
9

© The Author(s) 2023. Published by Igor Sikorsky Kyiv Polytechnic Institute.
This is an Open Access article distributed under the terms of the license CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/), which permits re-use,

distribution, and reproduction in any medium, provided the original work is properly cited.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

UDC 004.075
INTERNET OF THINGS DATA TRANSFER METHOD USING

NEURAL NETWORK AUTOENCODER

Eduard Siemens, Vasyl V. Kurdecha, Serhii M. Ushakov
Educational and Research Institute of Telecommunication Systems

Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine

Background. The number of devices in the Internet of Things is constantly increasing. At the same time, the number of
solutions on the market for such technologies is growing. Statistics confirm that these factors lead to an increase in data
transfer volumes. This raises the number of resources spent on data transmission. The growing trend in the number of users of
the Internet of Things technology leads to the emergence of the problem of a rapid increase in the data transmitted by the
network.

Objective. The purpose of the paper is to improve the process of data transmission in the Internet of Things by modifying
the neural network autoencoder to reduce network resources use.

Methods. Analysis of publications dedicated to Internet of things data transmission. Integration of existing data coding
solutions based on a neural network autoencoder in the process of transmitting data from the Internet of things.

Results. The neural network autoencoder has been improved by using an algorithm that additionally includes an
arithmetic encoder and further training a new model on the output of a full-fledged autoencoder.

Conclusions. The process of data transmission in the Internet of Things network has been modified by improving the
neural network autoencoder by using the training of a smaller neural network on the initial data of the main autoencoder,
which has reduced the amount of data transmitted and, accordingly, reduced the use of network resources.

Keywords: Internet of things; data coding; neural network; autoencoder; training on the original model; data
compression.: Sub-titles are not captured in Xplore and should n be used

INTRODUCTION
The number of devices in the IoT network is

constantly increasing. At the same time, the number of
solutions in the IoT technology market is increasing,
which in turn leads to an increase in data transfer
volumes. This increases the amount of resources spent
on ensuring their transfer.

The increase in the number of Internet of Things
technology users is leading to a rapid increase in data
transmitted over the network. The more traffic that
reaches the network, the faster the data transfer rate.
This complicates the process of exchanging traffic,
which in turn leads to the need to spend resources on
expanding network bandwidth.

PROBLEM FORMULATION
The main task in exchanging IoT data is to transfer

it to a cloud environment based on short-range
communication systems - personal networks. These can
include both wireless and wired networks. The first
ones include Bluetooth, NFC, RFID, Wi-Fi, Zigbee, Z-
Wave protocols, while wired networks have a much
wider list of technologies and names, as they include all
possible industrial networks and protocols. At this
stage, the main difficulty arises, which is the relative
slowness of data transfer to the cloud and its further
processing in the cloud. The main disadvantage of
existing solutions is that they provide a low data
compression ratio with a large number of sensors. At

present, it is necessary to develop a data compression
technique for IoT applications and devices with limited
resources, efficiently working on multivariate time
series and implemented on a real carrier.

As an option to address these shortcomings, first of
all, it is necessary to apply a fast, error- and data-loss-
aware compressor on the collected data before the
transmitters, which is considered the largest traffic
consumer in an IoT device. The second step is to
recover the transmitted data at the edge node and
process it using supervised machine learning methods.

The main aim of the paper is to improve the process
of data transmission in the Internet of Things by
modifying the neural network autoencoder to reduce
the network resources use. The neural network
autoencoder has been improved by using an algorithm
that additionally includes an arithmetic encoder and
further training a new model on the output of a full-
fledged autoencoder.

USED TECHNOLOGIES.
Recurrent neural networks (RNNs) are a type

of neural networks that excel in modelling sequence
data like natural language or time series. RNNs have
the unique ability to utilize their internal memory to
process sequences of any length, unlike multilayer
perceptrons. Consequently, they are suitable for tasks
involving the segmentation of a whole into parts, for
example, handwriting or language recognition.
Recurrent networks have a wide range of architectural

INFORMATION AND TELECOMMUNICATION SCIENCES VOLUME 14 NUMBER 1 JANUARY–JUNE 202310

solutions, from simple to complex. Presently, the most
popular architectures are the long-term and short-term
memory network (LSTM) and the gated recurrent unit
(GRU).

