
checked at the compilation step. There is an implicit drive type,
which often leads to program errors. The system of types is
very primitive and does not have useful functions that are
characteristic of more modern systems of types.

Idris language

Idris [2] language (2009) is a functional programming
language with a powerful system of types [3]. It supports
dependent types. Dependent types are a very powerful
mechanism for verifying certain assumptions in the self-
instruction code and the mathematical proof of the correctness
of the program. Unfortunately, Idris requires a garbage
collector and a large runtime library. This makes it impossible

ISSN 2312-4121, Information and Telecommunication Sciences, 2018, Volume 9, Number 2
© 2018, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

O. SHMALKO, P. REHIDA. THE PROGRAMMING LANGUAGE FOR EMBEDDED REAL-TIME DEVICES

to use Idris directly to create software for systems with limited
memory. But it's possible to create an Idris-based EDSL
(embedded domain-specific language) to generate code for
embedded systems. This will allow you to get rid of these
language restrictions. Similarly, the Atom [4] and Ivory [5]
languages were implemented but based on the Haskell [6]
language.

Nim language

The language Nim (2008) [7] is a multiparadigm language
that is compiled in Javascript or C. Nim has a simplified
system of effects. Nim has a large number of compiler
directives [8] that may be of interest during low-level
programming. It allows controlling the transfer of function
arguments (by value, by reference), specify the hints of the
optimizer (loop scan, built-in function calls, notation for non-
return functions or no side effects), precisely control the
memory scheme (bit fields, field alignment, stack frame
generation), turn off the garbage collection if it needed.
Unfortunately, while more detailed analysis was revealed
serious shortcomings in the implementation of the compiler.
Pragma volatile was implemented incorrectly [9], which made
it impossible to wuse normal language for low-level
programming.

Rust language

Rust (2010) [10] is a young multiparadigm compiling
language [11]. Language focuses on secure and multithreaded
programming and has a number of features for this task. The
main feature of this language is a powerful type system.
Typing at Rust is static and strong, which avoids a wide range
of errors caused by implicit type-drives. Rust provides many
features that are required for low-level programming: precise
memory management, good C language interaction, no garbage
collection, and runtime libraries. The Rust Compiler uses
LLVM [12] to compile to generate efficient code for a large
number of platforms. Rust also has a syntax that is very similar
to C language. This is a plus for widespread language, as this
syntax is known to many programmers.

Result of Analysis

Language C is a good choice for a commercial project but
does not offer any technical benefits. The use of this language
is not novel and not interesting in terms of research. Idris has
one of the most powerful system of types. Its features could be
used to create significantly more reliable operating systems.
Unfortunately, Idris requires a garbage collector and a large
runtime library. It makes impossible to use Idris for operating
systems and embedded devices directly. Developing an EDSL
on Idris can be an issue, but it expensive. Nim is a very
interesting language that has an optional garbage collector and
can work without a library of performance environments. It has
a lot of features that can help with writing low-level software.
However, the low quality of the implementation of the
compiler almost makes it impossible to use language for more
or less serious low-level programming. The Rust type system is
a good compromise between a powerful Idris type system. It
requires some support from the runtime and a system of types
in C. Types in Rust help to avoid a certain class of errors.
Splitting into safe and dangerous operations allows you to
localize the code, which can cause program errors.

III. PROBLEM STATEMENT

Programming for embedded systems imposes the fairly
large number of restrictions [13]. There are very few
programming languages that can be used for these purposes.
That is why it is necessary to determine the main limitations
and requirements.

Features of the environment

Consider the features of the environment on the example of
microcontrollers ARM Cortex-M [14] series and their
implementation from STMicroelectronics [15].

- Low RAM volume. The volumes of RAM comprise from
2 kilobytes to 1 megabyte.

- Low ROM volume. The volumes of the built-in flash
memory range from 8 kilobytes to 2 megabytes.

- Limited power. Many built-in systems are powered by
batteries, keeping the processor in sleep mode most of the time
(literally 99%) [16].

- Programmers are cheap; hardware is expensive. Usually,
it is cheaper to use additional time programmers to optimize
the code than to choose a more powerful chip [17].

- Predictability. Many built-in systems have soft or hard
real-time requirements. It means that the system is obliged to
provide a response within a limited time frame. In practice, this
means that the use of many planners, garbage collectors,
memory allocators is prohibited,

- Safety. The system should be reliable, because otherwise
people might die. For this reason, there are many standards,
such as MISRA [18].

- Debugging software errors is difficult. Embedded devices
do not have the means to protect against improper use of
memory.

- Compilation without runtime. Language obliged to
compile. Language can support several forms of execution. For
example, it can simultaneously support compilation in machine
code, JVM virtual machine code, JavaScript, as well as
Vimscript, Lisp, and Whitespace.

The main goals and principles of language

The main focus of developed languages is reducing the
number of programming errors that do programmers and
saving the performance and other critical features for system
programming.

Safety. Language should prevent and make it impossible to
do a large number of typical mistakes.

Simplicity and clarity. The language developed should be
as "transparent" as possible and obvious to the programmer.
This reduces the amount of unexpected behavior that results in
program errors.

Productivity. The speed of programs written in the
language being developed should be compared with similar
programs written in C language.

Worst practices should be severe. There is a big difference
between "supported language" and "encouraged language"
[19]. The C and Rust languages support the constancy of
variables, but the constants in Rust are more prevalent.

Analysis of typical program errors. According to the article
[20], the most common errors in operating systems can be
limited by language. In the article [21] analyzes the error rates
in the Linux Kernel. Analysis of the variety of errors described
[22], with ways to avoid them at the language level.

45

46 INFORMATION AND TELECOMMUNICATION SCIENCES VOLUME 9 NUMBER 2 JULY-DECEMBER 2018

Requirements to the programming language (desirable
characteristics)

1. Family syntax. In addition to the widely known C-like
syntax family, there are many other popular syntaxes that allow
you to write a more compact code. In particular, note the
syntax of the Python language and the ML-like syntax. In order
to facilitate the transition of data programmers and to promote
wider perception, the developed language should have a C-like
syntax.

