vibration, MEMS accelerometer, wireless vibration transducer, Wi–Fi, monitoring of rotating machinery


Background. When monitoring vibration of rotating machines, especially heavy ones, problems with cables of transducers often emerge. Those cables are usually long, heavy and prone to damage.

Objective. The purpose of the paper is to develop a wireless vibration transducer, which is free of those problems, on the base of MEMS accelerometer. Sensor developed should provide low power consumption, linear frequency response at least in 10…1000 Hz range, calculate vibration RMS and detect machine condition based on it.

Methods. Develop wireless sensor design based on 8-bit MCU. Develop method of MEMS frequency response correction, based on spectral analysis. Compare sensor developed with industrial piezoelectric ones.

Results. Transducer developed can be used instead of the industrial piezoelectric vibration transducers. Moreover, MEMS-based transducer allows one to move basic machine condition detection process from the high–level system to transducer level. That, in turn, allows one to reduce network traffic and simplify condition monitoring system as a whole.

Conclusions. MEMS-based wireless vibration transducer for condition monitoring is developed. Tests conducted showed that the transducer developed is well–behaved and its precision is comparable to one of industrial piezoelectric transducers.


Thanagasundram, S. Comparison of integrated micro–electrical–mechanical system and piezoelectric accelerometers for machine condition monitoring / S. Thanagasundram, F. Schlindwein // Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. – 2006. – Vol. 220, N. 8. – pp. 1135–1146. doi: 10.1243/09544062c07405

Albarbar, A. Suitability of MEMS Accelerometers for Condition Monitoring: An experimental study / A. Albarbar, S. Mekid, A. Starr, R. Pietruszkiewicz // Sensors. – 2008. – Vol. 8, N. 2. – pp. 784–799. doi: 10.3390/s8020784

Albarbar, А. Performance evaluation of MEMS accelerometers / A. Albarbar, A. Badri, Jyoti K. Sinha, A. Starr // Measurement. – 2009. – Vol. 42, N. 5. – pp. 790–795. doi: 10.1016/j.measurement.2008.12.002

Wahid, A. Development of tilt and vibration measurement and detection system using MEMS accelerometer as a sensor / K. Anuar, A. Wahid. – Universiti sains malaysia, 2008. – 134 p.

Jagadeesh, P. Low Cost Vibration Measuring Device Using MEMS Accelerometer / P. Jagadeesh, M. Umapathy, S. Balachandar, M. Arumugam, and S. Ramaswamy // NSTI–Nanotech. – 2006. – Vol. 3. – pp. 349–352.

Kwon, S. W. Development of Wireless Vibration Sensor Using MEMs for Tunnel Construction and Maintenance / S. W. Kwon, J. Y. Kim, H. S. Yoo, M. Y. Cho, K. J. Kim // Tunnelling and Underground Space Technology. – 2006. – Vol. 21, N. 3-4. – p. 318. doi: 10.1016/j.tust.2005.12.033

Marne, N. S. Vibration Measurement System with Accelerometer Sensor Based on ARM / N. S. Marne, M. S. Nagmode, R. D. Komati // International Journal of Emerging Technology and Advanced Engineering. – 2014. – Vol. 4, N. 4. – pp. 760–764.

Looney, M. An Introduction to MEMS Vibration Monitoring // Analog Dialogue. – 2014. – Vol. 48, N. 06. – pp. 1–3.

Chaudhury, S. B. Vibration Monitoring of Rotating Machines Using MEMS Accelerometer / S. B. Chaudhury, M. Sengupta, K. Mukherjee // International Journal of Scientific Engineering and Research. – 2014. – Vol. 2, N. 9. – p. 11. – Retrieved from:

Huang, Q. Development of high synchronous acquisition accuracy wireless sensor network for machine vibration monitoring / Q. Huang, B. Tang, L. Deng // Measurement. – 2015. – Vol. 66. – pp. 35–44. doi: 10.1016/j.measurement.2015.01.021

Holovatyy, A. Development of a system for monitoring vibration accelerations based on the raspberry pi microcomputer and the ADXL345 accelerometer./ A. Holovatyy, Teslyuk, V., Iwaniec, M., & Mashevska, M. //Eastern-European Journal of Enterprise Technologies. – 2017. – Vol.6, N.9(90). – pp. 52–62. doi: 10.15587/1729-4061.2017.116082

Sukenda, S.T., WawanMaulana, S., Septiane, L., Irwan, Y., Lukman, N.S., Dimas, H. (2020) Use of vibration sensor as detection of railway in mechanical signaling systems./S.T. Sukenda, S. Wawan Maulana, L. Septiane, Y. Irwan, N.S. Lukman, H. Dimas // PalArch’s Journal of Archaeology of Egypt/Egyptology. – 2020. – Vol. 17, N.5. – pp. 402–413.

Ghazali, M. H. M. Real-Time Vibration Monitoring Using MEMS Vibration Sensors / Mohamad Hazwan Mohd Ghazali, Wan Rahiman // Proceedings of the 11th International Conference on Robotics, Vision, Signal Processing and Power Applications. – 2022. – LNEE 829. – pp. 356–362. doi:

Bruel&Kjaer Product Data. Industrial Accelerometer – Type 8325. – Retrieved from:

Analog Devices ADXL316. Small, Low Power, 3–Axis ±16 g Accelerometer. – Retrieved from:

Silicon Designs Inc. Model 1510 Vibration Application Analog Surface Mount Accelerometer. – Retrieved from:

ST Microelectronics LIS344ALH. MEMS inertial sensor – high performance 3–axis ±2/±6g ultracompact linear accelerometer. – Retrieved from:

Analog Devices ADXL001. High Performance, Wide Bandwidth Accelerometer. – Retrieved from:

Espressif smart connectivity platform: ESP8266EX. – Retrieved from:

MIDE Volture Piezoelectric Energy Harvesters. – Retrieved from:

Badri, A. E. A typical filter design to improve the measured signals from MEMS accelerometer / A. E. Badri, J. K. Sinha, A. Albarbar // Measurement. – 2010. – Vol. 43, N. 10. – pp. 1425–1430. doi: 10.1016/j.measurement.2010.08.011

ISO 10816–1:1995 Mechanical vibration – evaluation of machine vibration by measurements on non–rotating parts – Part 1: General guidelines. – ISO, Geneve, 2012. – 19 p.

Serridge, M. Piezoelectric accelerometer and vibration preamplifier handbook / M. Serridge, T. R. Licht. – Glostrup, Denmark: Bruel&Kjaer, 1986. – 187 p.

ISO 5347–3:93(en) Methods for the calibration of vibration and shock pick–ups – Part 3: Secondary vibration calibration. – ISO, Geneve, 1993. – 8 p.