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AN IMPROVED PREDICTION OF DCT-BASED IMAGE FILTERS
EFFICIENCY USING REGRESSION ANALYSIS

Oleksii S. Rubel, Volodymyr V. Lukin
National Aerospace University “KhAl”, Kharkiv, Ukirze

Efficiency of DCT-based filters for a wide-classiwfages is investigated. The study is carried auadditive white Gaussian noise
(AWGN) case with several intensity levels. Local Dlased filter is used as basic denoising technitjoalocal BM3D filter
known as the state-of-the-art technique for AWGNaweal is also exploited. A precise prediction mdtbbdenoising efficiency for
several quality metrids proposed. It is shown that statistics of DCTfficients provides useful information. Regressioodels for
analyzed filters and metrics are presented. Thairadtt dependence approximations of quality metmic®CT statistics have high
goodness of fit. One-parameter and multi-paranfiéieg cases are considered. The most valuable Bré@fistics are found.

Introduction formation redundancy of similar image patches (kdc
Noise is the one of the most destructive factoas thg.zllgﬁ:egeggfégs\z ea:jngde pgr;\fﬂo?:g f(ﬁ(t)(l,lf Fﬁrglrﬁ edset;m%s
affects visual quality of images [1]. Loss of visqaal- the-art nonlocal techni(,que for AWGN (additive white

ity can decrease performance of image processing Waussian noise) removal. Note that, in additiosinai-

plic_ations s_ignificantly. For instance, quality iefages lar patch collecting, the BM3D uses DCT as the $asi
delivered via Internet and networks could be redune for joint processing of data in patch sets.

r|j|(<)elrs1§e tr;gt P(?\z d:pbpeettagred e?ftorlrrr?:r?Se ?gﬁ:fétﬁog sltiage.lt is obvious that image characteristics influedee
tions o,f no?s iMages so?ne image pre-filterin Ap noising efficiency. In [5], attention was paid te-d
y ges, gep gcero noising of texture images. For this case, efficien€

dure is often needed. the DCT-based filters is low and denoising can some

Furthermore, it can be important to assess V'S%es even lead to evident distortions. Meanwlsleh

quality of analyzed images. Such knowledge can lﬁ?[ers can effectively process less complex imagas

e s S, Jueelo, 572 i basis, 11 desiae ( e Some imagecctr
9 9 tics or quantitative parameters in order to camy

beneficial for a given image? If degradation dugrie- rough prediction of denoising efficiency.

zzgtbr(]aOIeSIiemlifla?:e”(??rnc:n;nthc:a”?rlr?;lemc])??tes ?enc:otr?lieéo Currently, some quality assessments without refer-
swer would be positive. If not ige noise re?noléiids ence image [6] and efficiency bounds have been pro-
P ’ P posed [7]. Degradation of locally distributed imdga-

IjooleosssngI 'gigﬁ fier’]atili; ZS :ngnx':rl:(?érﬂgﬁlt'tytﬁgea:;s tures (e.g. decomposition of local image gradieatrix
. 9 . ’ ! g‘f) under noise conditions is one criterion thah de
would be negative. The paper is devoted to ansgeri

h i b 7i dicti f denaisi sed. Statistics of entire image is used rarelytliis
nese questions by analyzing prediction of deng purpose. Disadvantage of such an approach is time co
ficiency using simple statistics.

Quite many efficient image denoising technique utational burden which is even higher than fittgrit-

have been proposed in the last decade Amond th elf. Thus, significant requirement arises cleafsg-

. prop o 9 NeBsment (prediction) of denoising efficiency sHoul
techn|que§, orthqgon&la_nsform _based filters [.2] Standhave less computational cost than filtering. Calyai
out by their relatively high efﬂmgncy. Such fituse requirement of precisprediction of denoising efficien-
some transform to represent signal by its spectru should be consistent with computational cost
Wavelets, discrete cosine (DCT) or other orthogona The paper is organized as follows. The .Section
transforms are exploited frequently for this purpos.. rief theory” considers efficient DCT balsed filtand
Sparseness and compactness of spectrum repre&mntq e proposed prediction method. The next Sectidh “E
of a signal allow removing “noisy” spectrum compoz '