2. Compatibility with language C. The language is required
to be C-compliant, since it contains many existing libraries,
including support libraries from hardware vendors. The
language to be developed should support the external interface
of the functions of language C

3. Absence of implicit type conversion. The language to be
developed should not contain any implicit type
transformations, to avoid non-obvious and difficult to debug
the program errors. This idea is not new and has already been
successfully implemented in languages such as Haskell or
Rust. Confirmation of the appropriateness of this idea is also
that the MISRA C standard forbids the use of most implicit
transformations.

4. Constant Variables. The language to be developed
should include the ability to create constant variables and,
moreover, all variables must be constant by default. The
compiler must issue diagnostic messages if the noncontact
variable never changes.

5. System of Effects. A simplified system of effects will
mark the individual functions of the effects they have.
Example: Function allocates memory; Blocking function; I/ O
function; A network interacting feature. The compiler can
automatically bring out the effects of other functions.

6. Dividing Secure and Dangerous Code. This language
feature is useful for ensuring greater reliability of programs.
Although the overall idea is similar to the effects system,
separating the code into safe and dangerous requires additional
support from the compiler.

7 Assembler inserts. The language to be developed should
include standard mechanisms for the use of assembler inserts.

8 Extended linking support. The language developed should
support management the placement of data and application
code at specific addresses. Support for specifying section
descriptions and their placement in the address space is an
additional plus.

9 Generalized programming. Generalized programming is
implemented in C ++ using templates, as well as Java (and
many others) using generics. The language developed should
support generic programming.

10 Traits. 1t is known that the imitation of implementation
greatly complicates the understanding of programs, as well as
destroys encapsulation [23]. Traits, on the contrary, are much
simpler for general understanding.

11 Conditional compilation. Conditional compilation
allows you to enable or disable certain pieces of software code
depending on certain conditions that can be checked during
compilation. The language under development should have
mechanisms to support conditional compilation.

12 Expressions of compilation time. Expressions of
compilation time is the ability of the compiler to perform
calculations when compiling programs, which allows for even
more optimizations. Since they allow you to check more
complex conditions.

13 Calculation of the maximum stack size at the
compilation stage. One of the common mistakes is the
placement of large objects on the stack, which leads to its
exhaustion. In the absence of recursion, the compiler can
calculate the maximum stack volume that can be used by any
function.

14 Optional runtime checks. Buffer overflows are one of
the most common programmatic errors that lead to security
vulnerabilities and cause many well-known holes in security,
including Heartbleed [24] and Blueborne [25]. Additional
runtime checks should be enabled by default, but the compiler
should be able to disable individual test classes for applications
that require maximum performance.

15 Guaranteed tail call optimization. With this
optimization, it is possible to implement certain recursive
algorithms without increasing the size of the call stack. This
can be important for programming embedded systems, since
almost always the size of the stack is limited.

IV.LANGUAGE DESCRIPTION

Comments

Multi-line comments can lead to unexpected errors. Nested
comments can also cause issues (if they are supported). On the
contrary, single-line comments are as simple as possible.
EBNF for comments is shown in Fig. 1

1 //The language supports only single-line comments
3 //In order to continue the comment on the next line
4 //the line should begin with a new comment

Fig. 1. An example of comments in the language

1 comment = '/', /", { all characters - "\n’};
2 all characters = ? all unicode characters ?;

Fig. 2. EBNF for comments

Identifiers

Identifiers (or names) can be any sequence consisting of
Latin letters, numbers, and underscores, and starts with a letter
or underscore. The EBNF for identifiers is shown in Fig. 3.

1 id = (alpha | “_"), {alpha | “_" | digit};
3 alpha = ? all latin letters ?2;
4 digit = 707 | 717 | m2v | 437 | m4n | mse | mgr | mqe | rgr | mge,

Fig. 3. EBNF for Identifiers

Type void

The developed language being includes the void type,
which has the only possible value - void. This value is zero
byte and is fully optimized by the compiler (not present at
runtime). This differs from the approach in C, where the type
void has no value. This feature will be useful for determining
the more powerful properties of the system type. The void type
only supports validation checks (== and! =). (All void values
are equal to each other).

Logical type

The developed language supports the logical type bool. It
has two possible values: true and false. It is used in logical
operations, as well as in the conditions of operators. The list of
operations supported between two values of the logical type is
given in Table I.

TABLE L. OPERATIONS SUPPORTED BY THE LOGICAL TYPE
Operation Symbol Operation Result Type
< Less than bool
> Greater than bool
<= Less than or equal to bool
>= Greater than or equal to | bool
== Equal to bool
1= Not equal to bool
&& Logical AND bool
I Logical OR bool

When comparing values, false is less than true.

Numbers

The developed language supports the following numerical
types: u8 8-bit unsigned integer; i8 8-bit signed integer; ulé
16-bit unsigned integer; i16 16-bit signed integer; u32 32-bit
unsigned integer; i32 32-bit signed integer; u64. 64-bit
unsigned integer; 164 64-bit signed integer.

Floating-point numbers are not supported in this work, as
they are rarely used in system software, and in some cases
(kernel programming of operating systems), use of floating-
point numbers is prohibited. Support for floating point numbers
can be implemented in the next version of the language.
Numbers can be entered in the usual decimal system, as well as
in hexadecimal or binary. The number system is set using the
prefix. Prefixes 0x and Ob used to specify hexadecimal and
binary numbers respectively; decimal numbers do not require
prefixes. Additionally, you can specify the exact type by using
postfixes. This avoids ambiguity. EBNF for numerical literals
is shown in Fig. 4.

