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Asymptotic properties of self-similar traffic models based on discrete-time and continuous-time martingales are considered. 
We discovered that their performance indicators are asymptotically equal at λ → ∞  to indicators for model based on Brown-
ian motion.  

Introduction 

Massive implementation of computer networks and 
increases in their productivity turned attention of scien-
tists studying network traffic to the properties of the 
Internet traffic. In 1993, Willinger et al. [1] discovered 
that computer network traffic exhibits statistical self-
similarity. This phenomenon can be described by three 
features — non-integer fractal dimension (hence, the 
object is fractal), scale invariance — statistical parame-
ters are independent of the level of flow aggregation 
and time scale, and long-range dependence. Autocorre-
lation function of process with long-range dependence 
decays slower than exponential function. This property 
is not present in telephone network traffic — it possess-
es only scale invariance. Therefore, new approaches to 
network parameter estimation should be developed. 

The numerical parameter of self-similarity is the 
Hurst exponent [2], which lies between 0 and 1. When 
the Hurst exponent is between 0 and 0.5, the stochastic 
process is antipersistent. In this case, stochastic process 
exhibits no trends. When the Hurst exponent is greater 
than 0.5, it exhibits persistence, which means that long 
trends are formed in the process. It was estimated that 
the Hurst exponent for network traffic approximately 
equals 0.8. It is possible to accurately describe traffic 
structure using this parameter. 

Numerous stochastic processes are utilized for re-
search and development of network traffic models. 
Martingales are one of the examples of such process. 
Martingale is a discrete or continuous process which 
satisfies the following condition  

( ) ( ){ } ( )|M X t X τ ,τ < s = X s , s t   ∀ ≤ .  

One can derive the following property from this 
equation: the expectation of process is constant 
throughout the realization of the process. Wide range of 
stochastic processes exhibits this property; for example, 
Brownian motion is a martingale. Martingales are 
commonly used for analysis of time series. 
 

Problem statement 
 

The purpose of the research is the study of asymptot-
ic properties of discrete and continuous models of net-
work traffic with discrete and continuous time. The ob-
ject of the research is asymptotic properties of network 
traffic models. The subject of the study is application of 
martingales for network traffic modeling. 

 

Research of asymptotic properties 

 

To describe our approach, let’s at first consider the 
М/М/1/m system with arrival intensity � and processing 
intensity	�.  

The waiting requests for processing get into a queue 
with the buffer capacity of � requests and get lost at the 
buffer overflow. 

Let Χλ,µ(t) be a number of requests in a system at 
time	�; ���t� be a number of requests that arrived be-
fore	�; ���t� be a number of requests that could be pro-
cessed up to time � if there are no idle time. It is well-
known [3] that ���t� and ���t� are independent Pois-
son processes with intensities � and	�, respectively.  

If there were neither losses during period	[0, �], nor 
idle times, then 

 

Χλ,µ�t� = Χλ,µ�0� + ���t� − ���t�         (1) 
 

A number of requests in the system cannot be less 
than 0 physically: Χλ,µ�t� ≥ 	0. During the period, when  
Χλ,µ(0)+Nλ(t)-Nμ(t) <0 the system is non-busy. Calcu-
lated below of the threshold “0” requests should be con-
sidered as virtually processed, i.e. actually not served. 

Therefore, in general case we have the following 
representation: 

Χλ,µ�t� = Χλ,µ�0� + ���t� − 

−���t� + 	�λ,µ�t� − 	�λ,µ�t�, 
 

 

where 	��t� is the number of lost requests (above the 
threshold �), 	��t� is the number of virtually processed 
requests (below the threshold 0).  
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Observe that processes Χ, 	�, 	� can be considered 
as a solution of two-sided Skorokhod’s problem. Let us 
recall the corresponding definition. 

Definition [4]. Let 
 be a function, 
�0� ∈ [0,�]. 
We say that functions �, 	�, 	� satisfy two-sided 
Skorokhod’s reflection problem with reflections at 0 
and m if 

1) ���� = 
�t� + 	���� − 	����, � ≥ 0; 
2) 	��0� = 	���� = 0, 		� and 	� are non-

decreasing; 
3) 		� and 	� may increase only when � equals 0 

or m, respectively, i.e. 

� 1���	
�	�(�)
�

�
+ � 1���	��	�(�) = 0,

�

�
	� ≥ 0, 

4) ���� ∈ �0,��, � ≥ 0. 
It is known [5] that there is a unique solution of the 

Skorokhod’s problem (functions �, 	�,	� are un-
known) for a given function 
. 

This solution in some sense depends continuously 
on 
. 

In our model: 

��� = Χλ,µ�0� + ���t� − ���t�, 

���� = Χλ,µ��� 
Let us assume that �, �,� are large enough in such a 

way that  

� = 	� + �√� + �(√�), 

� = 	�√� + �(√�), 

	Χλ,μ�0� = �√� + �(√�),	� → +∞ 

 

(2) 

By invariance principle [6] a process 
���	���

√�
 con-

verges weakly to Brownian motion �(�) as � → +∞. So 

Χλ,μ��� = Χλ,μ�0� + ��� + ����√�� − 

− ��� + �√��� + �������� + 

+ελ,μ��� + 	�λ,μ��� − 	�λ,μ���, 

 

(3) 

where ����� is a Brownian motion independent on 

����, ελ,µ��	
√�

→ 0 as � → ∞. 

