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Background. The number of devices in the Internet of Things is constantly increasing. At the same time, the number of 
solutions on the market for such technologies is growing. Statistics confirm that these factors lead to an increase in data 
transfer volumes. This raises the number of resources spent on data transmission. The growing trend in the number of users of 
the Internet of Things technology leads to the emergence of the problem of a rapid increase in the data transmitted by the 
network.  

Objective. The purpose of the paper is to improve the process of data transmission in the Internet of Things by modifying 
the neural network autoencoder to reduce network resources use.  

Methods. Analysis of publications dedicated to Internet of things data transmission. Integration of existing data coding 
solutions based on a neural network autoencoder in the process of transmitting data from the Internet of things.  

Results. The neural network autoencoder has been improved by using an algorithm that additionally includes an 
arithmetic encoder and further training a new model on the output of a full-fledged autoencoder.  

Conclusions. The process of data transmission in the Internet of Things network has been modified by improving the 
neural network autoencoder by using the training of a smaller neural network on the initial data of the main autoencoder, 
which has reduced the amount of data transmitted and, accordingly, reduced the use of network resources.  

Keywords: Internet of things; data coding; neural network; autoencoder; training on the original model; data 
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INTRODUCTION 
The number of devices in the IoT network is 

constantly increasing. At the same time, the number of 
solutions in the IoT technology market is increasing, 
which in turn leads to an increase in data transfer 
volumes. This increases the amount of resources spent 
on ensuring their transfer. 

The increase in the number of Internet of Things 
technology users is leading to a rapid increase in data 
transmitted over the network. The more traffic that 
reaches the network, the faster the data transfer rate. 
This complicates the process of exchanging traffic, 
which in turn leads to the need to spend resources on 
expanding network bandwidth. 

 

PROBLEM FORMULATION 
The main task in exchanging IoT data is to transfer 

it to a cloud environment based on short-range 
communication systems - personal networks. These can 
include both wireless and wired networks. The first 
ones include Bluetooth, NFC, RFID, Wi-Fi, Zigbee, Z-
Wave protocols, while wired networks have a much 
wider list of technologies and names, as they include all 
possible industrial networks and protocols. At this 
stage, the main difficulty arises, which is the relative 
slowness of data transfer to the cloud and its further 
processing in the cloud. The main disadvantage of 
existing solutions is that they provide a low data 
compression ratio with a large number of sensors. At 

present, it is necessary to develop a data compression 
technique for IoT applications and devices with limited 
resources, efficiently working on multivariate time 
series and implemented on a real carrier. 

As an option to address these shortcomings, first of 
all, it is necessary to apply a fast, error- and data-loss-
aware compressor on the collected data before the 
transmitters, which is considered the largest traffic 
consumer in an IoT device. The second step is to 
recover the transmitted data at the edge node and 
process it using supervised machine learning methods. 

The main aim of the paper is to improve the process 
of data transmission in the Internet of Things by 
modifying the neural network autoencoder to reduce 
the network resources use. The neural network 
autoencoder has been improved by using an algorithm 
that additionally includes an arithmetic encoder and 
further training a new model on the output of a full-
fledged autoencoder.  

 

USED TECHNOLOGIES. 
Recurrent neural networks (RNNs) are a type 

of neural networks that excel in modelling sequence 
data like natural language or time series. RNNs have 
the unique ability to utilize their internal memory to 
process sequences of any length, unlike multilayer 
perceptrons. Consequently, they are suitable for tasks 
involving the segmentation of a whole into parts, for 
example, handwriting or language recognition. 
Recurrent networks have a wide range of architectural 
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solutions, from simple to complex. Presently, the most 
popular architectures are the long-term and short-term 
memory network (LSTM) and the gated recurrent unit 
(GRU). 

To illustrate, the usage of RNNs can be represented 
schematically (refer to Fig.1): during each iteration of 
the loop, the model input receives both a fresh data 
fragment and the previous internal state. Eventually, 
the entire sequence is represented by the output of the 
neural network. 