22 number value = hexadecimal number

23 | birary number

24 | decimal number;

5

25

26 hexadecimal number = "0x’', hex digit, {hex digit};

27 binary number = ’'0b’, binary digit, {binary digit}:
28 decimal number = digit, {digit};

30 hex digit = digit |

31 'AT | 'BT | 'CT | 'DY | 'ET | 'F |
32 rar | bt rer | A | rer | Tf:
33

34 binary digit = 0" | "1";

36 number type specifier =
37 'uB’ | ‘ulé’ | ‘u32’ | 'u6d’ |
38 rigr | rile’r | 132" | 'ie4d’;

Fig. 4. EBNF for numerical literals
The list of operations supported between numbers of the

same type given in Table II, where number means the type of
arguments.

TABLE II. LIST OF OPERATIONS FOR NUMBERS OF THE SAME TYPE.
Operation Symbol Operation Result Type
+ Addition number
- Subtraction number
* Multiplication number
/ Integer Division number
% The remainder of an integer | number
division
& Bitwise AND number
| Bitwise OR number
Bitwise XOR number
> Greater than bool
< Less than bool
>= Greater than or equal to bool
<= Less than or equal to bool
= Equal to bool

O. SHMALKO, P. REHIDA. THE PROGRAMMING LANGUAGE FOR EMBEDDED REAL-TIME DEVICES

Bitwise shifts are supported for any numbers, provided that
the second operand is the number of any unsigned type. The
result of the operation is the type of the first operand. The
symbol << means a bitwise shift to the left, >> - a bitwise shift
to the right. Also, a bitwise NO operation supported by the "!"
Symbol. For example, the result of the operation !0x0Fu8 is
0xFOu8. By default, for the addition, subtraction and
multiplication operations, the compiler must insert runtime
checks for overflows; For a division operation, it is additionally
verified that the divisor is not zero.

Pointers

The pointers in the developed language support a functional
similar to the functional of pointers in the C language. The
language supports a special literal null, which means a zero
pointer of any type (analog NULL from C language).
Indicators can be created using the address picking operation,
or by bringing the values of the numeric type of the
corresponding size to the type of the pointer. The developed
language supports two types of pointers that are characterized
by the constant of the value to which they refer.

* type The pointer to the unchanged value of the type #ype.
For example, the pointer to the logical type has the type *bool;

* mut type. The pointer to the variable type fype. For
example, the pointer to the logical type has the type *mut bool.

Any operations on pointers are considered "dangerous" and
must occur in the appropriate blocks.

Links

Links support a limited number of operations: they do not
support address arithmetic, can not point to null. Multiple
references can not point to the same memory area. Links can be
created using the address capture operation, or by bringing the
pointer value to a link (which is a "dangerous" operation, since
it can form a link indicating null). As with pointers, the
developed language supports two types of links that are
characterized by the constant of the value to which they refer.

& type The reference to the unchanged value of the fype

type. For example, the reference to the value of the logical

type has the type &bool;

& mut type Link to variable type type. For example, the

reference to the value of the logical type has the type & mut

bool.

All operations on links are "safe" and do not require special
blocks.

Arrays

The array of a value fype type that contains N elements is
written as [type; N]. Unlike C, arrays are not referred to as a
pointer to an element. This can be done using the & arr [0] or
the as_ptr () method. To specify an array in the program, it is
enough to list all the elements of the array through a comma
and surround them in square brackets. Arrays support indexing
operation. An example of its use is shown in Fig. 5. If elements
are supported by comparison operations, they can also be
applied to the array as a whole.

47

48

INFORMATION AND TELECOMMUNICATION SCIENCES VOLUME 9 NUMBER 2 JULY-DECEMBER 2018

42 let x = [1, 2, 31:

43 assert! (x[0] == 1);

44 assert! (x[1] == 2);

45 assert! (zx[2] == 3);

46

47 let arr: [[u8; 22]; 321:
48 arr[13][14] = 10;

Fig. 5. An example of a two-dimensional array and indexing

In addition, the arrays support the following methods:

len () Returns the length of the array; is_empty () Returns true
if the array length is zero; as_ptr () Returns the pointer to the
first element of the array; contains (). Returns true if the array
contains an element with a given value; starts_with (). Returns
true if the specified argument is a prefix of the array; ends_with
(). Returns true if the specified argument is a suffix of the
array; swap (). Swap two specified elements of the array;
reverse () Expands the order of elements in an array; sort ()
Sort elements of the array in order; iter () Returns an iterator to
elements of an array.

Array slicing

Array slicing elements of the #ype type is written as [type].
The slicing consists of a pointer to the first element of the array
and the number that stores the number of elements. The slicing
can be obtained using a special operation, an example of which
is shown in Fig. 6.

52 let arr: [ul; 32];
53 arr{0..3] // cut off an array of 0 to J elements inclusive

Fig. 6. An example of getting an array cut

The cuts support the following methods: len () Returns the
length of the slicing; is_empty () Returns true if the length of
the slicing is zero; as_ptr () Returns the pointer to the first
element of the slicing; contains (). Returns true if the slicing
contains an item with a given value; starts_with (). Returns true
if the specified argument is a prefix of the slicing; ends_with ().
Returns true if the specified argument is a suffix of the slicing;
swap (). Exchange places two specified elements of the slicing;
reverse () Expands the order of the elements in the slicing; sort
() Sort items in the slicing by order; iter () Returns the iterator
to the elements of the slicing.

Strings

The strings in the developed language are represented as an
array of unsigned bytes. Supported string literal, which can be
any set of symbols surrounded by double quotes. Multi-row
literal letters are not allowed. Character shielding is supported
with a backslash (\). The table of Screen sequence supported is
shown in Table IIL.

Also, the language allows different interpretations of string
literals during compilation using prefixes. An example of such
an interpretation is the prefix b, which interprets string letters
as an array of unsigned bytes (type u§, unlike type char
supporting Unicode character encoding). This interpretation is
useful because it does not allow Unicode to be used in
programs that do not need it (which is especially useful in
systems with limited memory).