. L s ficiency prediction method for DCT-based filterstep
nents. High denoising efficiency has been demotestra . . . .
by the DCT filter in [3]. sents some informative graphics to provide better u

Several efficient nonlocal denoising techni ue&haderstanding of how the method works. The Section
g nique VPreliminaries” describes test database of images a
been proposed recently as well. Nonlocal filters ims

modeling process. Sections “One-parameter fitteugyl
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“Multi-parameter fitting” show the method perfornean especially in the sense of preserving true imagdailde
depending upon the number of DCT statistics used flm other words, there is a certain bound of effitie
prediction. "Prediction performance improvementt-se noise removal without distorting a true signal. $hit
tion presents final method with reduced computationcan be expected that DCT statistics determine dergpi
burden. efficiency of the analyzed filters. The necessitysoch
Brief theory bound assessment is evidgnt. . '
Statistics of DCT coefficients has been intensively
In our study, two DCT-based denoising techniquegudied. It has been established that probabiktysity
were chosen, namely, the DCT filter (its basic is function of DCT coefficients is not Gaussian andg ha
[3] and the BM3D filter (block matching and 3D @t heavy tails [9, 10]. Noise presence can signifigant
ing) [4]. The general denoising mechanism of thes#ange distribution of DCT coefficients compared to
techniques lies in nonlinear block-wise processifig noise-free statistics.
image local spectrum. Its basic task consists more In [11], it is shown that denoising efficiency tsist-
ing “noisy” components. “Noisy” means that the predy connected with probabilitieB,, andP, 7, . Here,P,,
ence of true signal in a certain spectrum comporgentdenotes value of probability that absolute DCT fioef
inessential and noise has the main contributionis It cient value does not exceed.ZThis parameter shows
reasonable to “remove” such spectrum componentsriough estimation of noise presence in image. Ireroth
blocks and to replace them by zeros (if the scedall words,P,, is average amount of noisy components with

hard thresholding is applied) weak signal constituent which can be misded, de-
fines probability that absolute DCT coefficient wal
B (kl) — B,(kl)> L&, exceeds the threshold 2,7 This parameter shows
Bout (K.I) :{ 0. B (K)<pH (1)  amount of kept components or components with strong
- N\ /= '

signal constituent. Note th&, + P,z < 1, thus, these

probabilities are mutually dependent.
whereBy, is the filtered spectrum blocR,is the adjust- Basically, mean values d¥,, and P, are used as
ing parameterc denotes AWGN standard deviationcharacterization parameters of images. Based an, the
where By, is “noisy” input image spectrum block, andy prediction technique using linear regression yaisl
indices for DCT components in each 8xf_3 blocklare \yas proposed in [12]. It implies one of two protisibs
0..7,1 = 0..7. The optimal value df for wide-class of through the following expressions for predicting #fa-
images lies in the range 2,4...2,8 [8]. Decreasindesf tjg MSE,/6° (where MSE denotes output MSE of

noising efficiency due to non-optimal value setting pCTE or BM3D filters and AWGN variance® is as-
this range is insignificant. For simplicitp, value equal sumed a priori known):

to 2,7 and fixed can be used.

It is worth to note that the most efficient denoggis
reached in the case of fully-overlapping image kdoc
Values in a given pixel that are restored from tager
ping blocks containing this pixel are different. et a (MSEupcrr /0% Jeg= 1.86P2 52, ©)
joint (final filtered) value, these values are agad.

The BM3D filter exploits the above mentioned de- ’ 5
noising mechanism. This mechanism is applied teta s (MSEouemap /0 Jest= - 2,65+ 2, P+ 0,36 (4)
of blocks collected into 3D array upon condition of
their similarity. Therefore, the first procedurelled (MSE,iam3p /02 et = 2,03320'779_ (5)
“block matching” finds groups of similar blocks cer e
sponding to a reference one. Such 3D array hasn-esse
tial correlation along the third dimension.