To illustrate, the usage of RNNs can be represented
schematically (refer to Fig.1): during each iteration of
the loop, the model input receives both a fresh data
fragment and the previous internal state. Eventually,
the entire sequence is represented by the output of the
neural network.

Fig. 1 Circuit diagram of a recurrent neural network
The Long Short-Term Memory (LSTM) is a deep

learning architecture designed for artificial recurrent
neural networks (RNNs) as illustrated in Figure 2.
Unlike conventional neural networks, which use direct
communication, LSTMs incorporate feedback with
previous layers of the network. They can process entire
data sequences such as speech or video, instead of
individual data points like images. LSTMs have a wide
range of applications, including non-segmented
handwriting recognition, speech recognition, network
traffic anomaly detection, and intrusion detection
systems (IDS).

An LSTM unit comprises a cell, inlet valves, outlet
valves, and forgetting valves. The cell stores values at
irregular intervals, and the three valves regulate
information flow into and out of the cell. LSTMs are
suitable for processing, classification, and forecasting
based on time-series data, as they can account for
variable intervals between significant events in a
sequence. They were designed to address the issue of
the disappearing gradient that can occur during training
of traditional RNNs. Hidden Markov models and other
sequence learning techniques have difficulties with
long-term dependencies in input sequences. In theory,
classical RNNs can track arbitrary long-term
dependencies in input sequences, but in practice, the
computational process can cause inverse propagation
gradients to vanish or explode due to finite accuracy.

LSTMs can solve the vanishing gradient problem by
allowing gradients to flow unchanged. However, they
can still experience the issue of exploding gradients.
Nonetheless, LSTMs are relatively insensitive to
interval length and can track long-term dependencies in
input sequences. In conclusion, LSTMs are a powerful

tool for processing data sequences and have broad
applications in various fields, especially for problems
involving time-series data with long-term
dependencies.

Fig. 2 LSTM circuit diagram

In 2014, Kyunghyun Cho et al. introduced gated
recurrent units (GRUs) as a mechanism for
constructing recurrent neural networks. The GRU is
similar to long-term memory (LSTM) in that it has a
forget mechanism, but it has fewer parameters than
LSTM because it lacks an initial state. In tasks
involving modelling polyphonic music, speech signals,
and natural language processing, GRUs have
demonstrated performance comparable to LSTM.
Furthermore, on certain smaller and less frequent
datasets, GRUs have demonstrated superior accuracy
(Fig 3).

Fig. 3 The scheme of operation of the GRU circuit

 DeepZIP is an innovative lossless compression
technique that leverages a combination of Recurrent
Neural Networks (RNN) and information theory
techniques. At the heart of the DeepZip model lies the
RNN for probability estimation, which estimates the
likelihood of occurrence of each building block of the
input sequence. The RNN receives the input symbol of
the original sequence at each time step, which can be a
bit or a byte, a base in the DNA chain, an English letter,
or any other building block of the sequence. After
processing the symbol, the RNN generates a vector that
contains predictions of how likely each building block
is to appear in the sequence. For instance, when
encoding a sequence of bits, an output of [0.25, 0.75]
would imply that the model assumes the next bit is 1

11E. SiEmEnS, V. KurdEcha, S. uShaKoV, inTErnET oF ThinGS daTa TranSFEr mEThod uSinG nEuraL nETWorK
auToEncodEr

with a probability of 75%. Subsequently, the RNN
shows the next character in the sequence for which it
generates probabilities, given the characters that were
shown to it earlier. One of the key differentiators of the
RNN for probability estimation in DeepZip is that it
does not require training before it processes new input.
Unlike most neural networks, which use a training
dataset to determine their internal parameters, the RNN
for probability estimation starts with random
parameters when it receives new input. As it processes
symbols at the input, it updates its latent state according
to the usual RNN rules, and it also updates its weight
parameters using the loss between its probabilistic
predictions and the actual symbol. Thus, the RNN for
probability estimation does not just identify the
dependencies that exist in the new sequence; it also
learns how to study these dependencies. This approach
provides an effective solution for lossless compression
and improves the accuracy of the predicted
probabilities. DeepZIP combines RNN with
information theory techniques to create a highly
efficient lossless compression technique. The RNN for
probability estimation plays a key role in estimating the
likelihood of occurrence of each building block of the
input sequence, and its unique training methodology
ensures that it can effectively identify and learn the
dependencies in the new sequence.