TABLE III. TABLE 6: LIST OF SCREEN SEQUENCE
Screen Hexadecimal Symbol
sequence value
\n 0x0A New line
\r 0x0D Carriage return
\t 0x09 Horizontal Tab
\\ 0x5C Backslash
\V 0x27 Single bracket
\" 0x22 Double bracket
\xhh any Byte, whose value is hh interpreted as a
hexadecimal number
Tuples

The language developed supports types of tuples. The type
of the tuple is written as follows: (typel, type2/, ...J). And it
means a tuple of types typel...typeN. For example, a tuple of 8-
bit unsigned integer, logical value and pointer have a type (u8,
bool, * u8). An example of this value can be (42, true, null).
You can access the values in the tuple using the field access
operations. Field names are natural numbers starting from
scratch. An example of such use is shown in Fig. 7.

57 (42, true, null).0 == 42
58 (42, true, null).| == true
50 (42, true, null).’ == null

Fig. 7. Example of access to the tuple fields

Structures

Structures allow you to group data of different types, giving
them names, thereby they are more organized way than tuples.
The general forms of declaring a structure and creating its
instances are shown in Fig. 8.

63 // Structure declaration
64 Hstruct struct name{

65 fieldl: typel;
66 field2: type2;
67 .

68 fieldN: typeN;

69 L}

71 // Easy instance creating

12 let x = struct_name { valuel, valueZ, ..., valueN };

75 // Creating an instance using named fields
76 Hlet y = struct_name {

77 fieldl: valuel,

18 field2: value2,

80 fieldN: valueN, };
Fig. 8. The type of structure declaration and create its instances

84 struct definition = ['pub’], ’struct’, id,
5 '+, field definition, "';

85 B
86
87 field definition = ['pub'], id, ":', type, ":':

Fig. 9. EBNF for the declaration of structures

@

Access to the structure fields can be done with the operator “.

Enumerated types

The language being developed supports enumerated types.
The definition of the enumeration creates a separate type that is
not automatically assigned to other types. (Unlike C, where
enum only defines constants in the global namespace). This
feature is similar to the enum class in C ++ [26]. Access to
enumerated values can be obtained using the namespace
operator. EBNF for definition of the enumerations are shown in
Fig. 10.

O. SHMALKO, P. REHIDA. THE PROGRAMMING LANGUAGE FOR EMBEDDED REAL-TIME DEVICES

119 enum definition = ['pub’], 'enum’, id,

120 "{", enum options, "}';

121

122 enum options = [option, [’,', enum options], [","11;
123

124 option = id, ['=’', expression];

Fig. 10. EBNF for definition of the enumerations

Functions

The language developed supports user-defined functions.
The general form of function definition is shown in Fig. 11.

128 fn function name (argl: typel): rettype {

129 function;
130 body;

131

132 return_value
133 }

Fig. 11. General form of function definition

EBNF for the function definition is shown in Fig. 12.

138 function def = ['pub’], id, " (", args, ")}', ":', type,
139 compound statement;

140

141 args = [argument, [’,", argsl];

142

143 argument = id, ':', type;

Fig. 12. EBNF for the function definition

All functions have the type fn(typel/, ...]): rettype , where
typel ... typeN are the types of the function's arguments, and
rettype is the type of the return value. The function name is a
value of this type. This type supports only assignment and call
operations, and can also be passed as an argument to the
function.

Implementation blocks

Structures and other types can be expanded by methods
using implementation blocks. Types may have more than one
implementation block, which means that types can be
expanded, even if they are in third-party libraries. EBNF for
the implementation blocks are shown in Fig. 13.

180 impl block = "impl’, [type, "for'l, type,
181 '{", function def, "}’;
Fig. 13. EBNF for the implementation blocks

It is also worth noting that the extension is allowed even for
standard types, which greatly increases flexibility. The
implementation blocks allow you to add both instance methods
and type methods. If the name of the first parameter of the
method is self, then this method is an instance method;
otherwise, it is a type method. In the middle of the
implementation block, the special name Self means the type for
which this block is applied.

The self parameter can have one of the following types:

* Self;
* &Self;
o &mut Self;
* *Self;
* *mut Self.
Other types of the self parameter are not allowed.

Instance methods can be called using the access operator
used for the instance of the type. Type methods can be called
using the namespace operator (::).

185 let r = Rectangle::square(2);

186 assert!(r.area() = 1);

187 assert!(r.perimeter() == 2);
188

189 assert!(4u32.pow2() == 16);

Fig. 14. An example of using methods

Traits

The trait is a language feature that shows to a compiler,
which functionality should provide a certain type. Traits look
like Java interfaces. Their peculiarity is that the implementation
of the interface should not be inside the class definition. It can
be provided separately. An example of determining the trait is
shown in Fig. 15.

193 trait Figure {
194 fn area(self: &Self): u32;
95
19& fn perimeter(self: &Self): u32;
197 1)

Fig. 15. An example of determining the trait

A trait implementation can be provided with an
implementation unit. If at the stage of the definition of the trait
is already known, as will usually be implemented a particular
method, you can specify its implementation by default. Traits
can inherit from it. If trait B is inherited from type A, then the
type that wants to implement B is also required to implement
type A. EBNF for trait determination is shown in Fig. 16.

272 trait def = "trait’, type, [":', typel,

273 "{', function def | function decl, '}';

274

5;5 function decl = ['pub’], id, " (', args, *)", ":’', type;

Fig. 16. EBNF for trait determination

Type inference

The language being developed supports global type
inference (“type inference” or “type reconstruction”). In most
places where you want to specify a type, you can specify a
special placeholder type, indicated by an underscore: " "

If the compiler will not be able to reconstruct the type of
filler, the compilation of the program will be interrupted. Each
use of the type-filler instantiates a new type-variable. In other
words, this means that all uses of the filler type are independent
and can be derived in different types. In order to refer to a
particular type of filler, the developed language supports
named type fillers. Named type filler is any name that begins
with one underline. The same type of fillers of the type will be
reconstructed to a common type. By behavior, filler types are
very similar to the wildcard types in Haskell [27]. EBNF for
filler types is shown in Fig. 17.

