APPLICATION OF THE ROBUST APPROACH TO INCREASE THE ACCURACY OF DETERMINING THE COORDINATES OF THE ELEMENTS OF WIRELESS SENSOR NETWORKS

Authors

DOI:

https://doi.org/10.20535/2411-2976.12021.62-69

Keywords:

wireless sensor network, determination of coordinates of elements of wireless sensor networks, robust estimation methods

Abstract

Background. Modern methods for determining the coordinates of elements of wireless sensor networks allow solving the problems of determining the mutual distances between the elements of a wireless network under the assumption that the errors in measuring the mutual distances between network elements are distributed according to the normal law. With increasing requirements for the accuracy of determining coordinates, these methods do not allow solving the problem.

Objective. The purpose of the paper is to improve the accuracy of determining the coordinates of elements of wireless sensor networks by using robust estimation methods.

Methods. Determination of coordinates of elements of wireless sensor networks is implemented on the basis of two robust methods.

The first is the use of a median estimate based on multiple measurements of the mutual distances between elements to determine their coordinates.

The second is based on multiple measurements of the mutual distances between elements, determining their coordinates based on the Huber influence function and comparing two robust methods.

Results. The use of a robust method based on the Huber influence function makes it possible to increase the accuracy of determining the coordinates of elements of wireless sensor networks by 5-10% compared to classical estimation methods.

Conclusions. The proposed robust approach to determining the coordinates of elements of wireless sensor networks can be implemented in modern ground-based sensor networks for various purposes.

Keywords: wireless sensor network; determination of coordinates of elements of wireless sensor networks; robust estimation methods.

References

Vlasova V.A. Method for determining the coordinates of objects at the stage of initialization of a homogeneous wireless sensor network: dissertation. Ph.D.: 05.12.02. - Kh .: KhNURE, 2014.– 165 p.

Olexandr Lysenko, Stanislav Valuiskyi Secured wireless sensor network for environmental monitoring // Volume of Scientific Papers, Security forum 2016, Slovakia, Banská Bystrica, 2016, vol. 2, pp. 528-532. ISBN 978-80-557-1094-5.

Leonid Uryvsky, Evgen Ykornov, Oleg Tsukanov, Method for determining the coordinates of sensors in wireless sensor networks, DOI: 10.1109 / UkrMiCo43733.2018.9047595

Hampel F. Ronchetti, E. Roussey P. Stael V. Robustness in statistics. Influence function approach. - M. Mir, 1984, - 512 p.

Shulenin V.P. Robust methods of mathematical statistics. -Tomsk:NTL Publishing House, 2016 - 260 p.

Аlexandr Lysenko. Conceptual approaches to creating methodological principles as for requirements determination for mobile robotic fire-prevention systems of fires extinguishing on aircrafts //Vitaliy Kropivnitskiy, Olexandr Nikulin, Sergiy Chumachenko, Inga Uriadnikova, Volume of Scientific Papers, Security forum 2016, Slovakia, Banská Bystrica, 2016, vol.2, pp. 550-562. ISBN 978-80-557-1094-5.

Аlexandr Lysenko, Stanislav Valuiskyi. Secured wireless sensor network for environmental monitoring // Volume of Scientific Papers, Security forum 2016, Slovakia, Banská Bystrica, 2016, vol.2, pp. 528-532. ISBN 978-80-557-1094-5.

Alexander Lysenko The model of distributed wireless sensor network for environmental monitoring. Usporiadateľ medzinárodnej vedeckej konferencie //Stanislav Valuiskyi, Alexander Dakayev, Nazar Bendasiuk, Inga Uriadnikova, Akadémia ozbrojených síl generála Milana Rastislava ŠtefánikaKatedra bezpečnosti a obrany. 22-26.02.2016, Liptovsky Mikulas, Slovak. P. 232-236. ISBN 978-80-8040-515-1.

Alexander Lysenko. Intelligent hierarchical model of the sensor and manet networks management system. //Oleg Sova, Valery Romanyuk, Anton Romanyuk, Alexander, Inga Uryadnikova Usporiadateľ medzinárodnej vedeckej konferencie:Akadémia ozbrojených síl generála Milana Rastislava Štefánika Katedra bezpečnosti a obrany. 22-26.02.2016, Liptovsky Mikulas, Slovakia. P. 349-358. ISBN 978-80-8040-515-1.

Alexander Lysenko. New strategies in using network osi layer in manet functioning, Usporiadateľ medzinárodnej vedeckej konferencie:Akadémia ozbrojených síl generála Milana Rastislava ŠtefánikaKatedra bezpečnosti a obrany. //Oleg Sova, Valery Romanyuk, Anton Romanyuk, Inga Uryadnikova. 22-26.02.2016, Liptovsky Mikulas, Slovakia. P. 359-365. ISBN 978-80-8040-515-1.

Alexander Lysenko. Features of unmanned aerial vehicles group dynamics and control, //Elena Tachinina, Inga Uriadnikova, Sergej Chumachenko, Irina Alekseeva. Usporiadateľ medzinárodnej vedeckej konferencie: Akadémia ozbrojených síl generála Milana Rastislava Štefánika Katedra bezpečnosti a obrany. 22-26.2.2016, Liptovsky Mikulas, Slovakia. P.391-397, ISBN 978-80-8040-515-1.