The process of encoding data based on the
probability estimates generated by the RNN requires a
mechanism to translate these estimates into an actual
encoded sequence. To achieve this, DeepZIP utilizes a
well-established technique from information theory
known as the arithmetic encoder. This encoder employs
a numeric range to represent the input sequence,
starting from an initial range of 0.0 to 1.0, which is then
modified as follows (Fig.4).:

1) First, estimate the probability of the next
character appearing in the input sequence using
a statistical model, such as an RNN.

2) Divide the current range of the encoder into
units, with each symbol having its own
subdivision. The length of the sub-interval is
proportional to the probability of the
corresponding symbol obtained in step 1.

3) Read the next character from the input
sequence.

4) Set the encoder's current range to the sub-
interval of this symbol. The new range will be
shorter or longer depending on the probability
of the symbol.

5) If there are more characters in the input
sequence, repeat from step 1. The encoder will
keep updating its range for each character in
the input sequence.

Fig. 4 Data compression scheme

To decode the compressed sequence, the arithmetic
encoder is used in reverse order. Starting with the same
range from 0.0 to 1.0, the decoder reads the compressed
bit sequence one bit at a time. At each step, the decoder
divides the current range into sub-intervals, one for
each possible symbol, proportional to the probability of
the corresponding symbol. The decoder selects the sub-
interval that contains the binary fraction represented by
the compressed sequence read so far. The symbol
corresponding to that sub-interval is then output to the
decompressed sequence. The decoder then updates the
range to the sub-interval for the selected symbol and
repeats the process until the entire compressed
sequence has been decoded (Fig. 5):

1) Use the same model that was used to encode
the message to predict the probability of
occurrence of each character in the original
sequence.

2) Divide the current range of the encoder into
units, with one subdivision for each possible
symbol, where the length of each subdivision is
proportional to the probability of that symbol
predicted in step 1.

3) Determine the unit that contains the coded
number, which is a binary representation of a
number from 0.0 to 1.0, contained in the final
range of the arithmetic encoder at the encoding
stage.

4) Add the symbol assigned to this subdivision in
the original sequence. The final range of the
encoding step was in the range selected for
each previous step, so whatever subdivision of
the character contains the input code, it must be
in the output sequence.

5) Set the current encoder range for this unit. Now
the range of the encoder is exactly the same as
it was during the corresponding step of the
encoding process.

6) Repeat steps 1-5 for each character to be
decoded, until the end of the sequence is
reached. The end of the sequence can be
marked with a special character at the end of

INFORMATION AND TELECOMMUNICATION SCIENCES VOLUME 14 NUMBER 1 JANUARY–JUNE 202312

the message or by knowing the number of
characters that must be output. If this symbol is
not the final symbol or the end of the sequence
has not been reached, decoding continues.

Fig. 5 Data decoding scheme

MAIN PART
In practical scenarios, the exact length of input

sequences is generally unknown. To tackle this issue,
an end-of-message character is often utilized to signal
the encoder when to halt appending new characters to
the output sequence. DeepZip, a method for encoding
input sequences, leverages an RNN for probability
estimation and an arithmetic encoder. Initially, the
RNN is initialized with random weights to predict the
probability. Next, the arithmetic encoder encodes the
first character of the input sequence using the default
character distribution. The first symbol is then fed to
the RNN for probability estimation, which produces
probabilities for the subsequent symbol. These
probabilities are used by the arithmetic encoder to
encode the second character. The RNN's weights for
estimating the probability are updated by comparing the
predicted probabilities for the second symbol with the
actual identity of the second symbol. The second
character is then introduced to the RNN to estimate the
probability, which gives the probability for the third
character, and the process continues until the input
sequence is fully encoded.
 In the context of encoding input data, it is
noteworthy that the RNN used for probability
estimation in the decoding process is initialized with
the same weights that were employed at the outset of
coding. One effective approach to achieve this is by
transmitting a random value that was utilized during
encoding, alongside the actual encoding of the input
data. Subsequently, the arithmetic encoder adopts the
default character allocation to extract the first character
from the encoded data. This symbol is transmitted to
the RNN to estimate the probability, which yields a set
of probabilities for the next symbol. If properly
initialized, these probabilities will correspond exactly
to those issued by the RNN during the initial encoding
step. The probabilities are then utilized by the encoder
to extract the second character, which in turn is used to
restore the RNN weights. The updating of scales should