300 type placeholder = '
Fig. 17. EBNF for filler types

", {alpha | digit}:

5.18 Variables

The language supports the definition of variables and
constant variables. By default, the variable is constant. To
create a non-constant variable, you must add the keyword mut
(from the word "mutable"). An example of variables definition
is shown in Fig. 18

49

50

INFORMATION AND TELECOMMUNICATION SCIENCES VOLUME 9 NUMBER 2 JULY-DECEMBER 2018

304 // unchangeable variable
305 let x: u32 = 5;

306 x = 6; // error!

307

308 // changeable wvariable
309 let mut y: u32z = 42;

310 y = 15;

Fig. 18. An example of variables definition

Constants

In addition to unchangeable variables, the language
developed supports the compilation time constant. The
compiler ensures that their values are calculated during
compilation and can not be changed. Example of constant are
shown in Fig. 19

315 const x: u32 = 5;

Fig. 19. Example of constant

Conditional operator

The syntax of the conditional operator is shown in Fig. 28.
"condition" is an expression of a logical type. "exprl" and
"expr2" have the same type. Conditional operator is an
expression, the resulting type of which is equal to the type
exprl and expr2.

319 if condition { exprl } else { expr2
320

321 if conditionl{

322 exprl

323 } else if {

324 expr2

325 } else

326 expr3

327 }

328

329

330 if condition { exprl }

331 // similar to

332 if condition { exprl } else { void }

Fig. 20. The syntax of the conditional operator

As in all programming languages, the expression exprl will
be calculated when the condition is true; otherwise the
expression expr2 will be calculated. If the else branch consists
of one conditional operator, curly brackets can be omitted, as
shown in the second example in Fig. 20. In all other cases,
curly brackets around the branches of the conditional
expression are mandatory. The else branch can be omitted. In
this case, it will return void from this branch. This means that
the branch then also has to return void. EBNF for conditional
expressions is shown in Fig. 21.

337 conditional expr =
338 "if’, expression, compound statement,
339 ["else’, (conditional expr | compound statement)]:;

Fig. 21. EBNF for conditional operator

Cycles

The language being developed supports the while loop, as
shown in Fig. 22

343 pwhile condition {
344 statements;
345 }

Fig. 22. The general form of the while loop

During execution, the condition is first calculated. If the
condition is satisfied, the loop body is executed while the
condition is valid; otherwise, the loop body is not executed.

349 let mut i = 0;
350

351 let x = while true {
352 if 1 »>= 10 {
353 break i;
354 }

355

356 i=1+1;
357 }:

358

359 assert!(x == 10);

Fig. 23. Returning a value from a loop using the break statement

In the body of the loop, you can use the key continue and
break statements:

e continue completes the current iteration of the
loop and proceeds to check the condition for the
next iteration;

e break completes the loop completely. Can return a
value from a loop.

In Sections II-IV, the system programming and
programming environment for embedded devices was
analyzed. The main requirements and limitations for the
programming language in this field were identified. It was
formed the main priorities in the development of the language,
namely: reducing the number of program errors without
reducing the performance of compilation programs. A number
of scientific publications were analyzed and typical mistakes
made by programmers of system software are allowed, and
ways of preventing them are suggested. A list was generated
and a detailed description of the desired characteristics of the
language was provided. Based on the collected information,
the language was developed and its description provided,
including examples and description of EBNF for the most
important parts.

V. IMPLEMENTATION OF THE SYSTEM AND TESTING

In this section a compiler is developed, it can compile
programs written in the proposed language.

Compiler Architecture

The developed compiler uses the advantages provided by
the LLVM project. LLVM is a collection of modular and re-
usable technologies for compiler writing. The LLVM Core
library provides a modern optimizer, as well as a code
generator for a large number of popular platforms. This library
works with an intermediate code, called LLVM IR (LLVM
intermediate representation). The developed compiler has a
fairly typical architecture, consisting of the following
components:

o Lexer. Responsible for reading the input file and

breaking it into a token stream;

e Parser. Gets an input stream of tokens, formed by
Lexer, and performs parsing to form an abstract
syntax tree;

e Semantic analyzer. Accepts an abstract syntax tree
and performs a semantic analysis, verifying that the
program can be compiled

o Intermediate code generator. Gets an abstract
syntactic tree, supplemented with reconstructed
types, and generates an intermediate-level code, then
LLVM Core is used to generate the machine-
dependent code.

In fact, the system being developed implements the

frontend of the compiler for the language, and LLVM Core
takes on the backend duties.

Selection of the implementation language
To implement the compiler, the Haskell language was
chosen for the following reasons.

o Easy to work with (syntax) trees. Haskell has a
very easy syntax for working with algebraic data
structures, and trees are very easy to represent in the
form of sums and product types;

o [Ease of processing streaming data. The Haskell
language is ideal for programs with linear control
flow (and not only). It allows you to perform
powerful optimization over the entire program is;

o Irremovability of data. Since during the compilation
of the program, AST and other program data should
remain unchanged, Haskell, being a functional
language, is ideally suited for this task;

o Ease of parallel processing. Haskell has powerful
mechanisms for parallel data processing;

e Availability of tools for writing compilers. In
Haskell there is an environment for writing
compilers. It includes generators of lexers and parsers
(Alex and Happy), dozens of libraries for writing
parsers, wrappers for the interface of the LLVM
software.