Аleksandr I. Lysenko. Hierarchical model of decision acceptance in intelligent manet control system// Oleg Y. Sova, Valery A. Romanyuk, Anton V. Romanyuk, Inga V. Uryadnikova, Science & Military, Armed Forces Academy of General Milan Rastislav Stefanik, Liptovskiy Mikulas. No 1, Vol. 11, 2016. P.14-20. ISSSN 1336-8885(print). ISSN 2453-7632 (on-line). The journal Science & Military is included in the following multiple databases: EBSCO.

А.І. Lysenko I.V. Alekseeva O.M. Optimal Injection Path for Group of Nanosatellite Multisensor-Based Platforms. //I.V. Alekseeva, Tachinina V.P. Zakharchenko, 4th International Conference: Мethods and systems of navigation and motion control (MSNMC-2016), October 18-20, 2016, Kyiv, Ukraine SCOPUS.

А.I. Lysenko, O.M. Method of Injection of Subminiature Satellites with the Aid of Flying Space Launch Facility Based on An-124-100 and An-225 Airplanes. // Tachinina, A.V. Gusynin, S.M. Chumachenko. 4th International Conference Мethods and systems of navigation and motion control (MSNMC-2016), October 18-20, 2016, Kyiv, Ukraine SCOPUS.

S. Valuiskyi, Improved Algorithm for Real Time Search of WSN Routers Placement.// 4th International Conference: Methods and systems of navigation and motion control (MSNMC-2016), October 18-20, 2016, Kyiv, Ukraine SCOPUS.

V. Novikov. Hybrid Localization Method for Sensor Networks with Low Nodes Density.// S. Kashuba, B. Trach, V. Novikov, T. Pryshchepa, 4th International Conference Мethods and systems of navigation and motion controL (MSNMC-2016), October 18-20,2016, Kyiv,Ukraine SCOPUS.

V.S. Yavisya, N.M. Bendasiuk. Analysis of Methods for Orientation and Stabilization of Nano-Satellites //4th International Conference Мethods and systems of navigation and motion control (MSNMC-2016), October 18-20,2016, Kyiv, Ukraine SCOPUS.

Parr W.C. A note on Hajek protections an the influence curve // Statistics and Probability Letters. – 1983. – V. 1. – P. 177–179.

Hampel F.R. The influence curve and its role in robust estimation // J. Amer. Statist. Assoc. – 1974. – V. 69. – No. 346. – P. 383–393.

Hampel F.R. Contribution to the Theory of Robust Estimation: Ph. D. diss. – Berkeley: Univ. California, 1968. – 103 p.

Hampel F.R. A general qualitative definition of robustness // Ann. Math. Statist.– 1971. – V. 42. – P. 1887–1896.

Bickel P.J. Another look at robustness: a review of reviews and some new development // Scand. J. Statist. Theory and Appl. – 1976. – V. 3. – P. 145−168.

Andrews D.F., Bickel P.J., Hampel F.R., et al. Robust Estimation of Location: Survey and Advances. – Princeton, N.Y.: Princeton Univ. Press, 1972. – 375 p.

Jaeckel L.A. Robust estimation of location: symmetry and asymmetric contamination // Ann. Math. Statist. – 1971. – V. 42. – No. 3. – P. 1020–1034.

Jaeckel L.A. Some flexible estimates of location // Ann. Math. Statist. – 1971. –V. 42. – P. 1540–1552.

Hodges J.L. Efficiency in normal samples and tolerance of extreme values for some estimates of location // Proc. 5th Berkeley Symp. Math. Statist. and Prob.1965 – 1966. – V. I. – Berkeley – Los Angeles, 1967. – P. 163–186.

Noether G.E. On a theorem of Pitman // Ann. Math. Statist. – 1955. – V. 26. – P. 64–68.

Serfling R.J. Approximation Theorems of Mathematical Statistics. – N.Y.: Wiley, 1980.–371 p.

Reeds J.A. On the definition of von Mises functional: Ph. D. Thesis. Dept. of

Statistics. – Harvard, 1976. – 178 p.

Von Mises R. On the asymptotic distributions of differentiable statistical functions

// Ann. Math. Statist. – 1947. – V. 18. – P. 309–348.

Ferenholz L.T. Von Mises calculus for statistical functional // Lecture Notes in Statistics. – 1983. – V. 19. – No. 8. – P. 1–124.

Gibbons J.D. Nonparametric Statistical Inference. – N.Y.: McGraw-Hill, 1971.

Ghosh J.K. A new proof of the Bahadur representation of quantiles and application // Ann. Math. Statist. – 1971. – V. 42. – No. 6. – P. 1957–1961.

Jureckova J. M-L-R-estimators. Handbook of Statistics. V. 4 / eds. P.R. Krishnaiah, P.K. Sen. – Elsevier Science Publishers, 1984. – P. 463–485.

Downloads

Published

2021-06-29

Issue

Section

Статті