### THERMOELECTRIC PROPERTIES OF SiGe WHISKERS

#### Abstract

**Background.** Si1-xGex solid solution whiskers with low germanium content have maximum ratio of mobility to the phonon thermal conductivity, which is promising for thermoelectrics. Thermal conductivity of SiGe nanowires is lower than of bulk samples that is also prospective for improvement of thermoelectric figure-of-merit and development of high efficiency thermoelectric microconverters. The temperature behavior of Seebeck coefficient of Si1-xGex solid solutions whiskers in temperature range from 4.2 K to above room temperatures was studied. Peculiarities of whisker shape have been successfully used to determine their thermoelectric parameters, but these investigations were not conducted for SiGe solid solution whiskers.**Objective.** The aim of the paper is study of possible influence of Si1-xGex whisker geometry on their thermoelectric parameters.**Methods.** SiGe whiskers were grown by CVD method in closed bromide system. The 3ω method was used to determine the temperature dependence of the thermal conductivity of Si1-xGex (x = 0.01-0.05) whiskers in the temperature range 300-400 K. Resistance of whiskers was measured by a two-probe method. The resulting I-U characteristics of cross-shaped growths were used to determine the conductivity type of the whisker material.**Results.** Seebeck coefficient and resistance was shown to increase, while thermal conductivity to decrease when the whisker diameter drops from 100 to 10 μm, that is accompanied by a rise of figure of merit (up to 0.12 at 300 K). Use of the whiskers with large obliquity leads to a small increase (of about 10-15 %) of their Seebeck coefficient.**Conclusions.** Thermoelectric properties of Si1-xGex (x = 0.03) solid solution whiskers doped with B impurities to the concentrations 1⋅1017–1⋅1019 cm-3 were studied in temperature range 300-420 K. An influence of the whisker morphology, in particular their diameters and obliquity, on Seebeck coefficient, thermal conductivity and resistance was investigated.

#### Keywords

#### Full Text:

PDF#### References

Vining C. A model for the high-temperature transport properties of heavily doped n-type silicon-germanium alloys // J. Appl. Phys. – 1991. – Vol. 69, No. 1. – P. 331–341.

Ioffe A.V., Ioffe A.F. Influence of impurities on thermal conductivity of semiconductors // Doklady Akademii Nauk SSSR. – 1954. – Vol. 8, No. 5. – P. 757-759, in Russian.

Slack G., Hussain M. The Maximum Possible Conversion Efficiency of Silicon-Germanium Thermoelectric Generators // J.Appl.Phys. – 1991. – Vol. 70, No. 5. – P. 2694-2718.

Thermal conductivity of individual silicon nanowires /D. Li, Y. Wu, P. Kim, et al. // Appl. Phys. Lett. – 2003. – Vol. 83, No. 14. – P. 2934-2936.

Thermal conductance of thin silicon nanowires / R.Chen, A.I. Hochbaum, P. Murphy, et al. // Phys. Rev. Lett. – 2008. – Vol. 101. – P. 105501-1 - 105501-4.

Quantifying Surface Roughness Effects on Phonon Transport in Silicon Nanowires / J. Lim, K. Hippalgaonkar, S. Andrews, et al. // Nano Lett. – 2012. – Vol. 12. – P. 2475-2482.

Holey Silicon as an Efficient Thermoelectric Material / J. Tang, H. Wang, D.H. Lee, et al. // Nano Lett. – 2010. – Vol. 10. – P. 4279-4283.

Atomic-Level Control of the Thermoelectric Properties in Polytypoid Nanowires / S.C. Andrews, M.A. Fardy, M.C. Moore, et al. // Chem. Sci. – 2011. – Vol. 2. – P. 706-711.

Maycock P. Thermal Conductivity of Silicon, Germanium, III-V Compounds and III-V Alloys // Solid- State Electron. – 1967. – Vol. 10. – P. 161-168.

Steele M., Rosi F. Thermal Conductivity and Thermoelectric Power of Germanium-Silicon Alloys // J. Appl. Phys. – 1958. – Vol. 29, No. 11. – P. 1517-1520.

Meddins H., Parrott J. The Thermal and Thermoelectric Properties of Sintered Germanium-Silicon Alloys // J. Phys. C: Solid State Phys. – 1976. – Vol. 9. – P. 1263-1276.

Bhandari C. CRC Handbook of Thermoelectrics, ch. Minimizing the Thermal Conductivity (CRC Press, Inc.).– 1994.– P. 55-65.