Abstract syntax tree
The abstract syntax tree is defined in the Syntax module.
This module contains the following types:

e Module. It is a top-level object. Each file in the
program is presented as a module. Each module
consists of an import list and an ad list;

o Id. Identifier;

e QualifiedName. A qualified name. Allows you to
access objects that are in other modules;

e Import. One import. Contains the name of the
imported module, and may also contain a list of
imported objects and their renaming;

e ImportRename. Renaming. Allows you to import an
object with a different name;

e Decl. Top-level ads. Can declare an external function
or variable, define local structures, functions,
variables, constants, implementation units or traits;

o Attribute. An attribute that can be added to any
declaration and is a hint for the compiler;

e FieldDecl. Declarations of a single field of structure;

e Scope. Zone of visibility. Public or private;

o TypeParam. Type-parameter. Used for general
programming;. Type - parameter. Used for general
programming;

O. SHMALKO, P. REHIDA. THE PROGRAMMING LANGUAGE FOR EMBEDDED REAL-TIME DEVICES

e Param. Function parameter. Contains an identifier
and an associated type,

o Type. Encodes the type of value;

o Expr. Expression

e Statement. Instruction

e Mutability. Mutability of the object. Variable or
unchangeable

e Literal. Literals

Lexer

Generator of lexical analyzers Alex [26] was chosen for the
lexer implementation . Alex is a tool for generating lexical
analyzers in the Haskell language, based on the description of
tokens for recognition, provided in the form of regular
expressions. It is similar to the lex (or flex) tool for C / C ++.

The FileInfo type describes the position of a character in a
file that can be given (Position), or unknown
(PositionUnknown). The specified position contains the line
number and columns (fiLine and fiColumn, respectively). The
Token type describes all available tokens. Each token has an
associated position in the file. The function scanTokens takes
input to the contents of the file and returns a list of tokens.

Parser

The generator of syntactic analyzers Happy [27] was
selected to implement the parser. Happy is Haskell's parser
generation system, similar to the yacc tool for C. Like yacc, it
accepts an input file containing an annotated BNF grammar
specification and creates a Haskell module that contains a
grammar parser. The Parser module implements a parser
interface, which consists of one parse function that accepts the
list of tokens in the input and returns an abstract syntax tree
(type Syntax.Module). Function type: parse :: [Lexer.Token] ->
Syntax.Module

Semantic analyzer. Outputting of types

The most important part of the semantic analyzer is a
module for outputting types that performs type reconstruction
using the Hindley-Milner algorithm (Hindley-Milner). The
subsystem of the output of types is implemented in the module
Infer. The Hindley Miller type system is a whole family of
types of systems that have an algorithm for identifying types
with untyped syntax. This is achieved through the unification
process, when the program leads to a set of constraints that,
when solved, have a unique principal type.

Generator of intermediate code
The intermediate code generator is implemented in two
modules:
e Codegen contains the necessary definitions for
working with LLVM libraries and code generation;
e Emit contains rules by which AST is converted to
LLVM IR.
The bindings for LLVM in Haskell are divided into two
packages: llvm-hs-pure this is a pure representation of LLVM
IR in Haskell; llvm-hs these are FFI bindings to the LLVM
library which are needed to create the C-representation of
LLVM IR, as well to optimization and compilation.

51

52

CodegenState and BlockState types are used to store the state
of the code generator at the moment it passes through a syntax
tree. The codegen function is an entry point for the coding
module. It takes an abstract syntax tree to the input and returns
the generated LLVM IR code.

Testing the system and its components

The lexer and parser modules are covered by unit tests in the
LexerSpec and ParserSpec modules, respectively. In addition,
the compiler has been tested by compiling several programs of
moderate size and beliefs in their performance. Also manually
compare the generated code with the expected one. It
described all the compiler modules with their interface. The
command line interface of the compiler was also documented.
The compiler has been tested and no program errors have been
detected.

VI. CONCLUSIONS.

This work is devoted to language problems for embedded
systems, programming of operating systems, as well as system
programming. The aim of the paper was to develop a language
to reduce the number of programmating errors made by
programmers. The subject area was considered, its features,
requirements and restrictions were revealed. The languages that
are currently used in this area were analyzed. We analyzed the
typical mistakes allowed by programmers, and suggested
solutions for them. A new language and a compiler for it were
developed. The language developed to some extent achieves its
goal. Also, it warns a wide class of errors. However, there are
many potential approaches and tools that have not been
sufficiently considered and implemented.

REFERENCES

[1] D.M. Ritchie, ‘C Programming Language History’, [Online]. Available:
https://www livinginternet.com/i/iw_unix_c.htm. [Accessed: 27- April-
2018].

[2] idris-lang.org, ‘Idris. A Language with Dependent Types’, [Online].
Available: https://www.idris-lang.org. [Accessed: 27- April- 2018].

[3] hackage.haskell.org, ‘idris: Dependently =~ Typed Functional
Programming Language’, [Online]. Available:
http://hackage.haskell.org/package/idris-0.1.3. [Accessed: 27- April-
2018].

[4] hackage.haskell.org, ‘atom: An EDSL for embedded hard realtime

applications.’, [Online]. Available:
https://hackage.haskell.org/package/atom. [Accessed: 27- April- 2018].
[5] ivorylang.org, ‘Ivory Language’, [Online]. Available:

https://ivorylang.org/index.html. [Accessed: 27- April- 2018].

[6] haskell.org, ‘Haskel An advanced, purely functional programming
language’, [Online]. Available: https://www.haskell.org/. [Accessed:
27- April- 2018].

[7] nim-lang.org, ‘nim Efficient and expressive programming.’, [Online].
Available: https://nim-lang.org/. [Accessed: 27- April- 2018].

INFORMATION AND TELECOMMUNICATION SCIENCES VOLUME 9 NUMBER 2 JULY-DECEMBER 2018

[8] nim-lang.org, ‘Nim Manual Pragmas’, [Online]. Available: http:/nim-
lang.org/docs/manual html#pragmas. [Accessed: 27- April- 2018].

[9] github.com, ‘Nim Issues’, [Online]. Available: https:/github.com/nim-
lang/nim/issues. [Accessed: 27- April- 2018].