Collaborative denoising is performed on such da
array. Along the third dimension, 1D transform & a
plied. Basically it is Haar transform. In this way,s
easy to eliminate noisy components from highly eorr
lated data. Thus, denoising efficiency on images- co
sisting of groups of similar blocks is usually higkg-
gregation of restored blocks into output image és-p
formed in the same way as in the DCT filter.

Note that this denoising mechanism is also restiict

(MSEqupere /67 ey = -2,6P5+ 2,185+ 0,3¢ (2)

These expressions have high goodness of fit
=0,98 and 0,97 foP,, and R°=0,94 both forP, s,
where R? denotes coefficient of determination [13]. It
ranges from 0 to 1 whef®>0,9 means that most of the
variation in the response variable (denoising &fficy)

can be explained by modeled variali®g, (or P, 7).

Due to availability of dependences (2)-(5) obtained
in advance, one can estimag and P, for a given
image before filtering and then to calculSE,/o”
that characterizes predicted denoising efficieroytiie
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two considered filters. However, for the preserapd Table 1) Meanwhile, the obtained approximations for
proximations (3) and (4), a limited number of test IPSNR-HVS-M are fitted with considerably small&’.
ages (only eight) and noise levels (only three)s wahis means that it is desirable to provide a béitigmg.
used. As a result, there is a lack of points tlatez Note thatMSE/c® and IPSNR have the same nature
spond to the cases of low efficiency of filterse@h are (they are strictly interconnected):

textural images and/or small values of AWGN staddar

deviation). It means that the cases that are “hipd" IPSNR=10l0g; (©2/ MSE). (12)
the DCT-based filter are considered and taken acto

COlxlfit;?\/svgf::j(;egtly.roximations for other quality medric Thus, further we will analyze only t¥SNR and
» app 9 Y PSNR-HVS-M dependencies dPy, andP; 7.

were obtalned using the same mebab'“.t'es.' in [14] Let us consider the estimatesRf or P, 7, obtained
Three metrics were analyzelSE/c” as earlier in [12] . .
. for all image blocks. They can be represented st®-i
and two new ones - improvement of PSNRS\R) and grams of distributions, two examples of which are-p
improvement of PSNR-HVS-M [15]IRSNR-HVSM), sented in Fig. 1. These distributions have beeaiobd

both expressed in dB. The last one is the humaanvis for two test images taken from the database TID2013

Zﬁsatle rzne(kj)aisrﬁg ge&'iihthgtﬁgfrﬁ?tﬁrlzzz V:f;{glr;[ggh 1e6] (test imaged\e5 and 18) corrupted by AWGN with
Y 9 9 q . thé same standard deviatioa € 5). It is seen that

goodness of fit data for the two considered prdiiss Co . .
are presented in Table 1 Expressions for the oehﬂainShapeS of the distributions are slightly different.

approximations foMSE/6?, IPSNR andIPSNR-HVS-M 8000
for the DCT filter are the following:
6000
(MSEfo? Jg= -L45P5+ Q455+ 096  (6) 4000/
(MSE/6? )= -L4PZ .+ 22F, 7+ 013 (7) 2000
2 % 02 04 06 08 I
P, —1,92 : : , ,
IPSNRy= 10000exp -| —22—"=1| |, 8 >
Rest ﬁ{ ( 0.63 j j 8) P,
(a)
8000 :
2
P, +0,81
IPINR 4= 100 exp -| ———— , 9 6000 f
Rest { ( 0.53 )
4000 |
2
IPSNR-HVSM o= 100 exp - P ~2,08 ,(10) 2000
0,67
0
0 02 04 06 08 1
B P, 7 +0,98)’ Pro
IPSNR-HVS-M = 100 ex - — o5 (11) )

Fig. 1 Examples oPy, distributions
Table 1. Goodness of fiRf) of the obtained approximations

