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Efficiency of DCT-based filters for a wide-class of images is investigated. The study is carried out for additive white Gaussian noise 
(AWGN) case with several intensity levels. Local DCT-based filter is used as basic denoising technique. Nonlocal BM3D filter 
known as the state-of-the-art technique for AWGN removal is also exploited. A precise prediction method of denoising efficiency for 
several quality metrics is proposed. It is shown that statistics of DCT coefficients provides useful information. Regression models for 
analyzed filters and metrics are presented. The obtained dependence approximations of quality metrics on DCT statistics have high 
goodness of fit. One-parameter and multi-parameter fitting cases are considered. The most valuable DCT statistics are found. 
 

Introduction 
 

Noise is the one of the most destructive factors that 
affects visual quality of images [1]. Loss of visual qual-
ity can decrease performance of image processing ap-
plications significantly. For instance, quality of images 
delivered via Internet and networks could be reduced by 
noise that has appeared at image acquisition stage. 
Hence, to provide better performance for such applica-
tions of noisy images, some image pre-filtering proce-
dure is often needed. 

Furthermore, it can be important to assess visual 
quality of analyzed images. Such knowledge can be 
helpful for answering the following question: is some 
filtering needed for image enhancement and can it be 
beneficial for a given image? If degradation due to pre-
sent noise is evident in original image and this noise 
can be eliminated from the image or its region, the an-
swer would be positive. If not, i.e. noise removal leads 
to loss of image features and visual quality or at least 
does not result in image enhancement, the answer 
would be negative. The paper is devoted to answering 
these questions by analyzing prediction of denoising ef-
ficiency using simple statistics.  

Quite many efficient image denoising techniques 
have been proposed in the last decade. Among these 
techniques, orthogonal transform based filters [2] stand 
out by their relatively high efficiency. Such filters use 
some transform to represent signal by its spectrum. 
Wavelets, discrete cosine (DCT) or other orthogonal 
transforms are exploited frequently for this purpose. 
Sparseness and compactness of spectrum representation 
of a signal allow removing “noisy” spectrum compo-
nents. High denoising efficiency has been demonstrated 
by the DCT filter in [3].  

Several efficient nonlocal denoising techniques have 
been proposed recently as well. Nonlocal filters use in-

formation redundancy of similar image patches (blocks) 
collected together and perform collaborative denoising. 
To our best knowledge, BM3D filter [4] is the state-of-
the-art nonlocal technique for AWGN (additive white 
Gaussian noise) removal. Note that, in addition to simi-
lar patch collecting, the BM3D uses DCT as the basis 
for joint processing of data in patch sets. 

It is obvious that image characteristics influence de-
noising efficiency. In [5], attention was paid to de-
noising of texture images. For this case, efficiency of 
the DCT-based filters is low and denoising can some-
times even lead to evident distortions. Meanwhile, such 
filters can effectively process less complex images. On 
this basis, it is desirable to have some image character-
istics or quantitative parameters in order to carry out 
rough prediction of denoising efficiency.  

Currently, some quality assessments without refer-
ence image [6] and efficiency bounds have been pro-
posed [7]. Degradation of locally distributed image fea-
tures (e.g. decomposition of local image gradient matrix 
[6]) under noise conditions is one criterion that can be 
used. Statistics of entire image is used rarely for this 
purpose. Disadvantage of such an approach is the com-
putational burden which is even higher than filtering it-
self. Thus, significant requirement arises clearly. As-
sessment (prediction) of denoising efficiency should 
have less computational cost than filtering. Certainly, 
requirement of precise prediction of denoising efficien-
cy should be consistent with computational cost. 

The paper is organized as follows. The Section 
“Brief theory” considers efficient DCT based filter and 
the proposed prediction method. The next Section “Ef-
ficiency prediction method for DCT-based filters” pre-
sents some informative graphics to provide better un-
derstanding of how the method works. The Section 
“Preliminaries” describes test database of images and 
modeling process. Sections “One-parameter fitting” and 
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“Multi-parameter fitting” show the method performance 
depending upon the number of DCT statistics used for 
prediction. ”Prediction performance improvement” sec-
tion presents final method with reduced computational 
burden.  