[10] rust-lang.org, ‘The Rust Programming Language’, [Online]. Available:
https://www.rust-lang.org/en-US/. [Accessed: 27- April- 2018].

[11] lambda-the-ultimate.org, ‘Lambda the Ultimate’, [Online]. Available:
http://lambda-the-ultimate.org/node/4009. [Accessed: 27- April- 2018].

[12] llvm.org, ‘The LLVM Compiler Infrastructure’, [Online]. Available:
http://llvm.org/. [Accessed: 27- April- 2018].

[13] H. Massalin, ‘Synthesis: An Ecient Implementation of Fundamental
Operating System Services’, Columbia University, 1992, 158 pages.

[14] arm.com, ‘Cortex-M Series’, [Online]. Available:
https://www.arm.com/products/processors/cortex-m. [Accessed: 27-
April- 2018].

[15] st.com, ‘STM32 32-bit ARM Cortex MCUs’. [Online]. Available:
http://www.st.com/en/microcontrollers/stm32-32-bit-arm-cortex-
mcus.html. [Accessed: 27- April- 2018].

[16] Rasmus Christian Larsen, ‘Advanced Sleep-Mode Techniques for
Enhanced Battery Life in Real-Time Environments’, 2011. [Online].
Available:
https://www.digikey.com/en/articles/techzone/2011/dec/advanced-sleep-
mode-techniques-for-enhanced-battery-life-in-real-time-environments.
[Accessed: 27- April- 2018].

[17] J. Atwood, ‘Hardware is Cheap, Programmers are Expensive’, 2008.
[Online]. Available: https://blog.codinghorror.com/hardware-is-cheap-
programmers-are-expensive/. [Accessed: 27- April- 2018].

[18] misra.org.uk, ‘Motor Industry Software Reliability Association’,
[Online]. Available: https://www.misra.org.uk/. [Accessed: 27- April-
2018].

[19] G. Gonzalez, ‘Worst practices should be hard’, [Online]. Available:
http://www.haskellforall.com/2016/04/worst-practices-should-be-
hard.html. [Accessed: 27- April- 2018].

[20] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An Empirical
Study of Operating Systems Errors”, ACM SIGOPS Operating Systems
Review, vol. 35, pp. 73-88, 2001.

[21] P.J. Guo and D. Engler, “Linux Kernel Developer Responses to Static
Analysis Bug Reports”, Proceeding USENIX'09 Proceedings of the
2009 conference on USENIX Annual technical conference, pp. 22-22,
June 14-19, 2009.

[22] 1. Abal, C. Brabrand and A. Wasowski, ‘40 Variability Bugs in the
Linux Kernel’, IT University of Copenhagen, Copenhagen, 2014.

[23] L. Krubner, ‘Object Oriented Programming is an expensive disaster
which must end’, [Online]. Available:
http://www.smashcompany.com/technology/object-oriented-
programming-is-an-expensive-disaster-which-must-end. [Accessed: 27-
April- 2018].

[24] heartbleed.com, ‘The Heartbleed Bug’, [Online].
http://heartbleed.comv/. [Accessed: 27- April- 2018].

[25] J. Hildenbrand, ‘Let's talk about Blueborne, the latest Bluetooth
vulnerability’, [Online]. Available: https:/www.androidcentral.com/lets-
talk-about-blueborne-latest-bluetooth-vulnerability. ~ [Accessed: ~ 27-
April- 2018].

[26] haskell.org, ‘Alex: A lexical analyser generator for Haskell’, [Online].
Available: https://www.haskell.org/alex/. [Accessed: 27- April- 2018].

[27] haskell.org, ‘Happy. The Parser Generator for Haskell’, [Online].
Available: https://www.haskell.org/happy/. [Accessed: 27- April- 2018].

Available:

O. SHMALKO, P. REHIDA. THE PROGRAMMING LANGUAGE FOR EMBEDDED REAL-TIME DEVICES 53

HImanvko O.0., Pezioa I1.T., Bonoxuma A.M., JIyyekuit I.M., By /Jux Txine.

MoBa nporpaMyBaHHsI 3i 3MEHIIEHHSIM NOMMJIOK 0e3 3HHKEHHSI MPOAYKTHBHOCTI sl BOYJIOBaHHX NPHCTPOIB
peabHOro yacy

Hpodaemartuka. /{5 nporpamyBaHHs BOY/IOBaHMX CHCTEM, HaifyacTime BUKOPUCTOBYIOThcs MOBH C abo C++. Jlo ocHOBHHX
HEZIOMIKIB BiJHOCATB: BiJICYTHICTh OHOBJICHb, B)KKICTh Y BHKOPUCTAaHHI, 0OMEKEHY 3BOPOTHY CyMICHICTh Ta MOTEHI[IHHO BEIHKY
KUTBKICTh MOKITMBUX MOMMJIOK MPOTpaMicTiB. ToMy BaIHBO 3a0€3MEUNTH PO3POOHHKIB HU3BKOPIBHEBHX MPOTPAMHHUX 3aC00iB
IU1s BOYZIOBAaHHWX CHCTEM, OMEpALifHUX CHCTEM Ta CHCTEMHHX YTHIIT IIBHAKOIO, TPOAYKTHBHOIO, HATIHHOI Ta CTaOiTHEHOIO
MOBOIO 3 ypaxyBaHHSM Cy4acHoOi Teopii mporpamMyBaHHs.

Mera pocaimkens. CTBOpEHHs HOBOi TPOAYKTHUBHOI Ta HAJIHHOI MOBM TIpOrpaMmyBaHHs Juisi BOYZOBaHHMX CHCTEM 13
BUKOPUCTAHHAM MPHUHIIUIIB TA MiIXOIB CYy4acHOI Teopii MporpamMmyBaHHL.

