ANALYSIS OF SIGNALS OF STABILIZED AUTODYNES
DOI:
https://doi.org/10.20535/2411-2976.12011.%25pAbstract
Results of the autodyne signal analysis of the self-oscillating systems stabilized in frequency by the external high-quality cavity are given. The coupling between the main and stabilizing cavities is realized on the basis of a pass-reflective filter with a resistive link. Mathematical equations are obtained describing an autodyne response onto impact of the own radiated signal reflected from a target. The analysis of phase, amplitude, frequency and amplitude-frequency characteristics of the autodyne system is fulfilled. The calculation of an autodyne signal spectrum is discussed. A new type of nonlinear distortions of an autodyne signal is examined, which is caused by a frequency dispersion of an oscillating system of the stabilized autodyne. Advantages of the stabilized autodyne compared to the usual single-tuned autodyne oscillator are shown.
References
Page C. H., Astin A. V. Survey of proximity fuze development // American Journal of Physics. ─ 1947. ─ Vol. 15, N. 2. ─ P. 95─110.
Use of microstrip impedance ─ Measurement technique in the design of a BARITT diplex Doppler sensor / B. M. Armstrong, R. Brown, F. Rix, J. A. C. Stewart // IEEE Transaction on Microwave Theory and Techniques. ─ 1980. ─ Vol. 28, N. 12. ─ P. 1437─1442.
Yasuda A., Kuwashima S., Kanai Y. A shipborne-type wave-height meter for oceangoing vessels, using microwaveDoppler radar // IEEE Journal of Oceanic Engineering. ─ 1985. ─ Vol. 10, N. 2. ─ P. 138─143.
Komarov I. V., Smolskiy S. M. Fundamentals of shortrange FM radar. ─ Norwood: Artech House, 2003. ─ 289 p.
Zakarlyuk N. M., Noskov V. Ya., Smolskiy S. M. Onboard autodyne velocity sensors for aeroballistics inspections // Proceedings of 20th International Crimean Conference “Microwave & Telecommunication Technology”, September 13─17, 2010. ─ Sevastopol: Weber. ─ 2010. ─ Vol. 2. ─ P. 1065─1068.
Noskov V. Ya., Smolskiy S. M. Main features of double-diode autodynes and its application // Proceedings of 20th International Crimean Conference “Microwave & Telecommunication Technology”, September 13─17, 2010. ─ Sevastopol: Weber. ─ 2010. ─ Vol. 2. ─ P. 1051─1054.
Usanov D. A., Scripal Al. V., Scripal An. V. Physics of semiconductor RF and optical autodynes. ─ Saratov: Saratov University Publisher, 2003. ─ 312 p. [in Russian].
Votoropin S. D., Noskov V. Ya. Transceiver modules on the low-current Gunn diodes for autodyne systems // Electronic Techniques. Series 1. UHF techniques. ─ 1993. ─ N. 4. ─ P. 70─72 [in Russian].
Votoropin S. D., Noskov V. Ya., Smolskiy S. M. Modern hybrid-integrated autodyne oscillators of microwave and millimeter ranges and their application. Part 1. Technological achievements // Successes of modern electronic engineering. ─ 2006. ─ N. 12. ─ P. 3─30 [in Russian].
Nеw direction-of-motion Doppler detector / M. J. Lazarus, F. P. Pantoja, M. Somekh, at all // Electronics Letters. ─ 1980. ─ Vol. 16, N. 25. ─ P. 953─954.
General characteristics and peculiarities of the autodyne effect in oscillators / E. M. Gershenzon, B. N. Tumanov, V. T. Buzykin, at al // Radio Engineering and Electronics. ─ 1982. ─ Vol. 27, N. 1. ─ P.104─112 [in Russian].
Votoropin S. D., Noskov V. Ya., Smolskiy S. M. Modern hybrid-integrated autodyne oscillators of microwave and millimeter ranges and their application. Part 2. Theoretical and experimental investigations // Successes of modern electronic engineering. ─ 2007. ─ N. 7. ─ P. 3─33 [in Russian].