 

Brief theory 
 

In our study, two DCT-based denoising techniques 
were chosen, namely, the DCT filter (its basic version) 
[3] and the BM3D filter (block matching and 3D filter-
ing) [4]. The general denoising mechanism of these 
techniques lies in nonlinear block-wise processing of 
image local spectrum. Its basic task consists in remov-
ing “noisy” components. “Noisy” means that the pres-
ence of true signal in a certain spectrum component is 
inessential and noise has the main contribution. It is 
reasonable to “remove” such spectrum components in 
blocks and to replace them by zeros (if the so-called 
hard thresholding is applied) 
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where Bout is the filtered spectrum block, β is the adjust-
ing parameter, σ denotes AWGN standard deviation 
where Bin is “noisy” input image spectrum block, and 
indices for DCT components in each 8x8 block are k = 
0..7, l = 0..7. The optimal value of β for wide-class of 
images lies in the range 2,4…2,8 [8]. Decreasing of de-
noising efficiency due to non-optimal value setting in 
this range is insignificant. For simplicity, β value equal 
to 2,7 and fixed can be used. 

It is worth to note that the most efficient denoising is 
reached in the case of fully-overlapping image blocks. 
Values in a given pixel that are restored from overlap-
ping blocks containing this pixel are different. To get a 
joint (final filtered) value, these values are averaged. 

The BM3D filter exploits the above mentioned de-
noising mechanism. This mechanism is applied to a set 
of blocks collected into 3D array upon condition of 
their similarity. Therefore, the first procedure called 
“block matching” finds groups of similar blocks corre-
sponding to a reference one. Such 3D array has essen-
tial correlation along the third dimension. 

Collaborative denoising is performed on such data 
array. Along the third dimension, 1D transform is ap-
plied. Basically it is Haar transform. In this way, it is 
easy to eliminate noisy components from highly corre-
lated data. Thus, denoising efficiency on images con-
sisting of groups of similar blocks is usually high. Ag-
gregation of restored blocks into output image is per-
formed in the same way as in the DCT filter.  

Note that this denoising mechanism is also restricted 

especially in the sense of preserving true image details. 
In other words, there is a certain bound of efficient 
noise removal without distorting a true signal. Thus, it 
can be expected that DCT statistics determine denoising 
efficiency of the analyzed filters. The necessity of such 
bound assessment is evident. 

Statistics of DCT coefficients has been intensively 
studied. It has been established that probability density 
function of DCT coefficients is not Gaussian and has 
heavy tails [9, 10]. Noise presence can significantly 
change distribution of DCT coefficients compared to 
noise-free statistics.  

In [11], it is shown that denoising efficiency is strict-
ly connected with probabilities P2σ and P2,7σ . Here, P2σ 
denotes value of probability that absolute DCT coeffi-
cient value does not exceed 2σ. This parameter shows 
rough estimation of noise presence in image. In other 
words, P2σ is average amount of noisy components with 
weak signal constituent which can be missed. P2,7σ de-
fines probability that absolute DCT coefficient value 
exceeds the threshold 2,7σ. This parameter shows 
amount of kept components or components with strong 
signal constituent. Note that P2σ + P2,7σ < 1, thus, these 
probabilities are mutually dependent. 

Basically, mean values of P2σ and P2,7σ are used as 
characterization parameters of images. Based on them, 
a prediction technique using linear regression analysis 
was proposed in [12]. It implies one of two probabilities 
through the following expressions for predicting the ra-
tio MSEout/σ

2 (where MSE denotes output MSE of 
DCTF or BM3D filters and AWGN variance σ2 is as-
sumed a priori known): 

 
2 2

2σ 2σσ - 2,63 2,15 0,38,outDCTF est(MSE / ) = P + P +    (2) 
 
2 0,73

2,7σσ 1,86 ,outDCTF est(MSE / ) = P             (3) 

 
2 2

3 2σ 2σσ - 2,69 2,2 0,36,outBM D est(MSE / ) = P + P +   (4) 
 
2 0,79

3 2,7σσ 2,03 .outBM D est(MSE / ) = P            (5) 

 
These expressions have high goodness of fit 

R2=0,98 and 0,97 for P2σ and R2=0,94 both for P2,7σ, 
where R2 denotes coefficient of determination [13]. It 
ranges from 0 to 1 where R2>0,9 means that most of the 
variation in the response variable (denoising efficiency) 
can be explained by modeled variable (P2σ or P2,7σ).  