precisely mirror the process that occurred after the first
coding step. The second character is then passed to the
network, which issues probabilities for the third
character, and the process is repeated until the encoder
reads the end-of-message character.

PROPOSED METHOD DEFINITION
In the previous section, the compression algorithm

using DeepZip neural networks was considered.
However, in its development, the main platform was
considered classical computer systems, such as web
servers and personal computers. For use in IoT devices,
the model may be too heavy: both in terms of memory
required and in terms of consumption of computing
resources. This is not the first time that the problem of
heavy models has arisen in the field of neural networks.
An example is BERT, the neural network architecture
from Google, which allows you to recognize the
meaning of quite complex sentences and even extract
from them the semantic meanings of individual
phrases. In itself, BERT training takes a very long time,
resulting in a fairly large network, which could not be
used to analyse all search queries. On the other hand,
due to technical and architectural limitations, it is not
possible to qualitatively teach simpler architecture at
once. Thus, it is possible to teach a large model, but due
to its size, the latter cannot be applied in practice. For
this reason, the following principle is applied: first, the
three-dimensional model is trained to an acceptable
level, and only then there is training, compression and a
light version of the model on the original model.
Simply put, we do not try to immediately learn to
answer questions about the text, but first learn to
understand its meaning by observing how it is
understood by the parent model, and learning to repeat
it (Fig.6).

Fig. 6 Visualize the sequence of the data encoding

method (diamond– model training, Superellipse– model
testing)

13E. SiEmEnS, V. KurdEcha, S. uShaKoV, inTErnET oF ThinGS daTa TranSFEr mEThod uSinG nEuraL nETWorK
auToEncodEr

EMPIRICAL MODELLING AND ANALYTICAL
EVALUATION OF NEURAL NETWORKS

 It was decided to abandon the training in parallel
coding in favour of a pre-trained model, which will first
put in the model features of the type of data
transmitted, and secondly apply the above principle of
compression by a recurrent neural network. Thus, the
first step will be to train the RNN on the generated data
set to be transmitted. In this way a neural network will
be obtained, with some level of redundancy, which will
be further eliminated by means of compressed to lower
dimensions. It was decided to conduct an experiment
using the most common application format JSON. It
allows you to set quite complex data structures, while
being quite simple and minimalist as opposed to
cumbersome XML.

SIMULATION
Its features will be used for efficient data

compression. To do this, a utility was developed to
generate input data. Generation is done using the
recursive function generate (size_left, max_depth),
which returns a random object, which when serialized
in JSON will give a string no longer than size_left bytes
and a depth of no more than max_depth. At each step
of the recursion, we try to add random keys to the
object, partly from the dictionary, for which the values
will be either random strings, or other random objects,
or arrays of random objects (Fig.7).

Fig. 7 JSON structure corresponding to one of the

recursive call variations.

The original DeepZIP architecture, based on
learning parallel to the compression process itself.
Thus, for compression using this algorithm, it is
necessary to update the scales after each portion of
input data, i.e. the model learns the features of the data
as it passes through them. In our case, the work is with
the JSON format with a pre-known set of keys, which
allows you to lay down knowledge about the structure

of input data before the network will be used in
practice. Thus, in the course of this work, a large neural
network was trained, and then, based on a large one, a
simpler model was trained, which can then be used on
target IoT devices. Therefore, a set of randomly
generated JSON-string algorithms with IoT-like data
will be used for training. 200,000 rows up to 10
(approximately 2 MB of data), 20,000 rows up to 50,
10,000 rows up to 100, and 5,000 rows up to 10,000
were generated. This sample was used to teach large
network architecture (Fig.8).