Votoropin S. D., Zakarlyuk N. M., Noskov V. Ya., Smolskiy S. M. On principal impossibility of autosynchronization of an autodyne by radiation reflected from a moving target // Russian Physics Journal. ─ 2007. ─ Vol. 50, N. 9. ─ P. 905─912.
Votoropin S. D., Noskov V. Ya., Smolskiy S. M. Modern hybrid-integrated autodyne oscillators of microwave and millimeter ranges and their application. Part 3. Functional features of autodynes // Successes of modern electronic engineering. ─ 2007. ─ N. 11. ─ P. 25─49 [in Russian].
Gershenzon E. M., Putilov P. A. Investigation of three-cavities autodyne UHF system // Radio Engineering and Electronics. ─ 1969. ─ Vol. 14, N. 1. ─ P. 137─145 [in Russian].
Noskov V. Ya. Analysis of an autodyne UHF transducer for noncontact measurement and control of the dimensions of components // Measurement Techniques. ─ New York: Springer. ─ 1992. ─ Vol. 35, N. 3. ─ P. 297─301.
Votoropin S. D., Noskov V. Ya., Smolskiy S. M. Modern hybrid-integrated autodyne oscillators of microwave and millimeter ranges and their application. Part 4. Investigations of multi-frequency autodynes // Successes of modern electronic engineering. ─ 2008. ─ N. 5. ─ P. 65─88 [in Russian].
Noskov V. Ya., Smolskiy S. M. Autodyne signal registration in a power circuit of the semiconductor diode oscillator in microwave and millimeter ranges (Review) // Techniques and Devices of the Microwave. ─ 2009. ─ N. 1. ─ P. 14─26 [in Russian].
Kurokawa K. An introduction to the theory of microwave circuits // Academic Press, 1969. ─ 434 p.
Takayama Y. Doppler signal detection with negative resistance diode oscillators // IEEE Transaction on Microwave Theory and Techniques. ─ 1973. ─ Vol. 21, N. 2. ─ P. 89─94.
Votoropin S. D., Noskov V. Ya., Smolskiy S. M. An analysis of the autodyne effect of oscillators with linear frequency modulation // Russian Physics Journal. ─ 2008. ─ Vol. 51, N. 6. ─ P. 610─618.
Votoropin S. D., Noskov V. Ya., Smolskiy S. M. An analysis of the autodyne effect of a radio-pulse oscillator with frequency modulation // Russian Physics Journal. ─ 2008. ─ Vol. 51, N 7. ─ P. 750─759.
Votoropin S. D., Noskov V. Ya., Smolskiy S. M. Modern hybrid-integrated autodyne oscillators of microwave and millimeter ranges and their application. Part 5. Investigations of frequency-modulated autodynes // Successes of modern electronic engineering. ─ 2009. ─ N. 3. ─ P. 3─50 [in Russian].
Noskov V. Ya., Smolskiy S. M. Modern hybridintegrated autodyne oscillators of microwave and millimeter range and their applications. Part 6. Research of radio-pulse autodynes // Successes of modern electronic engineering. ─ 2009. ─ N. 6. ─ P. 3─51 [in Russian].
Shelton E. J. Stabilization of microwave oscillations // IRE Transactions. ─ 1954. ─ Vol. ED 1, N. 4. ─ P. 30─40.
Kohiyama K., Momma K. A new type of frequencystabilized Gunn oscillator // Proceedings of the IEEE. ─ 1971. ─ Vol. 24, N. 10. ─ P. 1532─1533.
Stroganova E. P., Ivanov E. N., Tsarapkin D. P. UHF oscillator of combined frequencies // Izvestiya Vysshikh Uchebnykh Zavedeniy. Radioelektronika. ─ 1981. ─ Vol. 24, N. 10. ─ P. 69─72 [in Russian].
Malyshev V.A., Razdobudko V.V. Application of frequency and power pulling for the UHF oscillator by an external load to measure nonlinear parameters of its electronic conductivity // Izvestiya Vysshikh Uchebnykh Zavedeniy. Radioelektronika. ─ 1977. ─ Vol. 20, N. 1. ─ P. 45─51 [in Russian].
Skolnik M. I. Introduction to radar systems. ─ McGraw-Hill Book Company, 1962. ─ 748 p.