 
Fig. 1 Circuit diagram of a recurrent neural network 
The Long Short-Term Memory (LSTM) is a deep 

learning architecture designed for artificial recurrent 
neural networks (RNNs) as illustrated in Figure 2. 
Unlike conventional neural networks, which use direct 
communication, LSTMs incorporate feedback with 
previous layers of the network. They can process entire 
data sequences such as speech or video, instead of 
individual data points like images. LSTMs have a wide 
range of applications, including non-segmented 
handwriting recognition, speech recognition, network 
traffic anomaly detection, and intrusion detection 
systems (IDS). 

An LSTM unit comprises a cell, inlet valves, outlet 
valves, and forgetting valves. The cell stores values at 
irregular intervals, and the three valves regulate 
information flow into and out of the cell. LSTMs are 
suitable for processing, classification, and forecasting 
based on time-series data, as they can account for 
variable intervals between significant events in a 
sequence. They were designed to address the issue of 
the disappearing gradient that can occur during training 
of traditional RNNs. Hidden Markov models and other 
sequence learning techniques have difficulties with 
long-term dependencies in input sequences. In theory, 
classical RNNs can track arbitrary long-term 
dependencies in input sequences, but in practice, the 
computational process can cause inverse propagation 
gradients to vanish or explode due to finite accuracy. 

LSTMs can solve the vanishing gradient problem by 
allowing gradients to flow unchanged. However, they 
can still experience the issue of exploding gradients. 
Nonetheless, LSTMs are relatively insensitive to 
interval length and can track long-term dependencies in 
input sequences. In conclusion, LSTMs are a powerful 

tool for processing data sequences and have broad 
applications in various fields, especially for problems 
involving time-series data with long-term 
dependencies. 
 

 
Fig. 2 LSTM circuit diagram 

 
In 2014, Kyunghyun Cho et al. introduced gated 
recurrent units (GRUs) as a mechanism for 
constructing recurrent neural networks. The GRU is 
similar to long-term memory (LSTM) in that it has a 
forget mechanism, but it has fewer parameters than 
LSTM because it lacks an initial state. In tasks 
involving modelling polyphonic music, speech signals, 
and natural language processing, GRUs have 
demonstrated performance comparable to LSTM. 
Furthermore, on certain smaller and less frequent 
datasets, GRUs have demonstrated superior accuracy 
(Fig 3).  

 
Fig. 3 The scheme of operation of the GRU circuit 

 DeepZIP is an innovative lossless compression 
technique that leverages a combination of Recurrent 
Neural Networks (RNN) and information theory 
techniques. At the heart of the DeepZip model lies the 
RNN for probability estimation, which estimates the 
likelihood of occurrence of each building block of the 
input sequence. The RNN receives the input symbol of 
the original sequence at each time step, which can be a 
bit or a byte, a base in the DNA chain, an English letter, 
or any other building block of the sequence. After 
processing the symbol, the RNN generates a vector that 
contains predictions of how likely each building block 
is to appear in the sequence. For instance, when 
encoding a sequence of bits, an output of [0.25, 0.75] 
would imply that the model assumes the next bit is 1 
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with a probability of 75%. Subsequently, the RNN 
shows the next character in the sequence for which it 
generates probabilities, given the characters that were 
shown to it earlier. One of the key differentiators of the 
RNN for probability estimation in DeepZip is that it 
does not require training before it processes new input. 
Unlike most neural networks, which use a training 
dataset to determine their internal parameters, the RNN 
for probability estimation starts with random 
parameters when it receives new input. As it processes 
symbols at the input, it updates its latent state according 
to the usual RNN rules, and it also updates its weight 
parameters using the loss between its probabilistic 
predictions and the actual symbol. Thus, the RNN for 
probability estimation does not just identify the 
dependencies that exist in the new sequence; it also 
learns how to study these dependencies. This approach 
provides an effective solution for lossless compression 
and improves the accuracy of the predicted 
probabilities. DeepZIP combines RNN with 
information theory techniques to create a highly 
efficient lossless compression technique. The RNN for 
probability estimation plays a key role in estimating the 
likelihood of occurrence of each building block of the 
input sequence, and its unique training methodology 
ensures that it can effectively identify and learn the 
dependencies in the new sequence. 