Due to availability of dependences (2)-(5) obtained 
in advance, one can estimate P2σ and P2,7σ for a given 
image before filtering and then to calculate MSEout/σ

2 
that characterizes predicted denoising efficiency for the 
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two considered filters. However, for the presented ap-
proximations (3) and (4), a limited number of test im-
ages (only eight) and noise levels (only three), was 
used. As a result, there is a lack of points that corre-
spond to the cases of low efficiency of filters (these are 
textural images and/or small values of AWGN standard 
deviation). It means that the cases that are “hard” for 
the DCT-based filter are considered and taken into ac-
count insufficiently. 

Afterwards, approximations for other quality metrics 
were obtained using the same probabilities in [14]. 
Three metrics were analyzed: MSE/σ2 as earlier in [12] 
and two new ones - improvement of PSNR (IPSNR) and 
improvement of PSNR-HVS-M [15] (IPSNR-HVS-M), 
both expressed in dB. The last one is the human vision 
system based metric that characterizes visual quality of 
analyzed image with rather high adequateness. The 
goodness of fit data for the two considered probabilities 
are presented in Table 1 Expressions for the obtained 
approximations for MSE/σ2, IPSNR and IPSNR-HVS-M  
for the DCT filter are the following: 

 
2 2

2σ 2σσ 1 45 0 45 0 96est(MSE/ ) = - , P + , P + , ,         (6) 
 

2 2
2 7σ 2 7σσ 1 4 2 25 0 13est , ,(MSE/ ) = - , P + , P + , ,        (7) 
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Table 1. Goodness of fit (R2) of the obtained approximations 
Metric P2σ P2,7σ 
MSE/σ2 0,978 0,955 
IPSNR 0,962 0,935 

IPSNR-HVS-M 0,82 0,78 
 

Efficiency prediction method for DCT-based  
filters 

 

Prediction methods in [12, 14] show high goodness 
of fitting for metrics MSE/σ2 and IPSNR (see data in 

Table 1) Meanwhile, the obtained approximations for 
IPSNR-HVS-M are fitted with considerably smaller R2. 
This means that it is desirable to provide a better fitting. 
Note that MSE/σ2 and IPSNR have the same nature 
(they are strictly interconnected):  

 
2

1010 (σ / ).IPSNR= log MSE               (12) 
 

Thus, further we will analyze only the IPSNR and 
IPSNR-HVS-M dependencies on P2σ and P2,7σ. 

Let us consider the estimates of P2σ or P2,7σ obtained 
for all image blocks. They can be represented as histo-
grams of distributions, two examples of which are pre-
sented in Fig. 1. These distributions have been obtained 
for two test images taken from the database TID2013 
[16] (test images №5 and 18) corrupted by AWGN with 
the same standard deviation (σ = 5). It is seen that 
shapes of the distributions are slightly different. 

 

 
(a) 

 
(b) 

 

Fig. 1 Examples of P2σ distributions 
 

Thus, a distribution of local estimates of P2σ or P2,7σ 
might contain useful information and such a distribution 
can be described by one or several statistical parame-
ters. To characterize a distribution, it is possible to em-
ploy distribution mean, median, mode, variance, skew-
ness, kurtosis, etc. These parameters are further denoted 
as M, Med, Mod, Var, S, and K, respectively. Values of 
these parameters for distribution of local estimates of 
P2σ are given in Table 2 for two analyzed images. 
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Table 2. Values of statistical parameters for P2σ 

Image M Mod Med Var S K 

№5 0,64 0,635 0,635 0,028 2,222 0,06 

№18 0,70 0,73 0,73 0,03 3,032 0,708 
 

Clearly, different distributions are characterized by 
different sets of basic statistical parameters. It is possi-
ble to characterize a distribution by different sets of sta-
tistical parameters and different number of parameters 
in a set. So, if we intend to use several statistical pa-
rameters for prediction, we should select a proper set 
and a proper number of parameters which are the most 
important (informative).  