Metoanka peanmizanii. [lpoBeseHHS aHamizy BIZOMHX IyOnmiKamiif, NpPUCBIYEHHX MOBaM MNPOTPaMyBaHHS, SKi
BUKOPHCTOBYIOTBCSL JUIsl BOYJOBaHMX CHCTEM, Jajl0 3MOTY BHSBHTU IX OCHOBHI HEIOJIKM Ta TiepeBard. Po3risi cydacHumx
MIIXO/IB 10 peatizallii MOB IPOrpaMyBaHHs JO3BOJIMB BU3HAUYMTH BUMOTH 110 PO3POOIIOBAHOI MOBH.

Pesynbratn pocaimkenb. Po3poOieHo HOBy MOBY mporpamyBaHHS JUlsi BOyJdoBaHHMX mpHcTpoiB. Ommcani Momysi
KOMIIUIATOpA: JIEKcep, mapcep, CEMaHTHYHUH aHalli3aTop, TeHepaTop MPOMIKHOTO Koy. BukonaHo netanbHuit onmc po3podiaeHoi
MOBH TIPOTPaMyBaHHSI.

BucnoBku. B nmaniit pob0Ti 3ampomoHOBaHO BHKOPUCTAHHS HOBOI MOBH TIPOTpaMyBaHHS /sl BOYJIOBAaHUX MPHUCTpPOiB. byno
MPOBEICHO aHaNi3 ICHYIOUMX MOB TPOTPaMyBaHHA Ta THIIOBHX IIOMHJIOK PO3POOHMKIB i 3abe3medeHHs HaTiiHOCTI
3aIPOIIOHOBAHOT MOBH.

KutrouoBi c1oBa: MOBU nporpaMyBaHHsT; BOYI0BaHI CHCTEMH; CHUCTEMHU PEATbHOTO Yacy.

HImanvko A.A., Pecuoa ILT., Bonokuma A.H., JIyuxuii I'.M., By /[oik Txune.

SI3pIK MPOrpaMMHPOBAHHS € YMeHbIIEHHEM OIIHO0OK W 0e3 CHILKeHHs MPOM3BOAUTEIBbHOCTH MNPOTpaMM Jiisi
BCTPOEHHBIX YCTPOIiCTB peaabHOro BpeMeHH

IIpodaemaTtuka. J{yis mporpaMMHUpPOBaHMS BCTPOCHHBIX CHCTEM Yalle Bcero ucnonb3yrotes s3biki C mwim C ++. K ocHOBHBIM
HEJIOCTATKaM OTHOCST: OTCYTCTBUE OOHOBJICHWH, CIOKHOCTh B HCIOJB30BAHUH, OTPAHUYCHHYIO OOPAaTHYIO COBMECTHMOCTH H
MOTCHITHATHEHO OONBIIOE KONMYECTBO BO3MOXKHBIX OIMMOOK IMporpaMMmucToB. [loaTOMy BakHO 0OecIeunTh pa3pabOTIMKOB
HHU3KOYPOBHEBBIX MPOTPAMMHBIX CPEACTB IS BCTPOCHHBIX CHCTEM, ONEPAIFIOHHBIX CHCTEM M CHCTEMHBIX YTHIIUT OBICTPBIM,
TIPOTYKTUBHBIM, HATEKHBIM M CTAOMITBHBIM SI3IKOM C YIETOM COBPEMEHHOU TEOPUH TIPOTPAMMHUPOBAHTS.

Heab ucciaenoBanuii. Co3qanne HOBOTO MPOHM3BOAMTEILHOTO U HAJEKHOTO SA3BIKA IPOTPAMMHPOBAHHS IS BCTPOCHHBIX
CHCTEM C UCHOJIBb30BAaHIEM TIPUHIIATIOB H TIOAXO0/I0B COBPEMEHHON TEOPUH TIPOTPAMMHPOBAHHIS.

Metonuka peamu3anuu. [IpoBeneHrue aHaaM3a W3BECTHBIX ITyONHKAINMA, MOCBSLICHHBIX $A3bIKAM IPOIPAMMHUPOBAHUS,
KOTOPBIC HCIOJIB3YIOTCSA I BCTPOCHHBIX CHCTEM, IIO3BOJIAIO BBISIBUTH HX OCHOBHBIC HEAOCTATKH M IPECHMYIICCTBA.
PaccMoTpeHne COBpPEMEHHBIX ITOXOJ0B K PEaaH3alld SA3bIKOB IPOrPAMMHPOBAHHS TMO3BOJIKIO OHPEACIHTh TPeOOBAHHSA K
pa3pabaTbiBaEMOMY SI3BIKY.

PesyanTaThl uccaenoBanmii. Pa3paboTaH HOBBIH A3BIK TPOrPAMMHUPOBAHUS ISl BCTPOCHHBIX YCTPOMCTB. OMUCAHBI MOYIH
KOMIIUIIITOPA: JIEKCEp, Tapcep, CEMAaHTUUECKUM aHalu3aTop, TEHepaTtop MPOMEKYTOYHOTO KoJa. BBIMONHEHO [eTanbHOe
OIHCaHue Pa3pabOTaHHOTO S3BIKA TIPOTPAMMHPOBAHNIS.

BoiBoasl. B maHHOI paboTe TpemiokeHO MCIOIb30BaHAE HOBOTO SI3bIKA MPOTPAMMHUPOBAHHS TSI BCTPOCHHBIX YCTPOHCTB.
Bein mpoBeieH aHANMU3 CYMIECTBYIOIIMX SI3BIKOB MPOTPAMMUPOBAHMS U TUIUYHBIX OMIMOOK Pa3pabOTUMKOB VIS 0OCCHICUCHUS
HaJEKHOCTH MPEII0KEHHOTO A3BIKA.

KiioueBsbie ¢10Ba: S36IKH TPOTPAMMHPOBAHHS; BCTPOCHHBIE CHCTEMBI; CHCTEMBI PEabHOTO BPEMEHH.

