DOI: https://doi.org/10.20535/2411-2976.22011.%p

### APPROXIMATE MODEL OF SOLID-STATE COMPONENTS OF TELECOMMUNICATION SYSTEMS

#### Abstract

A simple electrical model of the solid-state object under investigation as an initial approximation for the problems of tomographic reconstruction and design of telecommunication systems components is proposed. The electrical circuit equivalent to the composition of uniform triangular finite elements has been obtained. Calculations of the equivalent parameters of the solidstate structures are carried out. It is shown that the electrical model proposed displays the properties of solid-state object under study in solving the direct problem qualitatively correct and allows obtaining an analytical solution of the inverse problem.

#### Full Text:

PDF#### References

Jaeger R. C., Blalock T. N. Microelectronic circuit design. ─ McGraw-Hill, 2010. ─ 1360 p.

Bahl I., Bhartia P. Microwave Solid Circuits Design. ─ New York: Wiley, 2003. ─ 906 p.

Using computerized tomography in non-destructive testing of the solid materials / M. Iovea, A. Marinescu, C. Rizescu, G. H. Georgescu // The Annual Symposium of the Institute of Solid Mechanics, Romanian Academy, Bucharest, Romania, December 15─16, 1994. ─ P. 357─364.

Three-dimensional electrical impedance tomography applied to a metal-walled filtration test platform / J. L. Davidson, L. S. Ruffino, D. R. Stephenson, R. Mann, B. D. Grieve, T. A. York // Measurement Science and Technology. ─ 2004. ─ Vol. 15, N. 11. ─ P. 2263─2274.

York T. Status of electrical tomography in industrial applications // Journal of Electronic Imaging. ─ 2001. ─ V.10, N. 3. ─ P. 608–619

Muller H. Boundary extraction for rasterized motion planning / Modelling and Planning for Sensor Based Intelligent Robot Systems // World Scientific, 1995. ─ P. 41─50.

Electrical impedance tomography: Methods, history and applications / Edited by D. Holder.─ Bristol:Institute of Physics Publisher, 2005. ─ 576p.

Ross R. W.; Hinton Y. L. Damage diagnosis in semiconductive materials using electrical impedance measurements // Proceedings of 49th International Conference “Structures, Structural Dynamics and Materials”, Schaumburg, IL, USA, April 7─10, 2008. ─ 9 p.

Hou T.-C., Loh K. J., Lynch J. P. Spatial conductivity mapping of carbon nanotube composite thin films by electrical impedance tomography for sensing applications // Nanotechnology. ─ 2007. ─ V. 18, N. 31 ─ P. 1─9.

Wang M., Dickin F. J., Mann R. Electrical resistance tomographic sensing systems for industrial applications // Chemical Engineering Communications. ─ 1999. ─ Vol. 175, N. 1. ─ P. 49─70.

Natterer F. The Mathematics of computerized tomography. ─ Society for Industrial and Applied Mathematics, 2001. ─ 222 p.

Tikhonov A. N., Arsenin V. Y. Solutions of ill-posed problems. ─ New York: Winston, 1977. ─ 288 p.

Electrical impedance tomography / Y. S. Pecker, K. S. Brazovskiy, V. Y. Usov, M. P. Plotnikov, O. S. Umanskiy. ─ Tomsk: NTL Publisher, 2004. ─ 192 p. [in Russian].

Sylvester P., Ferrari R. The finite element method for radio engineers and electrical engineers. ─ Cambridge: Cambridge University Press, 1983. ─ 228 p.

Guseva O. V., Naidenko V. I., Prokopenko A. P. Solution of direct problem of tomography of applied potentials // Proceedings of International Conference “Mathematical Methods in Electromagnetic Theory”. ─ Kharkov, June 2─5, 1998. ─ P. 612─614.