It follows from (3) that a process Υλ,µ��� =
Χλ,µ��	

√�
 

converges as � → ∞ to a solution of the following 
Skorokhod’s problem on [0,�]: 

Υ��� = x + √2w��� − a� + L����� − Lβ
����, 

where w��� is a Brownian motion.  
Remark. A process ���� − ����� has the same distri-

bution as √2w���. Thus,  

Χ�,���� ≈ √�Y���; ��
�,��t� ≈ √�Lβ���� (4) 

Note that it is very easy to find a rejection probabil-
ity for Χλ,µ��� [3]: 

π� =
(�/�)�

1 + ��/��+. . . +(�/�)�
=
��/���(1 − �/�)

1 − (�/�)���  

It follows from (2) that 

π� ∼
ae��β

1 − e��β
1

√� =
a

e�β − 1

1

√� , � → ∞ (5) 

If we consider more complicate model than 
М/М/1/m, then it could be very difficult to find the ex-
plicit formula for rejection probability. However, the 
invariance principle holds true under very insignificant 
assumptions. For example, there is no need to assume 
the exponential distribution between arrivals (or pro-
cessing) as it is for a Poisson process. It is sufficient to 
suppose that these times are i.i.d. with finite expecta-
tion. We may also assume that each arrival time a group 
of requests arrive (the second moment of a group 
should be finite). The collective processing is permitted 
too. In any case a limit will be of the form 

Υ��� = x + �w��� − a� + L����� − Lβ
���� (6) 

Remark. For the М/М/1/m model a constant � 
equals √2, but for a general model, (say for a group 
arrivals) a constant � can be arbitrary. 

It is much easier to investigate a simple continuous 
model (6), then a very general discrete model. The re-
jection probability for a discrete model equals 

lim�→∞

��
λ,µ��	

�
. This approximately equals lim�→∞

�β���	

√��
. 

So, let’s calculate this limit for a general model (6). It 
can be proved [7] that 

lim�→∞

��(�)

�
= lim�→∞

���(�)

�
=

��

�
�(�), 

where �� �, ∈ [0,�) is a stationary density for a 
process Υ���. It can be found from the Fokker-Planck-
Kolmogorov equation [8] for Υ���: 

�

�
��π′′� � + �π′� � = 0. 

So, 

π� � =

��

��
�
�
���

��

���
�
���

��

 ,  ∈ [0,�];   (7) 

and 

lim�→∞

�β���	

�
=

��

�

��

��
�
�
���

��

���
�
���

��

=
�

�
���

�� ��

.     (8) 

This completely agrees with (5), (4), when � = √2. 

It can be seen that that rejection probabilities for ex-
treme case of discrete Markov process (5) and continu-
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ous Markov process (7) are the same. Similar results 
can be obtained for other characteristics of the process-
es.  

It can be inferred that in extreme case of discrete 
and continuous processes all output parameters of the 
model are described by the same equations. As a result, 
simpler continuous model can be used to calculate pa-
rameters of network traffic in queuing systems with 
complex structure or traffic with priorities. 

Dependence between rejection probability and the 
main parameters has been investigated. The main pa-
rameters are a  — coupling coefficient between λ  and 
µ , and b  — buffer scaling factor. As it is assumed that 
λ →∞ , changing λ  won’t have any noticeable effect 
on the process. 

 
 

Fig. 1. Graphical dependence of rejection probability on the 
value of λ  for different values of a : 1a =  and 2a = , with 

parameters 1b = , 1m = . 
 

The dependence of rejection probability on the arri-
val intensity λ  for different values of coupling factor a  
is shown on Figure 1. When the service probability in-
creases, the rejection probability decreases. This behav-
ior is consistent with physical sense of processes in the 
buffer and results of modeling for continuous and dis-
creet Markov processes.  

 

Conclusions 
 

Our study of discrete and continuous Markov pro-
cesses has shown that in extreme case of arrival intensi-

ty λ →∞  and values of service intensity, which are of 
the same order of magnitude, the output parameters of 
the model (service, rejection probabilities, etc.) are de-
scribed by the same equations.  

The practical result of this work is the fact that a lot 
less complicated continuous queuing system model 
based on the Brownian motion can be used to calculate 
parameters of network traffic of complex queuing sys-
tems. For example, in order to find state probabilities 
for queuing system featuring traffic with priorities using 
Poisson model, a large system of linear equations must 
be solved. Brownian model gives us ability to find these 
probabilities by solving one equation. 

We have conducted the research for rejection proba-
bility. But other output parameters of performance and 
latency can be obtained in similar fashion. Also, more 
complex queuing systems can be considered (for exam-
ple, with multiple servers). In addition to that, further 
research must be conducted with the use of fractional 
Brownian motion, which would give us ability to study 
properties of processes with long-range dependence. All 
of this will give us practical models of communication 
networks [9]. 
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