Fig. 8 Comparison of big network accuracy

A part of this sample will be used later to train the

small model, as well as an additional random set of
JSON strings will be generated. Thus, 50% of the
sample of large architecture is used to teach small
architecture, as well as the remaining 50%, regenerated
to avoid retraining

Fig. 9 Comparison of the accuracy of the new

network

At the same time, given the differences in
architectures, the small one is 3 times faster. The
graphs above show the differences in the degree of
compression depending on the number of eras for large
and small architectures. The simplification of the
DeepZIP architecture has provided a greater degree of
compression specifically for IoT-specific data. Thus,

INFORMATION AND TELECOMMUNICATION SCIENCES VOLUME 14 NUMBER 1 JANUARY–JUNE 202314

the smaller architecture trained on final weights of a big
network gave approximately 12% less degree of
compression at acceleration in 3 times (Fig.9).

CONCLUSION
The Internet of Things as a concept and a network is

anticipated to integrate advanced technologies in the
fields of telecommunications, cloud computing, and fog
computing, as well as sensing, thus opening the door to
groundbreaking applications in various areas that will
bring many benefits and have a significant impact on
people's lives. However, the nature of the IoT network,
with its massive number of connected devices and large
volumes of potentially vulnerable data, raises serious
concerns regarding bandwidth, security, privacy, and
performance. The solutions discussed in the paper
represent an important step towards overcoming these
challenges, but further analysis and comparison are
needed to determine the advantages of implementing
these systems or their combinations on various IoT
network infrastructures, both current and future.
Although there is no "one-for-all" solution that can be
easily created, it is still possible to develop new and
improved approaches and systems to enhance the
security of the IoT network. One possible solution is to
integrate existing data transmission methods and
combine them with modern technologies from
neighbouring fields, such as AI-based compression, as
demonstrated in the article or other methods.

REFERENCES
1. Mashal, I.; Alsaryrah, O.; Chung, T.Y.; Yang,
C.Z.; Kuo, W.H.; Agrawal, D.P. Choices for
interaction with things on Internet and underlying
issues. Ad Hoc Netw. 2015.
2. Madakam, S.; Ramaswamy, R.; Tripathi, S.
Internet of Things (IoT): A literature review. J.
Comput. Commun. 2015.
3. Sethi, P.; Sarangi, S.R. Internet of Things:
Architectures, Protocols, and Applications. J. Electr.
Comput. Eng. 2017.
4. M. Goyal, K. Tatwawadi, S. Chandak, I. Ochoa,
Data Compression Conference (DCC), May 2019
5. Compressing BERT for faster prediction //
Retrieved from https://blog.rasa.com/compressing-
bert-for-faster-prediction-2/
6. Convert the sample JSON file from a tree to a
table. // Retrieved from
https://www.researchgate.net/figure/Convert-the-
sample-JSON-file-from-a-tree-to-a-
table_fig3_332591327
7. NN based lossless compression – DeepZip //
Retrieved from https://github.com/mohit1997/DeepZip
8. D.D. Testa and M. Rossi, IEEE Signal Processing
Letters, 2015.
9. L. Globa, V. Kurdecha, I. Ishchenko and A.
Zakharchuk, "An approach to the Internet of Things