Strasser M. Miniaturized Thermoelectric Generators based on poly-Si and poly-SiGe surface Micromachining // Sensors and Actuators A: Physical. – 2002. – Vol. 97-98. – P. 535-542.

Wang Z., Mingo N. Diameter Dependence of SiGe Nanowire Thermal Conductivity // Appl. Phys. Lett. – 2010. – Vol. 97. – P. 101903-101907.

Lee E. K. Large Thermoelectric Figure-of-Merits from SiGe Nanowires by Simultaneously Measuring Electrical and Thermal Transport Properties // Nano Lett. – 2012. – Vol. 12. – P. 2918-2923.

Cluster expansion and optimization of thermal conductivity in SiGe nanowires / M.K.Y. Chan, J. Reed, D. Donadio, et al. // Phys. Rev. B. – 2010. – Vol. 81. – P. 174303-174307.

Upadhyaya M., Aksamija Z. Phonon Transport in SiGe- Based Nanocomposites and Nanowires for Thermoelectric Applications // Mater. Res. Soc. Symp. Proc. – 2015. – Vol. 1735.

B. Xu, C. Li, M. Myronov, K. Fobelets, “n-Si-p-Si1-xGex nanowire arrays for thermoelectric power generation,” Solid State Electron. – 2013. – Vol. 83. – P. 107-112.

Thermoelectric Performance of Si0.8Ge0.2 Nanowire Arrays / B. Xu, C. Li, K. Thielemans, et al. // EE T. Electron. Dev. – 2012. – Vol. 59, No. 12. – P. 3193-3198.

Thermo-EMF in Si-Ge solid solution whiskers / A.A. Druzhinin, I.P. Ostrovskii, N.S. Liakh, and S.M. Matvienko // Journal of Physical Studies. – 2005. – Vol. 9, No. 1. – P. 71-74, in Ukrainian.

Druzhinin A., Ostrovskii I., Kogut I. Thermoelectric properties of Si-Ge whiskers // Materials Science in Semiconductor Processing. – 2006. – Vol. 9. – P. 853-857.

Si and Si-Ge wires for thermoelectrics / A. Druzhinin, I. Ostrovskii, I. Kogut, et al. // Phys. Stat. Sol. C. – 2011.– Vol. 8, No. 3. – P. 867-870.

Low temperature characteristics of germanium whiskers / A.A. Druzhinin, I.P. Ostrovskii, Yu.N. Khoverko, et al. // Functional Materials. – 2014. – Vol. 21, No. 2. – P. 130-136.

Strain effect on magnetoresistance of SiGe solid solution whiskers at low temperatures / A.A. Druzhinin, I.P. Ostrovskii, Yu.M. Khoverko, et al. // Materials Science in Semiconductor Processing. – 2011. – Vol. 14, No 1. – P. 18-22.

Druzhinin A.A., Ostrovskii I.P. Investigation of Si-Ge whiskers growth by CVD // Phys. Stat. Sol. C. – 2011. – Vol. 2. – P., vol. 1, No. 2, pp. 333-336, 2004.

Low temperature semiconductor mechanical sensors / I. Maryamova, A. Druzhinin, E. Lavitska, et al. // Sensors and Actuators. – 2000. – Vol. A85. – P. 153-157.

Druzhinin A., Ostrovskii I., Liakh N. Study of piezoresistance in GexSi1-x whiskers for sensor application // Materials Science in Semiconductor Processing. – 20005. – Vol. 8, No. 1-3. – P. 193-196.

Technological approaches for growth of silicon nanowire arrays / A. Druzhinin, A. Evtukh, I. Ostrovskii, et al. // Springer Proceedings in Physics. – 2015. – Vol. 156. – P. 301-308.

Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-ω method / Tae Y. Choi, Dimos Poulikakos, Joy Tharian, Urs Sennhauser // Appl. Phys. Lett. – 2005. – Vol. 87. – P.

-1–013108-4.

Thermoelectric properties of oblique SiGe whiskers / A. Druzhinin, I. Ostrovskii, N. Liakh-Kaguy, Іu. Kogut // Journal of Nano- and Electronic Physics. – 2016. – Vol. 8, No. 2. – P. 02030-1–02030-5.

H. Böttner. Thermoelectric Micro Devices: Current State, Recent Developments and Future Aspects for Technological Progress and Applications: http://www.micropelt.com/down/ict02_haboe.pdf.

(2002).

DOI: https://doi.org/10.20535/2411-2976.22016.20-27

### Refbacks

- There are currently no refbacks.