The process of encoding data based on the 
probability estimates generated by the RNN requires a 
mechanism to translate these estimates into an actual 
encoded sequence. To achieve this, DeepZIP utilizes a 
well-established technique from information theory 
known as the arithmetic encoder. This encoder employs 
a numeric range to represent the input sequence, 
starting from an initial range of 0.0 to 1.0, which is then 
modified as follows (Fig.4).: 

1) First, estimate the probability of the next 
character appearing in the input sequence using 
a statistical model, such as an RNN.  

2) Divide the current range of the encoder into 
units, with each symbol having its own 
subdivision. The length of the sub-interval is 
proportional to the probability of the 
corresponding symbol obtained in step 1. 

3) Read the next character from the input 
sequence. 

4) Set the encoder's current range to the sub-
interval of this symbol. The new range will be 
shorter or longer depending on the probability 
of the symbol.  

5) If there are more characters in the input 
sequence, repeat from step 1. The encoder will 
keep updating its range for each character in 
the input sequence. 

 
Fig. 4 Data compression scheme 

To decode the compressed sequence, the arithmetic 
encoder is used in reverse order. Starting with the same 
range from 0.0 to 1.0, the decoder reads the compressed 
bit sequence one bit at a time. At each step, the decoder 
divides the current range into sub-intervals, one for 
each possible symbol, proportional to the probability of 
the corresponding symbol. The decoder selects the sub-
interval that contains the binary fraction represented by 
the compressed sequence read so far. The symbol 
corresponding to that sub-interval is then output to the 
decompressed sequence. The decoder then updates the 
range to the sub-interval for the selected symbol and 
repeats the process until the entire compressed 
sequence has been decoded (Fig. 5): 

1) Use the same model that was used to encode 
the message to predict the probability of 
occurrence of each character in the original 
sequence. 

2) Divide the current range of the encoder into 
units, with one subdivision for each possible 
symbol, where the length of each subdivision is 
proportional to the probability of that symbol 
predicted in step 1. 

3) Determine the unit that contains the coded 
number, which is a binary representation of a 
number from 0.0 to 1.0, contained in the final 
range of the arithmetic encoder at the encoding 
stage. 

4) Add the symbol assigned to this subdivision in 
the original sequence. The final range of the 
encoding step was in the range selected for 
each previous step, so whatever subdivision of 
the character contains the input code, it must be 
in the output sequence. 

5) Set the current encoder range for this unit. Now 
the range of the encoder is exactly the same as 
it was during the corresponding step of the 
encoding process. 

6) Repeat steps 1-5 for each character to be 
decoded, until the end of the sequence is 
reached. The end of the sequence can be 
marked with a special character at the end of 
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the message or by knowing the number of 
characters that must be output. If this symbol is 
not the final symbol or the end of the sequence 
has not been reached, decoding continues. 

 
Fig. 5 Data decoding scheme 

MAIN PART 
In practical scenarios, the exact length of input 

sequences is generally unknown. To tackle this issue, 
an end-of-message character is often utilized to signal 
the encoder when to halt appending new characters to 
the output sequence. DeepZip, a method for encoding 
input sequences, leverages an RNN for probability 
estimation and an arithmetic encoder. Initially, the 
RNN is initialized with random weights to predict the 
probability. Next, the arithmetic encoder encodes the 
first character of the input sequence using the default 
character distribution. The first symbol is then fed to 
the RNN for probability estimation, which produces 
probabilities for the subsequent symbol. These 
probabilities are used by the arithmetic encoder to 
encode the second character. The RNN's weights for 
estimating the probability are updated by comparing the 
predicted probabilities for the second symbol with the 
actual identity of the second symbol. The second 
character is then introduced to the RNN to estimate the 
probability, which gives the probability for the third 
character, and the process continues until the input 
sequence is fully encoded. 
 In the context of encoding input data, it is 
noteworthy that the RNN used for probability 
estimation in the decoding process is initialized with 
the same weights that were employed at the outset of 
coding. One effective approach to achieve this is by 
transmitting a random value that was utilized during 
encoding, alongside the actual encoding of the input 
data. Subsequently, the arithmetic encoder adopts the 
default character allocation to extract the first character 
from the encoded data. This symbol is transmitted to 
the RNN to estimate the probability, which yields a set 
of probabilities for the next symbol. If properly 
initialized, these probabilities will correspond exactly 
to those issued by the RNN during the initial encoding 
step. The probabilities are then utilized by the encoder 
to extract the second character, which in turn is used to 
restore the RNN weights. The updating of scales should 