system with nomadic units developing," 2017 14th
International Conference The Experience of Designing
and Application of CAD Systems in Microelectronics
(CADSM), 2017, pp. 248-250, doi:
10.1109/CADSM.2017.7916127.
10. J. Yamnenko, L. Globa, V. Kurdecha and A.
Zakharchuk, "Data Processing in IoT Systems based
on Fuzzy Logics," 2019 Modern Electric Power
Systems (MEPS), 2019, pp. 1-4, doi:
10.1109/MEPS46793.2019.9395055.
11. J. Yamnenko, V. Kurdecha and N. Gvozdetska,
"Domestic Solid Waste Disposal Logistic Optimization
Using Internet of Things Technologies," 2021 IEEE
International Conference on Information and
Telecommunication Technologies and Radio
Electronics (UkrMiCo), 2021, pp. 1-5, doi:
10.1109/UkrMiCo52950.2021.9716596.
12. L. Globa, V. Kurdecha, I. Ishchenko, A.
Zakharchuk and N. Kunieva, "The Intellectual IoT-
System for Monitoring the Base Station Quality of
Service," 2018 IEEE International Black Sea
Conference on Communications and Networking
(BlackSeaCom), 2018, pp. 1-5, doi:
10.1109/BlackSeaCom.2018.8433715
13. Skulysh M. Management of Multiple Stage
Queuing Systems / M. Skulysh, S. Sulima // CADSM
2015 : 13-th International conference, 24–27 February
2015 : conference proceedings. — Lviv–Polyana,
2015. — pp. 431– 434.
14. G. Amrani, A. Adadi, M. Berrada, Z. Souirti and S.
Boujraf, "EEG signal analysis using deep learning: A
systematic literature review," 2021 Fifth International
Conference On Intelligent Computing in Data Sciences
(ICDS), 2021, pp. 1-8, doi:
10.1109/ICDS53782.2021.9626707.
15. I. V. Pustokhina, D. A. Pustokhin, D. Gupta, A.
Khanna, K. Shankar and G. N. Nguyen, "An Effective
Training Scheme for Deep Neural Network in Edge
Computing Enabled Internet of Medical Things
(IoMT) Systems," in IEEE Access, vol. 8, pp. 107112-
107123, 2020, doi: 10.1109/ACCESS.2020.3000322.
16. S. Huang, Y. Guo, D. Liu, S. Zha and W. Fang, "A
Two-Stage Transfer Learning-Based Deep Learning
Approach for Production Progress Prediction in IoT-
Enabled Manufacturing," in IEEE Internet of Things
Journal, vol. 6, no. 6, pp. 10627-10638, Dec. 2019,
doi: 10.1109/JIOT.2019.2940131..
17. M. U. Ndubuaku, M. K. Ali, A. Anjum, A. Liotta
and S. Reiff-Marganiec, "Edge-enhanced analytics via
latent space dimensionality reduction," 2020
IEEE/ACM International Conference on Big Data
Computing, Applications and Technologies (BDCAT),
2020, pp. 87-95, doi:
10.1109/BDCAT50828.2020.00018.
18. Liu, C., Zhang, Y., Li, Z., Zhang, J., Qin, H., &
Zeng, J. (2015). Dynamic Defense Architecture for the
Security of the Internet of Things. 2015 11th
International Conference on Computational
Intelligence and Security (CIS).
doi:10.1109/cis.2015.100

15E. SiEmEnS, V. KurdEcha, S. uShaKoV, inTErnET oF ThinGS daTa TranSFEr mEThod uSinG nEuraL nETWorK
auToEncodEr

Сіменс E., Курдеча В.В., Ушаков С.М.
Метод передачі даних мережі Інтернету речей з застосуванням нейромережевого автоенкодеру
Проблематика. Кількість пристроїв в мережах Інтернету речей постійно збільшується. Разом з цим збільшується

кількість рішень на ринку таких технологій. Статистика підтверджує, що дані чинники призводить до зростання
об’ємів передачі даних. Тим самим підвищується кількість ресурсів, що витрачається на забезпечення передачі
даних. Тенденція зростання кількості користувачів технології Інтернету речей призводить до появи проблеми
стрімкого збільшення даних, що передаються мережею.

Мета дослідження. Удосконалити процес передачі даних в мережі Інтернету речей за рахунок модифікації
нейромережевого автоенкодеру для зменшення використання ресурсів мережі.

Метод реалізації. Аналіз публікацій, присвячених передачі даних мережі Інтернет речей. Інтеграція існуючих
рішень кодування даних на основі нейромережевого автоенкодеру в процесі передачі даних мережі Інтернету речей.

Результати. Удосконалено нейромережевий автоенкодер за рахунок використання алгоритму, що додатково
включає в себе арифметичний кодер та подальшого навчання нової моделі на вихідні данні повноцінного
автоенкодеру.

Висновки. Модифіковано процес передачі даних в мережі Інтернету речей за рахунок удосконалення
нейромережевого автоенкодеру за допомогою використання навчання меншої нейромережі на вихідних даних
основного автоенкодеру, що дозволило зменшити кількість даних, що передаються і відповідно зменшення
використання ресурсів мережі.

Ключові слова: Інтернет речей; кодування даних; нейронна мережа; автоенкодер; навчання на вихідну модель;
стиснення даних.