From our previous studies [14], the exponential 
model (13) seems to be suitable for approximating de-
pendences of the metrics IPSNR and IPSNR-HVS-M on 
a considered statistical parameter of the distribution. 
Besides, such model is simple. This allows assuming 
that this model can be also exploited for multi-
parameter fitting with weighting:  

 

1
exp ( ) ,

n

est i i
i

Metric = a* b O P
=

 
 
 
∑                 (13) 

 
where a and bi are approximation factors, Oi is some pa-
rameter of distribution, n defines the number of such 
parameters. As Oi, the distribution mean, median, 
mode, variance, skewness and kurtosis could be chosen. 
Note that in [12, 14] only the mean of the distribution 
was used as single statistical parameter. The factors a 
and bi, i=1,…,n are to be in advance by multidimen-
sional (n-dimensional) regression. 

Such a regression is carried out as follows. There is 
a set of images corrupted by noise with a set of variance 
values. These noisy images are filtered with getting 
IPSNR and IPSNR-HVS-M. Simultaneously, a consid-
ered set of statistical parameters for a given noisy image 
is estimated. Then, this set of parameters and IPSNR (or 
IPSNR-HVS-M) form a multidimensional scatter-plot 
where statistical parameters serve as function argu-
ments. Having a set of test images and variance values, 
a set of points is collected. Having such a scatter-plot, 
an approximation model (13) is fitted and a set of its pa-
rameters is obtained. 

The choice of statistical parameter(s) is essential for 
denoising efficiency prediction. Comparison of predic-
tion performance foe different statistical parameters and 
their combinations will be studied later. 

 

Preliminaries 
 

The first task in n-dimensional regression is to select 
test images. Images with different content (textures, per-
centage of pixels that belong to homogenous regions) 

that have different statistics are needed for our purpose. 
Values of the considered statistics for the test images 
must be located over full ranges of possible variation of 
the considered statistical parameters. Furthermore, for 
precise approximation of denoising efficiency, a suffi-
cient number of samples (points of the scatterplot) is 
needed. Some test images are shown below in Fig. 2. 

 

  
(a)                                             (b) 

  
(c)                                             d) 

  
(e)                                           (f) 

  
(g)                                         (h) 

  
(i)                                         (j) 

 

Fig. 2 Some test images 
Various types of images could be taken from the da-

tabase TID2013 [16] (except the test image №25 which 
is artificial one), all of size 512x384 pixels (see exam-
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ples in Fig. 1, a-f). Besides, we have considered several 
textural test images (e.g., Baboon, Grass, Ground, and 
Straw, Fig. 1,g-k) were used, all of size 512x512 pixels. 
In aggregate, we had 34 test grayscale images. Among 
the test images, there are only real-world images. It is 
well seen that the used test images have different con-
tent. 

To meet the requirement of sufficient number of 
scatterplot points, a number of noise levels should be 
sufficient, too. The following AWGN levels character-
ized by noise standard deviation σ are used: 2, 3, 5, 8 
10, 15. As a result, there are 204 points that are defined 
on full axis range both for the metric and statistical pa-
rameters. 

 

One-parameter fitting 
 

In this section, the comparison of goodness of fit for 
different statistical parameters is presented. Goodness 
of fit R2 or so-called coefficient of determination (14) is 
used as criterion of prediction performance. This crite-
rion has been also used in previous studies [12, 14].  

There are several definitions of R2 which are only 
sometimes equivalent. One class of such cases includes 
that of simple linear regression. In this case, R2 is simp-
ly the square of the sample Pearson correlation coeffi-
cient between the outcomes and their predicted values. 