precisely mirror the process that occurred after the first 
coding step. The second character is then passed to the 
network, which issues probabilities for the third 
character, and the process is repeated until the encoder 
reads the end-of-message character. 

PROPOSED METHOD DEFINITION 
In the previous section, the compression algorithm 

using DeepZip neural networks was considered. 
However, in its development, the main platform was 
considered classical computer systems, such as web 
servers and personal computers. For use in IoT devices, 
the model may be too heavy: both in terms of memory 
required and in terms of consumption of computing 
resources. This is not the first time that the problem of 
heavy models has arisen in the field of neural networks. 
An example is BERT, the neural network architecture 
from Google, which allows you to recognize the 
meaning of quite complex sentences and even extract 
from them the semantic meanings of individual 
phrases. In itself, BERT training takes a very long time, 
resulting in a fairly large network, which could not be 
used to analyse all search queries. On the other hand, 
due to technical and architectural limitations, it is not 
possible to qualitatively teach simpler architecture at 
once. Thus, it is possible to teach a large model, but due 
to its size, the latter cannot be applied in practice. For 
this reason, the following principle is applied: first, the 
three-dimensional model is trained to an acceptable 
level, and only then there is training, compression and a 
light version of the model on the original model. 
Simply put, we do not try to immediately learn to 
answer questions about the text, but first learn to 
understand its meaning by observing how it is 
understood by the parent model, and learning to repeat 
it (Fig.6). 

 
Fig. 6 Visualize the sequence of the data encoding 

method (diamond– model training, Superellipse– model 
testing) 
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EMPIRICAL MODELLING AND ANALYTICAL 
EVALUATION OF NEURAL NETWORKS 

 It was decided to abandon the training in parallel 
coding in favour of a pre-trained model, which will first 
put in the model features of the type of data 
transmitted, and secondly apply the above principle of 
compression by a recurrent neural network. Thus, the 
first step will be to train the RNN on the generated data 
set to be transmitted. In this way a neural network will 
be obtained, with some level of redundancy, which will 
be further eliminated by means of compressed to lower 
dimensions. It was decided to conduct an experiment 
using the most common application format JSON. It 
allows you to set quite complex data structures, while 
being quite simple and minimalist as opposed to 
cumbersome XML. 

  

 

SIMULATION 
Its features will be used for efficient data 

compression. To do this, a utility was developed to 
generate input data. Generation is done using the 
recursive function generate (size_left, max_depth), 
which returns a random object, which when serialized 
in JSON will give a string no longer than size_left bytes 
and a depth of no more than max_depth. At each step 
of the recursion, we try to add random keys to the 
object, partly from the dictionary, for which the values 
will be either random strings, or other random objects, 
or arrays of random objects (Fig.7). 

 
Fig. 7 JSON structure corresponding to one of the 

recursive call variations. 
 

The original DeepZIP architecture, based on 
learning parallel to the compression process itself. 
Thus, for compression using this algorithm, it is 
necessary to update the scales after each portion of 
input data, i.e. the model learns the features of the data 
as it passes through them. In our case, the work is with 
the JSON format with a pre-known set of keys, which 
allows you to lay down knowledge about the structure 

of input data before the network will be used in 
practice. Thus, in the course of this work, a large neural 
network was trained, and then, based on a large one, a 
simpler model was trained, which can then be used on 
target IoT devices. Therefore, a set of randomly 
generated JSON-string algorithms with IoT-like data 
will be used for training. 200,000 rows up to 10 
(approximately 2 MB of data), 20,000 rows up to 50, 
10,000 rows up to 100, and 5,000 rows up to 10,000 
were generated. This sample was used to teach large 
network architecture (Fig.8).   