Thus, a distribution of local estimatesf or P,

Metric P, P57 . ; . . -

MSE/o2 0 578 02555 might contain useful information and such a disttiitin

IPSNR 0;962 0:935 can be described by one or several statisticalnpara
IPSNR-HVSM 0,82 0,78 ters. To characterize a distribution, it is possitd em-

. o ploy distribution mean, median, mode, variancewske
Efficiency pred|Ct|0r_‘ method for DCT-based ness, kurtosis, etc. These parameters are furémerted
filters asM, Med, Mod, Var, S, andK, respectively. Values of

Prediction methods in [12, 14] show high goodneggese parameters for distribution of Ioca}l estimaié
of fitting for metrics MSE/o? and IPSNR (see data in P2 @re given in Table 2 for two analyzed images.
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Table 2. Values of statistical parametersRgr that have different statistics are needed for aupgse.
Image | M Mod | Med | Var S K Values of the considered statistics for the tesiges
N5 064 | 0635 0635 0028 2222 0.0 Must be located over full ranges of possible viariabf
: ' : ] — 1 the considered statistical parameters. Furthermfore,

Nel8 | 070] 0./3] 0.73 003 3,032 0.708 precise approximation of denoising efficiency, dfisu

Clearly, different distributions are characterizeg cient number of samples (points of the scatterpkt)
different sets of basic statistical parameterss fossi- needed. Some test images are shown below in Fig. 2.
ble to characterize a distribution by differentsset sta- S :
tistical parameters and different number of paranset
in a set. So, if we intend to use several statibt@-
rameters for prediction, we should select a progsr
and a proper number of parameters which are thé mo:
important (informative).

From our previous studies [14], the exponential
model (13) seems to be suitable for approximatieg d
pendences of the metritBSNR andIPSNR-HVS-M on
a considered statistical parameter of the distidbut
Besides, such model is simple. This allows assuming
that this model can be also exploited for multi-
parameter fitting with weighting:

Metricy= a* ex Zn:ho, (P)J , (13)
i=1

wherea andb; are approximation factorg); is some pa-
rameter of distributionn defines the number of such
parameters. AsQO;, the distribution mean, median,
mode, variance, skewness and kurtosis could beeohos
Note that in [12, 14] only the mean of the disttibo
was used as single statistical parameter. The riaato
and b, i=1,...n are to be in advance by multidimen-
sional f-dimensional) regression.

Such a regression is carried out as follows. There
a set of images corrupted by noise with a set oamae >
values. These noisy images are filtered with ggttin '
IPINR and IPSNR-HVS-M. Simultaneously, a consid-
ered set of statistical parameters for a givenynioisige
is estimated. Then, this set of parametersIBSNR (or
IPINR-HVS-M) form a multidimensional scatter-plot
where statistical parameters serve as function -argu
ments. Having a set of test images and varianagesal
a set of points is collected. Having such a scauit;
an approximation model (13) is fitted and a setopa-
rameters is obtained.

The choice of statistical parameter(s) is esseftral
denoising efficiency prediction. Comparison of peed
tion performance foe different statistical parametnd
their combinations will be studied later.

Preliminaries

Fig. 2 Some test images
The first task in n-dimensional regression is tecte Various types of images could be taken from the da-
test images. Images with different content (texduper- tabase TID2013 [16] (except the test ima@25 which
centage of pixels that belong to homogenous repioris artificial one), all of size 512x384 pixels (seeam-
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ples in Fig. 1, a-f). Besides, we have considemsaisl Although median of distributions provides better ap
textural test images (e.g., Baboon, Grass, Groand, proximation ofIPSNR-HVSM, the obtained results are
Straw, Fig. 1,9-k) were used, all of size 512x5iX&ls. still not good enough and are worth improving. We e
In aggregate, we had 34 test grayscale images. 4maquect that this improvement can be gained due tdi-mul
the test images, there are only real-world imagiels. dimensional regression.

well seen that the used test images have differemt Table 3. Goodness of one-parameter fit fgr P

tent.