Besides, R2 is related to mean square error. It de-
scribes well performance of prediction using linear re-
gression models. The most general definition of the co-
efficient of determination is 

 
2 ,res totR = 1- SS SS                    (14) 

 
where SSres denotes the sum of squares of residuals, also 
called the residual sum of squares, SStot is the total sum 
of squares which is proportional to the sample variance. 
Thus, to our opinion, the usage of R2 will be enough to 
describe goodness of fit for the considered approxima-
tions. Prediction performance for single statistic param-
eter is shown below in Table 3 for P2σ and in Table 4 
for P2,7σ. The best one-parameter approximations are 
marked by bold. 

It is seen that for both probabilities (P2σ and P2,7σ) 
and for both filters the best approximations for IPSNR 
are those which use mean of distribution. For the 
IPSNR-HVS-M metric, the best approximations are ob-
served for median of distribution. Expressions for pre-
diction of the considered metrics are the following: 

 
( )1exp mean( ) ,estIPSNR = a* b P           (15) 

 
( )1exp median( ) .estIPSNR-HVS-M = a* b P    (16) 

Although median of distributions provides better ap-
proximation of IPSNR-HVS-M, the obtained results are 
still not good enough and are worth improving. We ex-
pect that this improvement can be gained due to multi-
dimensional regression.  

 

Table 3. Goodness of one-parameter fit for P2σ 

 

 DCT filter BM3D 
Statistical pa-

rameters 
IPSNR IPSNR-

HVS-M 
IPSNR IPSNR-

HVS-M 
M 0,963 0,767 0,95 0,76 

Med 0,946 0,848 0,932 0,845 
Mod 0,727 0,813 0,701 0,787 
Var 0,085 0,002 0,099 0,008 
S 0,145 0,413 0,415 0,395 
K 0,428 0,114 0,143 0,11 

 

Table 4. Goodness of one-parameter fit for P2,7σ 

 

 DCT filter BM3D 
Statistical pa-

rameters 
IPSNR IPSNR-

HVS-M 
IPSNR IPSNR-

HVS-M 
M 0,935 0,723 0,921 0,714 

Med 0,919 0,829 0,903 0,823 
Mod 0,619 0,762 0,592 0,721 
Var 0,166 0,027 0,187 0,041 
S 0,665 0,597 0,643 0,57 
K 0,452 0,354 0,44 0,339 

 

In Table 5, the estimated values of approximation 
factors are presented. The scatter-plots for dependencies 
of denoising efficiency on one statistical parameters and 
the fitted curves (approximations shown by solid lines) 
are represented in Figs 3-4 for single statistical parame-
ters which are the best for a given criterion and filter. 
Figs 3a-b and 4a-b show IPSNR dependencies on statis-
tical parameters, Figs 3c-d and 4c-d present IPSNR-
HVS-M dependencies. 

 

Table 5. Approximations coefficients values of obtained ap-
proximations for P2σ 

 
Filter Metric a b1 

DCT 
filter 

IPSNR 0,048 5,606 
IPSNR-HVS-M 0,006 7,271 

 
BM3D 

IPSNR 0,038 5,899 
IPSNR-HVS-M 0,002 8,41 

 

As it can be seen from Figs 3a-b and 4a-b, the ap-
proximations for IPSNR metric are well fitted for both 
filters. Goodness of fit for these cases is expectedly 
high (see data in Tables 3 and 4). For the IPSNR-HVS-
M metric, the approximations are fitted not so well; the 
R2 values do not exceed 0,85 but the reason is that data 
are not clustered so well. Such deviation of IPSNR-
HVS-M values from can be made up by some addition 
statistical parameter. 
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(a) 

 

(b) 

 
(c) 

 
(d) 

 

Fig. 3 Scatterplots of DCT filter efficiency on P2σ and P2,7σ 
and fitted lines for IPSNR and IPSNR-HVS-M 

 
 

 
(a) 

 

(b) 

 
(c) 

 
(d) 

 

Fig. 4 Scatterplots of BM3D efficiency on P2σ and P2,7σ and 
the fitted lines for IPSNR and IPSNR-HVS-M 

 