 

 
Fig. 8 Comparison of big network accuracy 

 
A part of this sample will be used later to train the 

small model, as well as an additional random set of 
JSON strings will be generated. Thus, 50% of the 
sample of large architecture is used to teach small 
architecture, as well as the remaining 50%, regenerated 
to avoid retraining 

 
Fig. 9 Comparison of the accuracy of the new 

network 
 

At the same time, given the differences in 
architectures, the small one is 3 times faster. The 
graphs above show the differences in the degree of 
compression depending on the number of eras for large 
and small architectures. The simplification of the 
DeepZIP architecture has provided a greater degree of 
compression specifically for IoT-specific data. Thus, 
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the smaller architecture trained on final weights of a big 
network gave approximately 12% less degree of 
compression at acceleration in 3 times (Fig.9). 

CONCLUSION 
The Internet of Things as a concept and a network is 

anticipated to integrate advanced technologies in the 
fields of telecommunications, cloud computing, and fog 
computing, as well as sensing, thus opening the door to 
groundbreaking applications in various areas that will 
bring many benefits and have a significant impact on 
people's lives. However, the nature of the IoT network, 
with its massive number of connected devices and large 
volumes of potentially vulnerable data, raises serious 
concerns regarding bandwidth, security, privacy, and 
performance. The solutions discussed in the paper 
represent an important step towards overcoming these 
challenges, but further analysis and comparison are 
needed to determine the advantages of implementing 
these systems or their combinations on various IoT 
network infrastructures, both current and future. 
Although there is no "one-for-all" solution that can be 
easily created, it is still possible to develop new and 
improved approaches and systems to enhance the 
security of the IoT network. One possible solution is to 
integrate existing data transmission methods and 
combine them with modern technologies from 
neighbouring fields, such as AI-based compression, as 
demonstrated in the article or other methods. 
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Сіменс E., Курдеча В.В., Ушаков С.М. 
Метод передачі даних мережі Інтернету речей з застосуванням нейромережевого автоенкодеру 
Проблематика. Кількість пристроїв в мережах Інтернету речей постійно збільшується. Разом з цим збільшується 

кількість рішень на ринку таких технологій. Статистика підтверджує, що дані чинники призводить до зростання 
об’ємів передачі даних. Тим самим підвищується кількість ресурсів, що витрачається на забезпечення передачі 
даних. Тенденція зростання кількості користувачів технології Інтернету речей призводить до появи проблеми  
стрімкого збільшення даних, що передаються мережею.  

Мета дослідження.  Удосконалити процес передачі даних  в мережі Інтернету речей   за рахунок модифікації 
нейромережевого автоенкодеру для зменшення використання ресурсів мережі. 

Метод реалізації. Аналіз публікацій, присвячених передачі даних мережі Інтернет речей. Інтеграція існуючих 
рішень  кодування даних на основі нейромережевого автоенкодеру  в процесі передачі даних мережі Інтернету речей. 

Результати. Удосконалено нейромережевий автоенкодер за рахунок використання алгоритму, що додатково 
включає в себе арифметичний кодер та подальшого навчання нової моделі на вихідні данні повноцінного 
автоенкодеру. 

Висновки. Модифіковано процес передачі даних  в мережі Інтернету речей   за рахунок удосконалення 
нейромережевого автоенкодеру за допомогою використання навчання меншої нейромережі на вихідних даних 
основного автоенкодеру, що дозволило зменшити кількість даних, що передаються і відповідно зменшення 
використання ресурсів мережі. 

Ключові слова: Інтернет речей; кодування даних; нейронна мережа; автоенкодер; навчання на вихідну модель; 
стиснення даних. 
 