To meet the requirement of sufficient number gf DCT filter BM3D
scatterplot points, a number of noise levels shdéld [~Statistical pa-| IPSNR | IPSNR- | IPSNR | IPSNR-
sufficient, too. The following AWGN levels characte rameters HVSM HVSM
ized by noise standard deviationare used: 2, 3, 5, 8 M 0,963 0,767 0,95 0,76
10, 15. As a result, there are 204 points thatlefmed Med 0,946 0,848 0,932 | 0,845
on full axis range both for the metric and statatipa- Mod 0,727 0,813 | 0,701 0,787
rameters. Var 0,085 0,002 0,099 0,008

s S 0,145 0,413 0,415 0,395
One-parameter fitting K 0428 | 0114 | 0143 011

In this section, the comparison of goodness dbfit Table 4. Goodness of one-parameter fit fof, P
different statistical parameters is presented. @Gessl
of fit R? or so-called coefficient of determination (14) i$ DCT filter BM3D
used as criterion of prediction performance. Thigee | Statistical pa-| IPSNR | IPSNR- | IPSNR | IPSNR-
rion has been also used in previous studies [1]2, 14 rameters HVSM HVSM

There are several definitions & which are only M 0,935 0,723 | 0921 | 0,714
sometimes equivalent. One class of such caseslEglu Med 0919 | 0829 | 0,903 | 0,823
that ofsimple linear regressiomn this casef is simp- Mod 0619 | 0,762 | 0592 0,721
ly the square of the sample Pearsorrelation coeffi- Var 0,166 0,027 0,187 0,041
cientbetween the outcomes and their predicted values. S 0,665 0,597 0,643 0,57

Besides,R is related to mean square errtirde- K 0,452 0,354 0.44 0,339
scribes well performance of prediction using lineay In Table 5, the estimated values of approximation
gression modelsThe most general definition of the co-factors are presented. The scatter-plots for degenies
efficient of determination is of denoising efficiency on one statistical paramsetnd

the fitted curves (approximations shown by solitb$)
R%= 1- SSies/ St (14) are represented in Figs 3-4 for single statispeabhme-

ters which are the best for a given criterion aitterf

whereSS« denotes the sum of squares of residuals, aIE@S 3a-b and 4a-b sholWSNR dependencies on statis-

called the residual sum of squar€Sy is the total sum tical parameters, Flgs 3c-d and 4c-d pres@ENR-
of squares which is proportional to the samplearare. HVSM dependencies.

Thus, to our opinion, the usage R will be enough to Table 5. Approximations coefficients values of dtta ap-
describe goodness of fit for the considered appraxi Pproximations foP,,

tions. Prediction performance for single statigizam- . _
eter is shown below in Table 3 fé%, and in Table 4 |_Filter Metric a by
for P,7. The best one-parameter approximations are DCT IPSNR 0,048 5,606

filter [ IPSNR-HVSM 0,006 7,271
marked by bold. IPS\NR 0,038 5,899
It is seen that for both probabilitie®, andP2%) | BM3D [ [PSNRHVSM 0.002 841

and for both filters the best approximations fBENR . _
are those which use mean of distribution. For the AS it can be seen from Figs 3a-b and 4a-b, the ap-
IPSNR-HVS-M metric, the best approximations are obProximations forlPSNR metric are well fitted for both
served for median of distribution. Expressions fice- filters. Goodness of fit for these cases is expliyte
diction of the considered metrics are the following ~ high (see data in Tables 3 and 4). For fR@\NR-HVS-
M metric, the approximations are fitted not so wile
IPSNR, = a* exp(bl meanp ) (15) R values do not exceed 0,85 but the reason is ttat d
are not clustered so well. Such deviation IBENR-

) HVSM values from can be made up by some addition
IPSNR-HVS-M = a* exp(by, median® ) (16)  gtatistical parameter.
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Fig. 3 Scatterplots of DCT filter efficiency dfp, and P, 7
and fitted lines fotPSNR andIPSNR-HVS-M
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(b)
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(d)

Fig. 4 Scatterplots of BM3D efficiency df, andP;, and
the fitted lines fot PSNR andIPSNR-HVS-M



